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BAR COMPLEXES AND EXTENSIONS OF CLASSICAL

EXPONENTIAL FUNCTORS

ANTOINE TOUZÉ

Abstract. We compute Ext-groups between classical exponential func-
tors (i.e. symmetric, exterior or divided powers) and their Frobenius
twists. Our method relies on bar constructions, and bridges these Ext-
groups with the homology of Eilenberg-Mac Lane Spaces.

Together with [T3], this article provides an alternative approach to
classical Ext-computations [FS, FFSS, C1, C2] in the category of strict
polynomial functors over fields, and it corrects some mistakes in [C2].
We also obtain significant Ext-computations for strict polynomial func-
tors over the integers.

1. Introduction

1.1. Let k be a commutative ring, and let GLn,k be the general linear group
over k. If k is not a field of characteristic zero, the rational representations
of GLn,k do not split as direct sums of simple representations. This gives
birth [J, I, Chap 4] to nontrivial extension groups between representations
of GLn,k, which measure the various ways of pasting them together. Unfor-
tunately, these extension groups are often quite difficult to compute, even
when one restricts to the most basic representations of GLn,k. In this article,
we deal with the classical (but challenging) problem of computing extension
groups between symmetric, exterior or divided powers of the standard rep-
resentation k

n of GLn,k.
A first partial answer to this problem was obtained in [A], where the

extension groups Ext∗GLn,k
(S∗(kn),Λ∗(kn)) between symmetric and exterior

powers of the standard representation are computed over a field k. Actually,
Akin uses the Schur algebras S(n, d) to perform this computation. Indeed,
S∗(kn) and Λ∗(kn) are S(n, d)-modules and there is an isomorphism

Ext∗GLn,k
(Sd(kn),Λd(kn)) ≃ Ext∗S(n,d)(S

d(kn),Λd(kn)) .

The interest of this approach lies in the fact that extension between S(n, d)-
representations are often easier to compute than representations between
GLn,k-representations.

Further progress on the problem was made using the category Pk of ‘strict
polynomial functors’ introduced by Friedlander and Suslin [FS]. These strict
polynomial functors are a stabilized version of modules over Schur algebras
(see appendix 8 for a summary of the theory of strict polynomial functors),
and they are more powerful than modules over Schur algebras for compu-
tations. Examples of strict polynomial functors are the symmetric powers
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2 ANTOINE TOUZÉ

functors V 7→ Sd(V ), the exterior powers functors V 7→ Λd(V ) and the di-
vided powers functors V 7→ Γd(V ) = (V ⊗d)Sd (where the variable V takes
values in finitely generated projective k-modules). We call these examples
‘classical exponential functors’ (the reason for this is given in paragraph
1.2.3 below). Extensions between these functors give informations between
extension between the corresponding GLn,k representations, e.g. there is an
isomorphism:

⊕

i,j

Ext∗GLn,k
(Si(kn),Λj(kn)) ≃

⊕

i,j≤n

Ext∗Pk
(Si,Λj) .

Over a field k of positive characteristic, extension groups between classical
exponential functors were all computed in the innovative articles [FFSS] and
[C2]. In fact, these authors do not only compute extension groups between
classical exponential functors. Because of links [FFSS] with the representa-
tion theory of the finite groups GLn(Fq) and with the category of unstable
modules over the Steenrod algebra, they compute more generally all the
extension groups of the form Ext∗Pk

(X∗ (r), Y ∗ (s)), where X∗ and Y ∗ are

classical exponential functors and X∗ (r) and Y ∗ (s) denote the precomposi-
tions of X∗ and Y ∗ by the Frobenius twist functors I(r) and I(s) (r, s ∈ N).

In this article, we study the extension groups between classical expo-
nential functors, and also between their twisted versions if k is a field of
positive characteristic. Our methods are different from the methods used in
[FFSS, C2], and they also allow explicit computations over the integers. We
obtain the following results.

(1) We get new independent proofs of all the computations performed
in [FFSS] (the results are stated in theorems 7.19 and 7.20).

(2) We get new independent computations all the extension groups com-
puted in [C2]. We explain why some results of [C2] are false and we
correct them (in theorems 7.21, 7.22 and 7.23).

(3) We also obtain completely new results, namely we compute extension
groups between classical exponential functors over the ring k = Z

(in theorem 6.11).

To perform our computations, we use bar complexes to show that ex-
tension groups between classical exponential functors are nothing but the
singular homology of some Eilenberg-Mac Lane spaces under disguise. Then
we elaborate on Cartan’s computation [Car] of the homology of Eilenberg-
Mac Lane spaces to get explicit results. On our way, we obtain the following
computation, of independent interest.

(4) We compute (theorems 5.7, 5.13 and remark 5.9) the homology of
iterated bar constructions of the divided power algebra Γ∗(V ), over
any field. (This was done only for prime fields by Cartan [Car]).

Finally, over fields of positive characteristic, we show that the extension
groups between twisted exponential functors can quite easily deduced from
the extension groups between untwisted exponential functors. The latter
fact is proved once again via bar complexes, together with the techniques
developed in [T3].
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1.2. Before undertaking computations, we wish to clarify the meaning of
‘computing extension groups’. So we now recall various structures (func-
toriality, products, coproducts. . . ) which equip extension groups between
classical exponential functors and their Frobenius twists, and which ones it
is important to compute. Full details are given in section 2.

1.2.1. Strict polynomial structures. Let k be a commutative ring and let V
be a finitely generated projective k-module. If F is a strict polynomial func-
tor, we denote by F V the strict polynomial functor U 7→ F (Homk(V,U)).
Throughout the article, we shall write for short:

E
∗(F,G;V ) := Ext∗Pk

(F V , G) , H(F,G;V ) := HomPk
(F V , G) .

Thus E
∗(F,G;k) equals Ext∗Pk

(F,G). Actually V 7→ E
∗(F,G;V ) is a strict

polynomial functor.
In this article, we systematically study extension groups of the form

E
∗(F,G;V ) instead of Ext∗Pk

(F,G). This yields more general results, and
also reveals some hidden useful structures (e.g. exponential structures, cf.
1.2.3).

1.2.2. Products and gradings. Let A∗ be a graded strict polynomial alge-
bra (that is, the Ai are strict polynomial functors, and the multiplication
Ai ⊗ Aj → Ai+j is a morphism of strict polynomial functor) and let C∗ be
strict polynomial coalgebra. Then the extension groups E

∗(C∗, A∗;V ) are
equipped with a product defined as the composite

E
i(Ck, Am;V )⊗E

j(Cℓ, An;V ) → Ei+j(Ck⊗Cℓ, Am⊗An;V ) → Ei+j(Ck+ℓ, Am+n;V )

where the first map is induced by tensor products and the second one by
the multiplication of A∗ and the comultiplication of C∗.

So the extension groups between (twisted) classical exponential functors,
e.g. E

∗(S∗(3),Λ∗(5);V ), form a trigraded strict polynomial algebra, and this
algebra structure greatly helps to organize the computations and the results.

In fact, it is not necessary to compute extensions between (twisted) clas-
sical exponential functors as trigraded algebras. Indeed, there are no ex-
tensions between homogeneous strict polynomial functors of different strict
polynomial degree, so the last two gradings carry the same information. For

example, E
∗(S∗(3),Λ∗(5);V ) actually equals

⊕
h,d≥0 E

h(Sdp2 (3),Λd (5);V ).
Therefore we only compute the extension groups as bigraded algebras in
this article.

1.2.3. Exponential structures. Actually, symmetric powers, exterior powers,
divided powers and their Frobenius twists are not only algebras and coal-
gebras: they are exponential functors. A (multigraded) exponential func-
tor E∗ is a functor satisfying a (multigraded) ‘exponential isomorphism’:
E∗(V ⊕W ) ≃ E∗(V ) ⊗ E∗(W ).

When k is a field, extensions between graded exponential functors inherit
an exponential structure:

E
∗(X∗, Y ∗;V ⊕W ) ≃ E

∗(X∗, Y ∗;V ) ⊗ E
∗(X∗, Y ∗;W ) .

The product described in section 1.2.2 coincides with the composite

E
∗(X∗, Y ∗;V )⊗2 ≃ E

∗(X∗, Y ∗;V ⊕2)
E∗(X∗,Y ∗;Σ2)
−−−−−−−−−→ E

∗(X∗, Y ∗;V ) ,
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where Σ2 : V ⊕2 → V sends (x, y) to x + y. The exponential structure also
yields a coproduct (where ∆2 : V → V ⊕2 is the diagonal map):

E
∗(X∗, Y ∗;V )

E∗(X∗,Y ∗;∆2)
−−−−−−−−−→ E

∗(X∗, Y ∗;V ⊕2) ≃ E
∗(X∗, Y ∗;V )⊗2 .

In [FFSS, C2], both the algebra structure and the coalgebra structures are
computed. But in fact the coalgebra structure is not so interesting. Indeed,
it is not hard to see that the algebra structure of E∗(X∗, Y ∗;V ) determines
the exponential structure, hence also the coalgebra structure.

That’s why we limit ourselves to computing E
∗(X∗, Y ∗;V ) (for X∗, Y ∗

(twisted) exponential functors) as strict polynomial algebras in this article.

1.3. Let us indicate what is known so far about extensions between classical
exponential functors S∗, Γ∗ and Λ∗ over a commutative ring k.

• The algebras E
∗(Γ∗,X∗;V ), for X = Γ,Λ or S are very easy to

compute. Indeed Γd V is projective in Pk for all d ≥ 0 and the Yoneda
lemma (see appendix 8.1.3(4) yields a bigraded algebra isomorphism,
natural in V :⊕

i≥0,d≥0

E
i(Γd,Xd;V ) ≃

⊕

d≥0

E
0(Γd,Xd;V ) ≃

⊕

d≥0

Xd(V ) .

• Now Kuhn duality E
∗(Xd, Sd;V ) ≃ E

∗(Γd,Xd ♯;V ) gives for free
bigraded algebra isomorphisms, natural in V :

⊕

i≥0,d≥0

E
i(Xd, Sd;V ) ≃

⊕

d≥0

E
0(Xd, Sd;V ) ≃

⊕

d≥0

Xd ♯(V ) .

(Recall that Λd ♯ = Λd and Sd ♯ = Γd.)
• Finally, it is well known (and we shall give a proof in remark 4.6) that
E
i(Λd,Λd;V ) = 0 for i positive. Now an elementary computation

gives a bigraded algebra isomorphism (natural in V ):
⊕

i≥0,d≥0

E
i(Λd,Λd;V ) ≃

⊕

d≥0

E
0(Λd,Λd;V ) ≃

⊕

d≥0

Γd(V ) .

So, the only non-trivial extension groups to be computed are:

E
∗(Λ∗,Γ∗;V ) ≃ E

∗(S∗,Λ∗;V ) and E
∗(S∗,Γ∗;V ) .

The first ones were first computed (when k is a field and V = k) by Akin in
[A], but only as graded vector spaces, that is, without the algebra structure.
Recently, all these extension groups were computed as algebras (still when
k is a field) by Cha lupnik in [C2]

The purpose of section 4 is to compute these extension groups, as al-
gebras, for V = k

m, over commutative rings k. Our method bridges strict
polynomial functors with classical algebraic topology computations. Indeed,
we show that the algebras E

∗(S∗,Λ∗;km) and E
∗(S∗,Γ∗;km) are respec-

tively linked with the homology algebra of the Eilenberg-Mac Lane spaces
K(Zm, 3) and K(Zm, 4). Our method generalizes the main theorem of [A].

In section 5, we elaborate on Cartan’s computations [Car] to obtain ex-
plicit results over fields of prime characteristic. In fact, the careful reader
will notice that not all our results agree with the computations previously
made by Cha lupnik [C2]. So, for sake of completeness, we give in section
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5.3 elementary examples which show that our results seem to be the right
ones.

Finally, we give explicit computations over k = Z in section 6 (still based
on the computations of [Car]).

1.4. Assume now that k is a field of positive characteristic p. We are
interested in the algebras E

∗(X∗ (r), Y ∗ (s);V ), for r, s ≥ 0 and when X∗

and Y ∗ are one of the classical exponential functors S∗, Λ∗ or Γ∗. These
algebras were computed in [FFSS] and [C2]. To be more specific, let us
order the classical exponential functors from the most projective one to the
most injective one: Γ∗ < Λ∗ < S∗. Then the algebras E

∗(X∗ (r), Y ∗ (s);k)
for X∗ ≤ Y ∗ were computed in [FFSS], using hypercohomology spectral
sequence associated to De Rham complexes. The algebras for X∗ > Y ∗

were computed in [C2] (but once again with mistakes), relying on the same
techniques, together with Koszul duality.

In section 7, we give an independent approach to compute these algebras.
Namely, we explain how one can recover the algebra E

∗(X∗ (r), Y ∗ (s);V )
from the algebra E

∗(X∗, Y ∗;V ) in a simple way. To get rid of the Frobenius
twists, we essentially combine an analysis of bar constructions, and the use
of Troesch complexes as in [T3].

Thus, the present article together with [T3] provide a complete alterna-
tive approach to classical computations in the category of strict polynomial
functors [FS, FFSS, C1, C2], independent from these articles and relying on
different techniques.

2. The structure of the extension groups E
∗(X∗ (r), Y ∗ (s);V )

Definition 2.1. Let k be a commutative ring. A graded strict polynomial
algebra consists of the following data.

• For all i, a strict polynomial functor Ai. If k is not a field, we allow
Ai to have values in arbitrary k-modules.

• For all i, j, a morphism of strict polynomial functors Ai⊗Aj → Ai+j,
• A morphism of strict polynomial functors k → A0,

These data are required to satisfy the usual axioms of graded algebras. A
morphism of graded strict polynomial algebras A∗ → B∗ is a set of mor-
phisms of strict polynomial functors f i : Ai → Bi which commute with
products.

Similarly, one defines multigraded strict polynomial algebras, strict poly-
nomial CDGA algebras (i.e. Commutative Differential Graded Augmented),
etc.

Definition 2.2. Let k be a commutative ring. A (multi)graded strict poly-
nomial exponential functor is a (multi)graded strict polynomial algebra E∗

with E0(0) = k, and such that for all V,W ∈ Vk, the following composite
(where ιV and ιW denote the canonical inclusions of V , W in V ⊕W ) is an
isomorphism:

E∗(V ) ⊗ E∗(W )
E∗(ιV )⊗E∗(ιW )
−−−−−−−−−−→ E∗(V ⊕W )⊗2 mult

−−−→ E∗(V ⊕W ) .
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Let X∗ and Y ∗ be classical exponential functors (i.e. S∗, Λ∗ or Γ∗) and

let X∗ (r) and Y ∗ (s) denote their precompositions by the Frobenius twist
functors I(r) and I(s) (For positive values of r, s, these Frobenius twist func-
tors are defined only if k is a field of positive characteristic. For arbitrary
rings k, take r = s = 0. Since I(0) is the identity functor, this still makes
sense). The purpose of this section is to establish that the extension groups

E
∗(X∗ (r), Y ∗ (s);V ) =

⊕
i,j,k≥0E

i(Xj (r), Y k (s);V ) are trigraded strict poly-
nomial algebras, and even better, trigraded exponential functors if k is a
field. We begin with the study of the functors V 7→ H(F,G;V ).

2.1. Parameterized Hom groups. Let d be a positive integer. We first
work in the category Pd,k of homogeneous strict polynomial functors of de-
gree d over a commutative ring k. This category identifies with the cat-
egory of k-linear functors from ΓdVk to Vk, where Vk is the category of
finitely generated projective k-modules, and ΓdVk is the category with the
same objects as Vk but whose morphisms sets are Sd-equivariant maps:
HomΓdVk

(V,W ) = HomSd
(V ⊗d,W⊗d).

For all F ∈ Pd,k, we define families {FV }V ∈Vk
and {F V }V ∈Vk

of strict
polynomial functors parameterized by finitely projective k-modules:

FV : W 7→ F (V ⊗W ) and F V : W 7→ F (Homk(V,W )) .

Morphisms f ∈ HomΓdVk
(V, V ′) induce morphisms of strict polynomial func-

tors FV → FV ′ and F V ′

→ F V (in a way which respects composition). As
a consequence, for all F,G ∈ Pd,k we have functors:

ΓdVk → k−Mod
V 7→ HomPd,k

(F V , G)
,

ΓdVk → k−Mod
V 7→ HomPd,k

(F,GV )
.

Observe that these two functors have values in the category k−Mod of k-
modules. To prove that they define genuine strict polynomial functors (i.e.
elements of Pd,k), we must prove that they have values in the subcategory
Vk of finitely generated projective k-modules. This is indeed the case if k is
a Dedekind ring (e.g. k is a field or Z), as the following lemma shows it.

Lemma 2.3. Let k be a Dedekind ring. Then for all F,G ∈ Pd,k,
HomPk

(F,G) is a finitely generated projective k-module.

Proof. If F = Γd,V , the k-module HomPd,k
(Γd,V , G) is isomorphic to G(V ),

hence finitely generated and projective. For a general, F , there is an epimor-

phism from a finite sum of Γd,kd onto F , hence HomPk
(F,G) is a submodule

of a finite direct sum of G(kd). Over Dedekind rings, submodules of finitely
generated projective k-modules are also finitely generated and projective.
Whence the result. �

Over arbitrary commutative rings k, Hom-groups need not have values

in Vk. So the two functors above are only elements of the category P̃d,k of
strict polynomial functors with values in arbitrary k-modules. See appendix
8 for further details about this category.

Lemma 2.4. The two strict polynomial functors

V 7→ HomPd,k
(F V , G) and V 7→ HomPd,k

(F,GV )
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are canonically isomorphic. We denote them by H(F,G;V ).

Proof. Let us first take F = Γd,U . Then (Γd,U )V = Γd,U⊗V and the Yoneda
lemma yields an isomorphism:

HomPd,k
((Γd,U )V , G) ≃ G(U ⊗ V ) ≃ HomPd,k

(Γd,U , GV ) ,

natural with respect to G, to f ∈ HomΓdVk
(V, V ′) and g ∈ HomΓdVk

(U,U ′)

(or equivalently to g ∈ HomPd,k
(Γd,U ′

,Γd,U ). Since the Γd,U , U ∈ Vk, form a
projective generator of Pd,k, we can take presentations of F to extend this
isomorphism to all F ∈ Pd,k. �

For d = 0, the category P0,k of homogeneous strict polynomial functors
of degree 0 identifies with the category of constant functors with finitely
generated projective values (that is with Vk). So the discussion above is
trivial and lemma 2.4 also holds for d = 0.

Now let us turn to the category Pk of strict polynomial functors. Then Pk

splits as the direct sum of its full subcategories Pd,k. In particular, if F,G
are strict polynomial functors, they split as finite direct sums F =

⊕
Fd

and G =
⊕
Gd, where Fd and Gd are homogeneous of degree d, and the

functors

V 7→ HomPk
(F V , G) =

⊕
HomPd,k

(F V
d , Gd)

V 7→ HomPk
(F,GV ) =

⊕
HomPd,k

(Fd, (Gd)V )

are canonically isomorphic strict polynomial functors, which we still denote
by H(F,G;V ). The following lemma summarizes the main properties of
parameterized Hom groups.

Lemma 2.5. Let k be a commutative ring. Parameterized Hom groups yield
a bifunctor:

Pop
k

× Pk → P̃k

(F,G) 7→ H(F,G;V )
.

If F , G are homogeneous of degree d, then so is H(F,G;V ). Moreover:

(1) Kuhn duality yields an isomorphism of strict polynomial functors
H(F,G;V ) ≃ H(G♯, F ♯;V ), natural in F,G.

(2) If G is homogeneous of degree d, there is an isomorphism
H(Γd, G;V ) ≃ G(V ), natural in G.

(3) Tensor products induce a morphism of strict polynomial functors:

H(F,G;V ) ⊗H(F ′, G′;V )
⊗
−→ H(F ⊗ F ′, G⊗G′;V ) .

Finally, if k is a Dededkind ring (e.g. a field of Z), then H(F,G;V ) actually
belongs to Pk. Thus, (F,G) 7→ H(F,G;V ) defines an intern Hom in Pk.

Proof. The first part of lemma 2.5 follows from lemma 2.4. To prove (1), we
can assume that F,G are homogeneous of degree d. Since (F V )♯ = (F ♯)V ,
there is an isomorphism

HomPd,k
(F V , G) ≃ HomPd,k

(G♯, (F V )♯) = HomPd,k
(G♯, (F ♯)V ) ,

natural in F,G and f ∈ HomΓdVk
(V, V ′). Whence the result. (2) is a re-

formulation of the Yodeda lemma HomPk,d
(Γd,V , G) ≃ G(V ) (see appendix
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8.1.3(4)). For (3), we we can assume that F,G (resp. F ′, G′) are homoge-
neous of degree d (resp. e). The map:

HomPd,k
(F V , G) ⊗ HomPe,k

((F ′)W , G′)
⊗
−→ HomPd+e,k

(F V ⊗ (F ′)W , G⊗G′)

is natural with respect to f ∈ HomΓdVk
(V, V ′) and g ∈ HomΓeVk

(W,W ′)
(i.e. it is a morphism of strict polynomial bifunctors). Hence it becomes
a morphism of strict polynomial functors if on takes V = W . The last
statement follows from lemma 2.3. �

2.2. Parameterized extension groups. The category of strict polyno-
mial functors over a commutative ring k is an exact category with enough
injectives and projectives. So we can define Ext groups as usual. Strictly
speaking, the extension groups Ext∗Pk

(F,G) are only defined up to an iso-
morphism (corresponding to a choice of injective or projective resolution).
But in the category of strict polynomial functors there are natural projective
resolutions P(F ), and we define Ext∗Pk

(F,G) as the homology of the complex
HomPk

(P(F ), G), which fixes this problem.
The following proposition follows directly from lemmas 2.4 and 2.5 by

taking resolutions.

Proposition 2.6. Let k be a commutative ring and let F,G be strict poly-
nomial functors over k. For all i ≥ 0, the functors

V 7→ ExtiPk
(F V , G) and V 7→ ExtiPk

(F,GV )

are isomorphic strict polynomial functors (with values in arbitrary k-
modules). We denote them by E

i(F,G;V ). This yields bifunctors:

Pop
k

× Pk → P̃k

(F,G) 7→ E
i(F,G;V )

.

The homogeneous part of degree d of the strict polynomial functor
E
i(F,G;V ) equals E

i(Fd, Gd;V ), where Fd and Gd denote the homogeneous
parts of F and G of degree d. Moreover, Kuhn duality induces an isomor-
phism E

i(F,G;V ) ≃ E
i(G♯, F ♯;V ), and tensor products induce a morphism

of strict polynomial functors

E
i(F,G;V ) ⊗ E

j(F ′, G′;V ) → E
i+j(F ⊗ F ′, G ⊗G′;V ) .

Finally, if k is a field, then (F,G) 7→ E
i(F,G;V ) actually has values in Pk.

Corollary 2.7. Let k be a commutative ring. Let C∗, resp. A∗, be a graded
strict polynomial coalgebra, resp. algebra. The extension groups

E
∗(C∗, A∗;V ) =

⊕
i,j,k≥0E

i(Cj, Ak;V )

form a trigraded strict polynomial algebra, whose product equals the com-
posite (where the last map is induced by the comultiplication of C∗ and the
multiplication of A∗):

E
∗(C∗, A∗;V )⊗2 ⊗

−→ E
∗(C∗⊗2, A∗⊗2;V ) → E

∗(C∗, A∗;V )

In this article, we shall study the strict polynomial algebras E∗(C∗, A∗;V )
when C∗ and A∗ are classical exponential functors or their Frobenius twists.
Observe that being a strict polynomial algebra is stronger than being an
algebra natural with respect to V . Indeed, strict polynomial functors with
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values in arbitrary k-modules can be thought of as genuine functors Vk →
k−Mod equipped with an additional ‘strict polynomial structure’. Hence
there is a forgetful functor (see also appendix 8)

U : P̃k → Fct(Vk,k−Mod) .

Thus, a strict polynomial algebra A∗(V ) yield an algebra (UA∗)(V ), natural
in V . However, non isomorphic strict polynomial algebras A∗(V ) and B∗(V )
may have the same underlying natural algebras (UA∗)(V ) ≃ (UB∗)(V ). For

example, take k = Fp. Then S∗(V ) and S∗(V (1)) are non isomorphic strict
polynomial algebras, but they become equal after applying U . This reflects
the fact that the algebras S∗(V ) and S∗(V (1)) are isomorphic as algebras,
the isomorphism is compatible with the action of the finite group GLn(Fp)
(n = dim(V )), but not with the action of the group scheme GLn. See section
5.1 for further details about the difference between algebras functorial in V
and strict polynomial algebras.

2.3. Exponential functors. In this paragraph, we recall well-known facts
about strict polynomial exponential functors. Then we prove that if k is a
field, the extension groups between strict polynomial exponential functors
are strict polynomial exponential functors. Most of the material presented
here is already contained under a slightly different form in [FFSS].

Lemma 2.8. Let E∗ be a (multi)graded strict polynomial functor, with
E0(0) = k. The following statements are equivalent.

(i) E∗ is a (multi)graded strict polynomial exponential functor.
(ii) E∗ is equipped with an isomorphism of multigraded strict polynomial

bifunctors E∗(V ) ⊗E∗(W ) ≃ E∗(V ⊕W ).
(iii) E∗ is a (multi)graded strict polynomial coalgebra such that for all

V,W ∈ Vk, the following composite is a k-linear isomorphism:

E∗(V ⊕W )
E∗(∆2)
−−−−−→ E∗(V ⊕W )⊗2 E∗(πV )⊗E∗(πW )

−−−−−−−−−−−→ E∗(V ) ⊗E∗(W ) .

Proof. Let us prove (i)⇔(ii), (ii)⇔(iii) is similar. First, (i)⇒(ii) is trivial.
So let us assume (ii). Then we define a multiplication as the composite:

E∗(V )⊗2 ≃ E∗(V ⊕ V )
E∗(Σ2)
−−−−→ E∗(V ) ,

where Σ2(x, y) = x+ y. By naturality of E∗, the composite

E∗(V ) ⊗ E∗(W ) → E∗(V ⊕W )⊗2 → E∗(V ⊕W )

equals the isomorphism E∗(V ) ⊗ E∗(W ) ≃ E∗(V ⊕W ), so the strict poly-
nomial algebra E∗ is actually an exponential functor. �

The following lemma is proved exactly in the same fashion as lemma 2.8.

Lemma 2.9. Let E∗
1 and E∗

2 be (multi)graded strict polynomial exponen-
tial functors, and let f∗ : E∗

1 → E∗
2 be a morphism of (multi)graded strict

polynomial functors. The following statements are equivalent.

(i) f∗ is a morphism of strict polynomial algebras.
(ii) f∗ is a morphism of strict polynomial exponential functors (that is,

f∗ commutes with the exponential isomorphisms).
(iii) f∗ is a morphism of strict polynomial coalgebras.
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Lemma 2.10. Let E∗ be a graded strict polynomial exponential functor, and
let F,G be strict polynomial functors. Assume that for all i, the Hom-groups
H(Ei, F ;V ) and H(Ei, G;V ) are k-projective. Then the composite (where
the last map is induced by the comultiplication of E∗)

H(E∗, F ;V ) ⊗H(E∗, G;V )
⊗
−→ H(E∗ ⊗ E∗, F ⊗G;V ) → H(E∗, F ⊗G;V )

is a graded isomorphism (take the total degree on the left handside).

Proof. Step 1: Projectivity of H(Ei, J ;V ), J injective. Observe first
that if J is injective, then H(Ei, J ;V ) is always finitely generated and projec-
tive as a k-module. Indeed, since functors of the form Sd

U form an injective
cogenerator of Pk, all injectives are direct summands of (finite sums of)
such injectives, so the proof reduces to the case J = Sd

U . By lemmas 2.4,

2.5(1) and 2.5(2), H(Ei, Sd
U ;V ) is isomorphic to Ei ♯(U⊗V ) which is finitely

generated and projective since Ei ♯ ∈ Pk.
Step 2: Reduction to the injective case. For X ∈ Pk, let X →֒ J0

X →
J1
X denote an injective copresentation of X, and let [X] denote H(E∗,X;V ).

By left exactness of [−], [X] is the kernel of [J0
X ] → [J1

X ]. For arbitrary F,G,
with [F ] projective, F ⊗G is the kernel of the map J0

F ⊗ J0
G → J1

F ⊗ J0
G ⊕

J0
F ⊗ J1

G, and since [F ], [J0
G] and J1

G are projective, [F ] ⊗ [G] equals the
kernel of the map [J0

F ] ⊗ [J0
G] → [J1

F ] ⊗ [J0
G] ⊕ [J0

F ] ⊗ [J1
G]. Now the maps of

lemma 2.10 fit into a commutative diagram with exact rows:

[F ] ⊗ [G] �
� //

��

[J0
F ] ⊗ [J0

G]

��

// [J1
F ] ⊗ [J0

G] ⊕ [J0
F ] ⊗ [J1

G]

��
[F ⊗G] �

� // [J0
F ⊗ J0

G] // [J1
F ⊗ J0

G] ⊕ [J0
F ⊗ J1

G]

.

So to prove lemma 2.10, it suffices to prove the case when F and G are
injective. Since all injectives are direct summand (finite sums of) of functors
of the form Sd

U , we can even assume that F = Sd
U and G = Se

W .

Step 3: Case F = Sd
U and G = Se

W . We are going to treat all values

of d and e at the same time. Let us write 〈E∗, S∗
U 〉 for

⊕
i,d≥0 H(Ei, Sd

U ;V ).
It suffices to show that the following composite is an isomorphism:

〈E∗, S∗
U 〉 ⊗ 〈E∗, S∗

W 〉 → 〈E∗ ⊗E∗, S∗
U ⊗ S∗

W 〉 → 〈E∗, S∗
U ⊗ S∗

W 〉.

By duality, this is equivalent to proving that the composite:

〈Γ∗U , E♯ ∗〉 ⊗ 〈Γ∗W , E♯ ∗〉 → 〈Γ∗U ⊗ Γ∗W , E♯ ∗ ⊗ E♯ ∗〉 → 〈Γ ∗U ⊗ Γ ∗W , E♯ ∗〉

is an isomorphism. This composite fits into a commutative diagram:

〈Γ∗U , E♯ ∗〉 ⊗ 〈Γ∗W , E♯ ∗〉 //
� _

(1)

��

〈Γ∗U ⊗ Γ∗W , E♯ ∗ ⊗ E♯ ∗〉 //

≃

��

〈Γ ∗U ⊗ Γ ∗W , E♯ ∗〉

≃

��
〈Γ∗U⊕W , E♯ ∗〉 ⊗ 〈Γ∗U⊕W , E♯ ∗〉

(2) // 〈Γ∗U⊕W , E♯ ∗ ⊗ E♯ ∗〉
(3) // 〈Γ ∗U⊕W , E♯ ∗〉

where the maps are as follows. The vertical isomorphisms are induced by
the exponential formula for divided powers. The map (1) is induced by
the canonical inclusions ιU : U →֒ U ⊕W and ιW : W →֒ U ⊕W . The
map (2) is induced by tensor products and the comultiplication of Γ∗U⊕W
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(i.e. it is nothing but the map of lemma 2.10 with ‘E∗’= Γ∗U⊕W , and ‘F ’=
‘G’= E♯ ∗). The map (3) is induced by the multiplication of E♯ ∗.

Now, we can use the Yoneda lemma (see appendix 8.1.3(4)). The map (1)

readily identifies through the Yoneda isomorphism with the map E
♯ ∗
V (U) ⊗

E
♯ ∗
V (W ) → E

♯ ∗
V (U ⊕ W )⊗2 induced by ιU and ιW . The map (2) readily

identifies through the Yoneda isomorphism with the identity map of E♯ ∗
V (U⊕

W )⊗2, and the map (3) identifies with the multiplication E
♯ ∗
V (U ⊕W )⊗2 →

E
♯ ∗
V (U ⊕ W ). Since E

♯∗ is an exponential functor, so is E
♯ ∗
V , so that the

composite of (1), (2) and (3) identifies with the exponential isomorphism

E
♯ ∗
V (U) ⊗ E

♯∗
V (W ) ≃ E

♯ ∗
V (U ⊕W ). Thus the first row of the diagram is an

isomorphism, which finishes the proof. �

Remark 2.11. Alternatively, one could prove lemma 2.10 by using first
the sum-diagonal adjunction as in the proof of [FFSS, Thm 1.7], and then
identifying the isomorphism obtained, as in [T2, Lemma 5.13]. We observe
that our proof does not use bifunctors, and only relies on the Yoneda lemma.

Lemma 2.12 (Compare [FFSS, Thm 1.7]). Let k be a field, let E∗ be a
graded strict polynomial exponential functor, and let F,G be strict polyno-
mial functors. The composite:

E
∗(E∗, F ;V )⊗E

∗(E∗, G;V )
⊗
−→ E

∗(E∗ ⊗E∗, F ⊗G;V ) → E
∗(E∗, F ⊗G;V )

yields a bigraded isomorphism.

Proof. Let IF and IG be injective coresolutions of F and G. Since k is a field,
we can use the Künneth formula to identify E

∗(E∗, F ;V )⊗E
∗(E∗, G;V ) with

the homology of the complex H(E∗, IF ;V ) ⊗ H(E∗, IG;V ). Now the result
follows from lemma 2.10. �

Proposition 2.13. Let k be a field, let X∗, Y ∗ be graded strict polynomial
exponential functors. Then E

∗(X∗, Y ∗;V ) is a trigraded strict polynomial
exponential functor.

Proof. We know by lemma 2.8 and corollary 2.7 that E
∗(X∗, Y ∗;V ) is a

trigraded strict polynomial algebra. The composite

E
∗(X∗, Y ∗;V )⊗E

∗(X∗, Y ∗;W ) → E
∗(X∗, Y ∗;V⊕W )⊗2 → E

∗(X∗, Y ∗;V⊕W )

is an isomorphism. Indeed, it equals the composite

Ext∗Pk
(X∗, Y ∗

V )⊗Ext∗Pk
(X∗, Y ∗

W ) → Ext∗Pk
(X∗, Y ∗

V ⊗Y
∗
W ) → Ext∗Pk

(X∗, Y ∗
V⊕W ),

where the first map is the isomorphism of lemma 2.12 and the second one
is induced by the isomorphism Y ∗

V ⊗ Y ∗
W ≃ Y ∗

V⊕W . �

We make no use of proposition 2.13 in this article. We have stated it
only to justify that it is a priori not worthy to to care about the coalge-
bra structure on E

∗(X∗, Y ∗;V ) (as claimed in the introduction). Indeed,
by lemma 2.8, if we know the algebra structure, we automatically know
the coalgebra structure (the obvious candidate is the good one!). Observe
that one cannot prove that the algebra structure determines the coalgebra
structure if one restricts to computing the unparameterized extension groups
Ext∗Pk

(X∗, Y ∗) = E
∗(X∗, Y ∗;k).



12 ANTOINE TOUZÉ

3. The signed product on E
∗(X∗ (r), Y ∗ (s);V )

Let X∗, Y ∗ be classical exponential functors, an let r, s be nonnega-
tive integers. In this section, we modify the strict polynomial algebras
E
∗(X∗ (r), Y ∗ (s);V ) by introducing a sign on the products. We denote by

E
∗
(X∗ (r), Y ∗ (s);V ) the resulting algebras. In the remainder of the article,

we shall work with the strict polynomial algebras E
∗
(X∗ (r), Y ∗ (s);V ) rather

than the strict polynomial algebras E
∗(X∗ (r), Y ∗ (s);V ). Indeed, the sign

introduced simplifies the computations (see e.g. lemma 4.2) and yields more
readable results. We first introduce signed algebras.

3.1. Signed algebras and graded commutativity. Let k be a commu-
tative ring. In what follows, we always assume that algebras, coalgebras,
etc. are nonnegatively (bi)graded, and defined over k.

Definition 3.1. A bigraded strict polynomial algebra A∗,∗ is (1, ǫ)-
commutative (with ǫ ∈ {0, 1}) if the following diagrams commute up to
a (−1)ij+ǫkℓ sign:

Ai,k ⊗Aj,ℓ

≃

��

mult // Ai+j,k+ℓ

Aj,ℓ ⊗Ai,k mult // Ai+j,k+ℓ

.

Thus, a bigraded strict polynomial algebra is bigraded commutative in
the usual sense if it is (1, 1) commutative. One defines (1, ǫ)-commutative
bigraded coalgebras similarly. One easily checks that if E∗,∗ is a bigraded
strict polynomial exponential functor, then E∗,∗ is (1, ǫ)-commutative as an
algebra if and only if it is (1, ǫ)-commutative as a coalgebra.

Definition 3.2. Let A∗,∗ be a (1, ǫ)-commutative bigraded strict polyno-

mial algebra. The ‘signed algebra’ A
∗,∗

is the bigraded strict polynomial
algebra which equals A∗,∗ as a bigraded functor, and whose multiplication
is defined by sending x⊗ y ∈ Ai,k ⊗ Aj,ℓ onto (−1)ǫiℓm(x ⊗ y), where m is
the multiplication of A∗,∗.

Observe that the signed algebra A
∗,∗

is still associative. One defines sim-
ilarly signed coalgebras. In general, the totalization of a (1, ǫ)-commutative
bigraded strict polynomial algebra A∗,∗ is a not graded commutative. The
following elementary lemma (which we actually use in section 7.3) explains

why it is sometimes easier to work with the signed algebras A
∗,∗

.

Lemma 3.3. Let A∗,∗ be a bigraded strict polynomial algebra. For α ∈ Z,
we define the graded algebra TotαA∗,∗ to be the same algebra as A∗,∗, with
Ak,ℓ placed in total degree k + αℓ. If A∗,∗ is (1, ǫ)-commutative, then for all

i ∈ Z, Tot2i+ǫ(A
∗,∗

) is graded commutative.
A similar result holds for (1, ǫ)-commutative bigraded coalgebras.

3.2. The signed algebra E
∗
(X∗ (r), Y ∗ (s);V ).

Convention 3.4. Let k be a commutative ring, let X∗, Y ∗ be classical
exponential functors, and let r, s be nonnegative integers (with r = s = 0 if



BAR COMPLEXES AND EXTENSIONS OF CLASSICAL EXPONENTIAL FUNCTORS13

k is not a field of positive characteristic). We consider the extension groups

E
∗(X∗ (r), Y ∗ (s);V ) :=

⊕
h,d≥0 E

h(Xdps (r), Y dpt (s);V ) ,

as a bigraded strict polynomial algebra, with E
h(Xdps (r), Y dpt (s);V ) placed

in bidegree (h, dps+r) (that is, ‘h’ is the cohomological degree and ‘dps+r’ is
the strict polynomial degree), and with product as defined in corollary 2.7.

By convention, I(0) is the identity functor of Vk. So, if r = s = 0 then
E
∗(X∗ (0), Y ∗ (0);V ) actually denotes E∗(X∗, Y ∗;V ). The following lemma is

an easy check (or use [FFSS, Lemma 1.11]).

Lemma 3.5. Let X∗, Y ∗ be a pair of classical exponential functors, and let
ǫ ∈ {0, 1} denote the sum ǫ := ǫ(X∗)+ǫ(Y ∗) modulo 2, with ǫ(S∗) = ǫ(Γ∗) =

0 and ǫ(Λ∗) = 1. Then E
∗(X∗ (r), Y ∗ (s);V ) is a (1, ǫ)-commutative bigraded

strict polynomial algebra.

Convention 3.6. We denote by E
∗
(X∗ (r), Y ∗ (s);V ) the signed algebra as-

sociated to the bigraded strict polynomial algebra E
∗(X∗ (r), Y ∗ (s);V ).

Example 3.7. (1) The bigraded strict polynomial algebra E
∗
(S∗,Λ∗;V ) is

defined as follows. As a bigraded strict polynomial functor we have:

E
∗
(S∗,Λ∗;V ) :=

⊕
h,d≥0 E

h(Sd,Λd;V ) ,

with E
h(Sd,Λd;V ) placed in bidegree (h, d). If x and y have respective

bidegrees (i, d) and (j, e), the multiplication sends x⊗y, onto (−1)iem(x⊗y),

where ‘m’ is the product of E∗(X∗ (r), Y ∗ (s);V ) (as defined in corollary 2.7).

(2) The bigraded strict polynomial algebra E
∗
(S∗,Γ∗;V ) is defined by

E
∗
(S∗,Γ∗;V ) :=

⊕
h,d≥0 E

h(Sd,Γd;V ) ,

with E
h(Sd,Γd;V ) placed in bidegree (h, d) and with multiplication as in

corollary 2.7.

Observe that in the following situations, the algebras E
∗
(X∗ (r), Y ∗ (s);V )

and E
∗(X∗ (r), Y ∗ (s);V ) are equal.

• The ring k has characteristic 2.
• The number of Λ∗ in the pair (X∗, Y ∗) is even.

• The extension groups E
h(Xdps (r), Y dpt (s);V ) are trivial if h is odd.

As we shall see later, these three situations cover almost all cases, with the
notable exception of E

∗
(S∗ (r),Λ∗ (s);V ) in odd characteristic. However, we

keep the notation E
∗
(X∗ (r), Y ∗ (s);V ) in every cases in order to give a unified

treatment of all the computations.

4. Extensions between classical exponential functors: Bar

constructions and K(Zm, n)

Let k be a commutative ring. In this section, we express the strict poly-
nomial algebras E

∗
(S∗,Λ∗;V ) and E

∗
(S∗,Γ∗;V ) (or to be more specific, a

totalization of these algebras, cf. section 4.1(4) below) in terms of bar con-
structions and singular homology of some Eilenberg Mac Lane spaces.

4.1. Notations and degrees. Before starting, we take time to describe
clearly the various objects involved in our computations and their gradings.
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4.1.1. The explicit homological degree. All the objects used in our compu-
tations bear a homological degree (and the differentials, if any, lower the
homological degree by one). We now list these objects, and indicate how
they are graded.

(1) If V is a k-module, we denote by V [i] a copy of V placed in homo-
logical degree i, for i ≥ 0.

(2) If X∗ is a classical exponential functor (i.e. S∗, Λ∗, or Γ∗), and i > 0,
we denote by X[i]∗ the exponential functor:

X[i]∗ : V 7→ X∗(V [i]) .

In other words, X[i]di(V ) equals Xd(V ) and X[i]n(V ) equals zero if
d 6 |n. We denote the degree of X[i]∗ by a subcript to emphasize that
we think of it rather as a homological degree than as a cohomological
one, cf. point (4) below.

(3) Let A∗ be a graded strict polynomial algebra, and let E∗ be a strict
polynomial exponential functor. We define the graded strict poly-
nomial algebra H(E,A∗;V ) (with multiplication as in corollary 2.7)
by:

H(E,A∗;V ) :=
⊕

i,j≥0H(Ei, Aj ;V ) ,

with H(Ei, Aj ;V ) placed in homological degree j.

(4) For all i ≥ 0, we denote by E
∗
(S,Λ[2i+1]∗;V ) and E

∗
(S,Γ[2i+2]∗;V )

the graded strict polynomial algebras obtained by totalizing the bi-
graded strict polynomial algebras E

∗
(S∗,Λ∗;V ) and E

∗
(S∗,Γ∗;V ) in

the following way:

E
∗
(S,Λ[2i + 1]∗;V ) =

⊕
h,d≥0 E

h
(Sd,Λd;V ) ,

with E
h
(Sd,Λd;V ) placed in homological degree d(2i + 1) − h, and

E
∗
(S,Γ[2i + 2]∗;V ) :=

⊕
h,d≥0 E

h
(Sd,Γd;V ) ,

with E
h
(Sd,Γd;V ) placed in homological degree d(2i+2)−h (beware

the signs).

Remark 4.1. The graded strict polynomial algebras E
∗
(S,Λ[2i + 1]∗;V )

and E
∗
(S,Γ[2i + 2]∗;V ) are the Totǫ−(2i+2)-totalizations of E

∗
(S∗,Λ∗;V )

and E
∗
(S∗,Γ∗;V ) in the sense of lemma 3.3. In particular, they are graded

commutative.

4.1.2. The implicit strict polynomial degree. The objects listed above are
strict polynomial algebras, as will be all the algebras involved in our com-
putations. Thus they bear an implicit strict polynomial degree, e.g. the
elements of Sd(V [i]) = S[i]di(V ) have explicit homological degree di but
also an implicit strict polynomial degree d, which is the degree of the func-
tor Sd. This strict polynomial degree is usually not explicitly indicated in
our computations. Indeed, it is always very easy to compute and it is auto-
matically taken in charge by the fact that all morphisms of strict polynomial
functors preserve the strict polynomial degree.

4.2. Injective coresolutions of classical exponential functors.
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4.2.1. Quick recollections of bar constructions. Let k be a commutative ring,
and let A∗ be a Differential Graded Augmented k-algebra. The (reduced,
normalized) bar construction over A is the Differential Graded Coalgebra
B(A∗) defined as follows.

• Let A′
∗ be the kernel of the augmentation ǫ : A∗ → k. Then B(A∗)

equals
⊕

n≥0A
′
∗
⊗n as a k-module.

• A scalar λ of k = A′
∗
⊗0 is denoted by λ[] and has degree 0. For

n ≥ 1, an element a1 ⊗ · · · ⊗ an of Ak1 ⊗ · · · ⊗ Akn is denoted by
[a1| . . . |an] and has degree n+

∑
ki.

• The differential d : B(A∗)k → B(A∗)k−1 sends an element [a1| . . . |an]
to the sum:

n−1∑

i=1

(−1)ei [a1| . . . |aiai+1| . . . |an] −
n∑

i=1

(−1)ei−1 [a1| . . . |d(ai)| . . . |an] ,

where e0 = 0 and for i ≥ 1, ei equals i+
∑

j≤i deg(ai).

• The coproduct ∆ : B(A∗) → B(A∗) ⊗ B(A∗) sends an element
[a1| . . . |an] to the sum

n∑

i=0

[a1| . . . |ai] ⊗ [ai+1| . . . |an] .

If A∗ is a CDGA k-algebra (i.e. Commutative Differential Graded Aug-
mented), we can define a ‘shuffle product’ on B(A∗) compatible with the
differential, which makes B(A∗) into a CDGA k-algebra. Hence we can

iterate bar constructions, and we denote by B
n
(A∗) the n-th iterated bar

construction of A∗. To be more specific, let ai ∈ Aki for 1 ≤ i ≤ p+ q. Then
the product [a1| . . . |ap] ∗ [ap+1| . . . |ap+q] of two elements equals

∑
ǫ(σ) [aσ−1(1)| . . . |aσ−1(p+q)]

where the sum is taken over all (p, q)-shuffles σ, and ǫ(σ) is the Koszul sign
such that x1 ∧ · · · ∧ xn = ǫ(σ)xσ(1) ∧ · · · ∧ xσ(n) in Λ(x1, . . . , xn), where each
xi has degree ki + 1.

Now if A∗(V ) is a strict polynomial CDGA algebra, the formulas above
show that the multiplication and the differential are morphisms of strict
polynomial functors. So iterated bar constructions yield functors (n ≥ 0):

{
strict polyn.
CDGA-alg.

}
B

n

−−→

{
strict polyn.
CDGA-alg.

}

Finally, recall from [ML, X Th. 11.2] that bar constructions preserve
quasi isomorphisms.

4.2.2. Bar constructions of symmetric and exterior algebras. Let k be a
commutative ring and let V [i] be a finitely generated projective k-module,
concentrated in homological degree i ≥ 0. If d ≥ 0, the homogeneous part
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of B(S∗(V [i])) of strict polynomial degree d equals the complex:

V ⊗d
︸︷︷︸

degree
d(i+1)

→

d−2⊕

k=0

V ⊗k⊗S2(V )⊗V ⊗d−k−2 → · · · →
Sd−1(V ) ⊗ V
⊕V ⊗ Sd−1(V )

→ Sd(V )︸ ︷︷ ︸
degree
di+1

.

Similarly, one gets the homogeneous part of B(Λ∗(V [i])) of strict polynomial
degree d by replacing symmetric powers by exterior ones in the complex
above.

Assume that the algebras S∗(V [i]), resp. Λ∗(V [i]), are graded commuta-
tive (i.e. assume that i is even, resp. odd, if the characteristic of k is different
from 2). Then the canonical inclusions Λd(V ) →֒ V ⊗d, resp. Γd(V ) →֒ V ⊗d,
define morphisms of (strict polynomial) differential graded Hopf algebras:

Λ∗(V [i+ 1]) →֒ B(S∗(V [i])) and Γ∗(V [i+ 1]) →֒ B(Λ∗(V [i])) .

These morphisms are quasi-isomorphisms, see e.g. [T1, Lemma 3.19] for this
classical result.

In particular, the homogeneous part of strict polynomial degree d of
B(S∗(V [i])) yields a coresolution of Λd(V ) by symmetric powers. Since
bar constructions preserve quasi-isomorphisms, the composite

Γ∗(V [i+ 2]) →֒ B(Λ∗(V [i+ 1])) →֒ B
2
(S∗(V [i]))

is also a quasi isomorphism. The homogeneous part of strict polynomial

degree d of B
2
(S∗(V [i])) yields a coresolution of Γd(V ) by symmetric powers

which has the form:

V ⊗d
︸︷︷︸

degree
d(i+2)

→

d−2⊕

k=1

V ⊗d → · · · →
Sd−1(V ) ⊗ V
⊕V ⊗ Sd−1(V )

→ Sd(V )︸ ︷︷ ︸
degree
di+2

.

In the framework of strict polynomial functors, the resolutions above are
particularly interesting. Indeed, symmetric powers are injective objects, so
we obtain the following result.

Lemma 4.2. Let k be a commutative ring and let i be a nonnegative integer.
The graded strict polynomial algebras E

∗
(S,Λ[2i + 1]∗;V ) and E

∗
(S,Γ[2i +

2]∗;V ) are respectively given by the homology of H(S,B(S[2i]∗);V ) and

H(S,B
2
(S[2i]∗);V ).

Proof. We first treat the case of E
∗
(S,Λ[2i + 1]∗;V ). As explained above,

the homogeneous part of strict polynomial degree d of B(S∗(U [2i])) yields
a chain complex Id,•(U) := Cd(2i+1)(U) → · · · → C0(U) = 0 whose ob-

jects are symmetric tensors and whose homology equals Λd(U [2i + 1]) in
degree d(2i + 1). Thus, the n-th homology group of H(Sd, Id,•;V ) equals

E
d(2i+1)−j

(Sd,Λd;V ).
So it remains to study the products. If C• is a chain complex, we denote

by C• the same complex, but viewed as a cochain complex with Ci := C−i.
For all a ∈ Z We also denote by C〈a〉• the cochain complex defined by
shifting: C〈a〉i := Cd+i, and the differential of C〈a〉• equals the differential
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of C• up to a (−1)d sign. Here comes a subtlety about signs: the canonical
isomorphism of complexes

φ : C〈a〉• ⊗D〈b〉•
≃
−→ (C ⊗D)〈a+ b〉•

sends x ⊗ y ∈ C〈a〉k ⊗ D〈b〉ℓ = Ck+a ⊗ Dℓ+b to (−1)kbx ⊗ y. (The sign is
needed for the compatibility with the differential).

Now let us apply this to E
∗
(S,Λ[2i + 1]∗;V ). The cochain complex

Id〈d(2i + 1)〉•(U) is an injective coresolution of Λd(U [2i + 1]). On the
cochain level, the ‘usual product’ of two classes c1, c2 (i.e. the prod-
uct of the algebra E

∗(S∗,Λ∗;V ), as in corollary 2.7) is defined as follows.
Choose two cycles z1, z2 in H(Sd, Id〈d(2i + 1)〉•) and H(Se, Ie〈e(2i + 1)〉•)
representing c1 and c2 respectively, take their product (z1 ⊗ z2) ◦ ∆d,e in

H(Sd+e, Id〈d(2i + 1)〉• ⊗ Ie〈e(2i + 1)〉•) (here ∆d,e : Sd+e → Sd ⊗ Se is the

comultiplication), and send this element into H(Sd+e, Id+e〈(d+ e)(2i+ 1)〉•)
via a lifting of the multiplication Λd ⊗ Λe → Λd+e. Now, such a lifting is
given by the composite (where ‘∗’ is the shuffle product):

Id〈d(2i+1)〉•⊗Ie〈e(2i+1)〉•
φ
−→ (Id⊗Ie)〈(d+e)(2i+1)〉•

∗
−→ Id+e〈(d+e)(2i+1)〉• .

Thus, the ‘signed product’ of E
∗
(S,Λ[2i + 1]∗;V ) is defined by sending the

cycles z1, z2 onto the image of (z1 ⊗ z2) ◦ ∆d,e by the shuffle product. That

is, E
∗
(S,Λ[2i + 1]∗;V ) is computed as a strict polynomial algebra by the

homology of H(S,B(S[2i]∗)). The case of E
∗
(S,Γ[2i+ 2]∗;V ) is similar. �

4.3. An interchange property. This subsection is the core of our compu-
tation. The key is the following interchange property, which is very specific
to exponential functors.

Lemma 4.3. Let k be a commutative ring, let E∗ be a strict polynomial
exponential functor and let A∗ be a strict polynomial CDGA algebra. Assume
that for all i, j ≥ 0 the Hom-groups H(Ei, Aj ;V ) are k-projective.

There is an isomorphism of strict polynomial differential graded strict
polynomial functors:

H(E,B(A∗);V ) ≃ B(H(E,A∗;V )) .

If E∗ is commutative (i.e. xi · xj = xj · xi in the algebras E∗(V )), then
H(E,A∗;V ) is graded commutative and the isomorphism is an isomorphism
of strict polynomial CDGA algebras.

Remark 4.4. If k is a Dedekind ring (e.g k is a field or Z), then the assump-
tion that the Hom-groups H(Ei, F ;V ) and H(Ei, G;V ) are k-projective is
automatically satisfied by lemma 2.3.

Proof of lemma 4.3. Let us write for short [X] instead of H(E,X;V ). By
lemma 2.10, there are isomorphisms fitting into commutative diagrams
(where the vertical arrows are induced by multiplications):

[Ak1 ] ⊗ . . . [Aki ] ⊗ [Aki+1
] · · · ⊗ [Akn ] ≃

θ
//

��

[Ak1 ⊗ . . . Aki ⊗Aki+1
· · · ⊗Akn ]

��
[Ak1 ] ⊗ . . . [Aki+ki+1

] · · · ⊗ [Akn ] ≃

θ
// [Ak1 ⊗ . . . Aki+ki+1

· · · ⊗Akn ] .
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Thus, the isomorphism of differential graded strict polynomial functors
B([A∗]) ≃ [B(A∗)] follows directly from the definitions of bar construc-
tions given in section 4.2.1. If E∗ is commutative, then for all σ ∈ Sn the
isomorphisms of lemma 2.10 fit into commutative diagrams :

[Ak1 ] ⊗ · · · ⊗ [Akn ]
≃

θ
//

σ

��

[Ak1 ⊗ · · · ⊗Akn ]

[σ]
��

[Ak
σ−1(1)

] ⊗ · · · ⊗ [Ak
σ−1(n)

] ≃

θ
// [Ak

σ−1(1)
⊗ · · · ⊗Ak

σ−1(n)
]

.

In particular, if mk,ℓ : Ak ⊗ Aℓ → Ak+ℓ is the product of A∗, and τ is
the exchange map X ⊗ Y ≃ Y ⊗ X, then [mk,ℓ] ◦ θ ◦ τ = [mk,ℓ ◦ τ ] ◦ θ =

(−1)kℓ[mk,ℓ]◦θ. Hence H(E,A∗;V ) is graded commutative. So B([A∗]) and

[B(A∗)] are both strict polynomial CDGA algebras. The product in B([A∗])

is the shuffle product ‘∗’, whose restriction to (
⊗p

i=1[Aki ]) ⊗ (
⊗p+q

i=p+1[Aki ])

equals
∏
ǫ(σ)σ (product taken over all (p, q)-shuffles), and and the product

in [B(A∗)] is [∗] ◦ θ, whose restriction to [
⊗p

i=1Aki ] ⊗ [
⊗p+q

i=p+1Aki ] equals∏
ǫ(σ)[σ]◦θ (with the same signs as for [B(A∗)]). Thus, by the commutative

diagram above, the two products coincide. �

Let i be a positive integer. We can now compute the graded algebras
E
∗
(S,Λ[2i+ 1]∗;V ) and E

∗
(S,Γ[2i+ 2]∗;V ). Theorem 4.5 can be thought of

as a generalization of [A, Thm p. 361] (Akin’s theorem corresponds to the

case of E
∗
(S,Λ[2i+ 1]∗;V ), with V = k, and without the algebra structure).

Theorem 4.5. Let k be a commutative ring, let V be a finitely gener-
ated projective k-module and let i be a nonnegative integer. The algebras
E
∗
(S,Λ[2i + 1]∗;V ) and E

∗
(S,Γ[2i + 2]∗;V ) are respectively computed, as

graded strict polynomial algebras, by the homology of the bar constructions

B(Γ∗(V [2i])) and B
2
(Γ∗(V [2i])).

Proof. By lemma 4.2, E
∗
(S,Λ[2i+ 1]∗;V ) equals the homology of the strict

polynomial CDGA algebra H(S,B(S[2i]∗);V ). By lemma 2.5(1) and (2), the
Hom-groups H(S, S[2i]∗;V ) equal Γ∗(V [2i]) as an algebra. Hence they are k-
projective, and by lemma 4.3, H(S,B(S[2i]∗);V ) is isomorphic to the strict

polynomial CDGA algebra B(Γ∗(V [2i])). The case of E
∗
(S,Γ[2i+ 2]∗;V ) is

similar. �

Remark 4.6. As another application of the interchange property, one can
prove that E

∗(Λd,Λd;V ) equals zero if ∗ > 0. Indeed, let E
∗(Λ,Λ[3]∗;V )

denote the graded strict polynomial functor
⊕

i,d≥0 E
i(Λd,Λd;V ) with

E
i(Λd,Λd;V ) in degree 3d − i. Then E

∗(Λ,Λ[3]∗;V ) equals the homol-
ogy of H(Λ, B(S[2]∗);V ), which equals B(H(Λ, S[2]∗;V )) by the interchange
property (no algebra structure here, since Λ∗ is not commutative). Now
H(Λ, S[2]∗;V ) ≃ Λ∗(V [2]). So E

∗(Λ,Λ[3]∗;V ) finally equals Γ∗(V [3]) as a
graded strict polynomial functor. Whence the result.

Thus, computing the graded algebras E
∗
(S,Λ[2i+1]∗;V ) and E

∗
(S,Γ[2i+

2]∗;V ) reduces to computing the homology of iterated bar constructions
of the divided power algebra Γ∗(V [2i]). In fact it is sufficient to do the
computation for one specific value of i, as the following result shows it.
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Lemma 4.7. Let k be a commutative ring, let V be a finitely generated
projective k-module, and let i be an even positive integer. For all n ≥ 0,
B

n
(Γ∗(V [0])) and B

n
(Γ∗(V [i])) are equal as ungraded algebras. An element

of homological degree h and strict polynomial degree d in B
n
(Γ∗(V [0])) has

homological degree h+ di and strict polynomial degree d in B
n
(Γ∗(V [i])).

Proof. Let A∗(V ) be a graded strict polynomial algebra. We define a new

graded strict polynomial algebra Ã∗(V ) which equals
⊕

hAh(V ) as an un-
graded object, and an element a ∈ Ah(V ) of strict polynomial degree

degsp(a) = d has homological degree h+di in Ã∗(V ). Then the homological
degree of [a1| . . . |ak] ∈ Ah1 ⊗ · · · ⊗Ahk

equals k+
∑
hj in B(A∗(V )), and it

equals k+
∑

(hj+idegsp(aj)) = (k+
∑
hj)+idegsp([a1| . . . |ak]) in B(Ã∗(V )).

Now lemma 4.7 clearly holds for n = 0. For n ≥ 1, one obtains the result by

induction on the preceding observation (set A∗(V ) = B
n−1

(Γ∗(V [0])) and

Ã∗(V ) = B
n−1

(Γ∗(V [i]))). �

We explicitly compute the homology of the iterated bar constructions
of Γ∗(V [2]) in sections 5 and 6. But before this, let us give a topological
interpretation of theorem 4.5.

4.4. The homology of Eilenberg-Mac Lane spaces. Let π be an
abelian group, let n be a positive integer. The Eilenberg-Mac Lane space
K(π, n) is the topological space (more specifically the CW-complex, unique
up to homotopy equivalence) whose i-th homotopy group equals 0 if i 6= n,
and π if i = n. Since K(π, n) is an H-space, its singular homology with
coefficients in a commutative ring k is a graded commutative algebra. By
[EML], the homology of the iterated bar constructions B

n
(kπ) compute the

singular homology algebras H∗(K(π, n),k), naturally in π (here kπ is the
group algebra of π over k).

For n = 1, H∗(K(π, 1),k) equals [Br, I.4] the homology algebra H∗(π,k) =
Torkπ∗ (k,k) (as a functor of the abelian group π). The first homology of an
abelian group π with coefficients in a commutative ring k is isomorphic to
the k-module π⊗Zk. Using products, we get a k-algebra morphism, natural
in π:

ψ : Λ∗(π ⊗Z k [1]) → H∗(π,k) .

If π is a free abelian group, this map is an isomorphism [Br, V.6 Th 6.4(ii)].
Actually one can do a little better. All the elements of B(kπ)1 are cycles,

so that the canonical map kπ = B(kπ)1 → H1(π,k) = π⊗Zk is surjective. If
π is free, then π⊗Z k is a free k-module, and we can choose a section of this
map. Since the bar construction is graded commutative, taking products
induces a map of differential graded k-algebras:

ψ̃ : Λ∗(π ⊗Z k [1]) → B(kπ)

which equals ψ after taking homology. Thus ψ̃ is a quasi isomorphism. Now
B(Λ∗(km[1])) is quasi isomorphic to Γ∗(km[2]) (by section 4.2.2) and bar

constructions preserves quasi isomorphisms, so B
n
(Γ∗(Zm ⊗Z k [2])) com-

putes H∗(K(Zm, n + 2),k) for all n ≥ 2 and m ≥ 1. Thus, theorem 4.5
yields the following result.
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Theorem 4.8. Let k be a commutative ring, then we have isomorphisms of
graded k-algebras (with E

∗
(S,Λ[3]∗;km) and E

∗(S,Γ[4]∗;km) as specified in
section 4.1):

E
∗
(S,Λ[3]∗;km) ≃ H∗(K(Zm, 3),k) ,

E
∗
(S,Γ[4]∗;km) ≃ H∗(K(Zm, 4),k) .

Remark 4.9. Theorem 4.8 expresses the extension groups as graded al-
gebras. To recover the bigrading, we need to examine the implicit strict
polynomial degree on the homology of B

n
(Γ∗(km[2])), n = 1, 2.

The homology of Eilenberg-Mac Lane spaces were computed by Car-
tan [Car] when k is a prime field or Z. We use Cartan’s computa-

tions to compute explicitly the bigraded algebras
⊕

h,d≥0 E
h
(Sd,Λd;V ) and

⊕
h,d≥0 E

h
(Sd,Γd;V ) in the following sections.

Remark 4.10. Observe that the quasi-isomorphism ψ̃ is not natural with
respect to the group π = Z

m (although ψ is). Thus, it is not clear at first

sight that the isomorphism induced by ψ̃

H∗(B
n
(Γ∗(Zm ⊗Z k [2]))) ≃ H∗(K(Zm, n+ 2),k)

is natural with respect to Z
m. However when k is a field, this isomorphism

is actually natural with respect to Z
m.

Indeed, Cartan has build [Car] universal graded k-algebras A∗(Zm, n,k)
and isomorphisms which fit into a commutative triangle

H∗(B
n
(Γ∗(Zm ⊗Z k [2])))

≃ // H∗(K(Zm, n+ 2),k) .

A∗(Z
m, n,k)

≃

iiTTTTTTTTTTTTTTT

≃

55kkkkkkkkkkkkkkk

The A∗(Z
m, n,k) are functors in the variable Zm, and the isomorphisms with

source A∗(Zm, n,k) are natural with respect to Z
m. Their naturality is clear

since they are built using the natural maps An+2(Z
m, n,k) = Z

m ⊗Z k ≃
Hn+2(K(Zm, n + 2),k) and cohomology operations which are also natural.
Further details are given in sections 5.1 and 5.2.

5. Extensions between classical exponential functors:

Explicit computations over fields

In this section, we elaborate on Cartan’s computation of the homol-
ogy of Eilenberg-Mac Lane spaces [Car] to get explicit computations of

E
∗
(S∗,Λ∗;V ) and E

∗
(S∗,Γ∗;V ) over a field k of positive characteristic (recall

from the introduction that the computation is trivial in characteristic zero).
We finish the section by comparing our results with previous computations
of Cha lupnik [C2].

5.1. Computations over a field of odd characteristic.
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5.1.1. Cartan’s result. We assume first that k = Fp is a prime field with
p > 2, and V is a finite dimensional k-vector space. Then the homology
algebras of the B

n
(Γ∗(V [2])) are computed in [Car, Theoreme fondamental,

p. 9-03]. For n = 1, the homology is:

Γ∗
(⊕

k≥0 Vφpγk
pσσ

[2pk+1 + 2]
)
⊗ Λ∗

(⊕
k≥0 Vσγk

pσσ
[2pk + 1]

)
,

where each Vφpγk
pσσ

and each Vσγk
pσσ

is a copy of V (placed in the homological

degree indicated in the brackets). For n = 2, the homology is given by an
analogous formula:

Γ∗
(⊕

k≥0 Vσσγk
pσσ

[2pk + 2]
)
⊗ Λ∗

(⊕
k,ℓ≥0 Vσγk

pφpγℓ
pσσ

[pk(2pℓ+1 + 2) + 1]
)

⊗Γ∗
(⊕

k,ℓ≥0 Vφpγk
pφpγℓ

pσσ
[pk+1(2pℓ+1 + 2) + 2]

)
.

To be more specific, the isomorphisms are built as follows. The letters
σ, φp and γp refer to operations in the homology algebras of iterated bar
constructions of a CDGA Fp-algebra A∗ (natural in A∗) [Car, Exposes 6
and 7], respectively to the suspension, the transpotence and the r-th divided
powers:

σ : Hk(A∗) → Hk+1(B(A∗)) ,

φp : H2k(A∗) → Hp2k+2(B(A∗)) ,

γr : H2k(B(A∗)) → Hr2k(B(A∗)) .

Each copy of V generating the homology is simply obtained by applying
a suitable sequence of operations to Vσσ = Γ1(V [2]) = H2(Γ

∗(V [2])) (where
Γ∗(V [2]) as a CDGA algebra with trivial differential). For example, the
generator Vσφpγ3

pσσ
is the image of Vσσ by the sequence of operations:

Vσσ
γ3
p

−→H2p3(Γ∗(V [2]))
φp
−→ H2p4+2(B(Γ∗(V [2])))

σ
−→ H2p4+3(B

2
(Γ∗(V [2]))).

In general, the operations to be applied to Vσσ are the one needed to com-
plete the word ‘σσ’ in order to obtain the word indexing the copy of V
considered, starting from the right to the left.

The isomorphisms are then built from these generating copies of V , to-
gether with products and divided powers. Observe that the map Vσσ [2] →֒
Γ∗(V [2]), the products and the cohomology operations are all natural in V ,
so that Cartan’s result is natural in V .

5.1.2. The strict polynomial structure. Cartan’s result gives the homology
of B

n
(Γ∗(V [2])) as a functor in V , but not as a strict polynomial functor in

V . One must be careful about this point. Indeed, the forgetful functor

U : Pk → Fct(Vk,Vk)

is not injective on objects, and two non isomorphic strict polynomial alge-
bras A∗ and B∗ may have the same underlying algebra UA∗ = UB∗ (see

section 2.2). In this section, we determine the homology of B
n
(Γ∗(V [2])) as

a strict polynomial algebra. Our method is as follows. We first determine
all the graded strict polynomial algebras A∗ such that UA∗ equals Cartan’s
computation. Then we use a strict polynomial degree argument to prove
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that only one of these A∗ can correspond to the strict polynomial structure
of the homology of B

n
(Γ∗(V [2])).

Warning 5.1. The behavior of the functor U is subtle. In our arguments
below, we only use the functoriality of U and the fact that U reflects isomor-
phisms, i.e. f is an isomorphism in Pk if and only if Uf is an isomorphism
in Fct(Vk,Vk), cf. appendix 8.

We first need a few results about additive strict polynomial functors.
We say that a functor F ∈ Pk is additive if the underlying functor UF is
additive, that is if

∀V,W ∈ Vk ∀f, g ∈ Homk(V,W ) F (f + g) = F (f) + F (g)

(read this as an equality of functions of f, g, not of polynomials).

Lemma 5.2. Let k be a field of positive characteristic p (p even or odd).

• (Classification) If F is an additive functor, then F either equals

zero or is a finite direct sum of Frobenius twists I(r) (with possibly
different r ≥ 0).

• (Retracts) Let F,G be additive functors, and let f ∈ HomPk
(F,G).

Then (i) and (ii) are equivalent.
(i) There exists V ∈ Vk such that the k-linear map fV : F (V ) →

G(V ) is surjective
(ii) There exists ι ∈ HomPk

(G,F ) such that f ◦ ι = IdF .

Proof. To prove the classification, we can assume that F is homogeneous of
degree d. If d = 0, then F is constant and additive, hence F = 0. So let us
assume that d ≥ 1. There are two cases.

Case 1: d is not a power of p. Then the polynomial Fk,k ∈ Sd(k∨) ⊗

Endk(F (k)) is of the form Fk,k(x) = xd ⊗ v, with d 6= pr, and additive.
Hence it must equal zero. Thus 0 = Fk,k(1) is the identity map of F (k).
This is only possible if F (k) = 0. By additivity of F , for all n ≥ 1 we have
F (kn) ≃ F (k)⊕n = 0. Since d ≥ 1 we also have F (0) = 0. So F = 0.

Case 2: d = pr, for r ≥ 0. Assume that F 6= 0. since evaluation on k
n,

(for n ≥ pr) yields an equivalence of categories Ppr,k ≃ S(n, pr)−mod (cf.

appendix 8) it suffices to prove that F (kn) is a direct sum of (kn)(r).
So let n ≥ pr and let ki denote the vector space k acted on by the

torus G
×n
m by (λ1, . . . , λn) · x = λi · x. Then F (ki) is acted on by G

×n
m by

(λ1, . . . , λn) ·x = λp
r

i ·x. Now by additivity of F , there is a G
×n
m -equivariant

isomorphism
⊕

i≤n F (ki) ≃ F (
⊕

i≤n ki). In particular, all the weights of

the S(n, pr)-module F (kn) are of the form (µ1, . . . , µn) with all µi = 0 but
one which equals pr.

As a consequence let S1(kn), . . . , SN (kn) be the composition series of
F (kn). Then the Si(k

n) are finite direct sums of simples with highest weight

(pr, 0, . . . , 0), that is of (kn)(r).

Now we know (see e.g. [FS]) that Ext1((kn)(r), (kn)(r)) = 0. Thus there

cannot be nontrivial extensions between finite direct sums of (kn)(r). This
implies that the compositions series of F (kn) has length N = 1. That is,

F (kn) is a finite direct sum of copies of (kn)(r).
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Finally, let us prove the characterization of retracts. We can assume that
F,G are homogeneous of degree pr, r ≥ 1. The identity map is a basis of
HomPk

(I(r), I(r)), so tensor products yield isomorphisms for k, ℓ ≥ 1:

Homk(kk,kℓ) ≃ HomPk
(I(r) ⊗ k

k, I(r) ⊗ k
ℓ), f 7→ Id ⊗ f,

and the result follows. �

Let us now explain the link between additive (strict polynomial) functors
and (strict polynomial) exponential functors. If A∗ is a multigraded strict
polynomial augmented algebra, we denote by Q(A∗) the indecomposables
of A∗, that is Q(A∗) is the cokernel of the multiplication A′

∗ ⊗ A′
∗ → A′

∗,
where A′

∗ is the augmentation ideal of A∗. Then Q(A∗) is a multigraded
strict polynomial functor and UQ(A∗) = Q(UA∗). Similarly the primitives
P (C∗) of a multigraded strict polynomial coaugmented coalgebra C∗ form
a multigraded strict polynomial subfunctor of C∗ and UP (C∗) = P (UC∗).
With these definitions we have the following result.

Lemma 5.3. Let k be a field, and let E∗ be a (multi)graded strict polyno-
mial exponential functor. The strict polynomial functors P (E∗) and Q(E∗)
are additive. Moreover, if there exists V ∈ Vk such that the composite
P (E∗)(V ) →֒ E∗(V ) ։ Q(E∗)(V ) is surjective, then Q(E∗) is a direct sum-
mand in E∗.

Proof. Let E′
∗ be the augmentation ideal of E∗. Since E∗ is exponential, we

have E′
∗(V ⊕W ) is isomorphic to E′

∗(V )⊗k ⊕ k⊗E′
∗(W ) ⊕ E′

∗(V )⊗E′
∗(W ).

Moreover, the multiplication E′
∗(V ⊕W )⊗2 → E′

∗(V ⊕W ) identifies through
this decomposition with the direct sum of three maps (which are induced
by multiplications):

(E′
∗(V ) ⊗ k)⊗2 → E′

∗(V ) ⊗ k,(1)

(k⊗ E′
∗(W ))⊗2 → k⊗ E′

∗(W ),(2)

(E′
∗(V ) ⊗ k) ⊗ (k⊗ E′

∗(W )) ⊕
other summands
of E′

∗(V ⊕W )⊗2 → E′
∗(V ) ⊗E′

∗(W ).(3)

The first two maps have respective cokernels Q(E∗)(V ) and Q(E∗)(W ) and
the last one is surjective. This shows that Q(E∗) is additive. The proof that
the primitives are additive is similar.

Finally, if the map P (E∗)(V ) → Q(E∗)(V ) is surjective for some V ∈

Vk, then by lemma 5.2, it admits a section ι. So the composite Q(E∗)
ι
−→

P (E∗) →֒ E∗ is a section of E∗ ։ Q(E∗). �

We are now ready to determine all the candidates for a strict polynomial
version of Cartan’s computation

Lemma 5.4. Let k be a field of positive characteristic p (p even or odd),
and for all d ≥ 0, let Fd ∈ Fct(Vk,Vk) be a finite direct sum of nd copies
of the identity functor. The graded strict polynomial algebras A∗ such that
UA∗ = Γ∗(Feven) ⊗ Λ∗(Fodd) are of the form:

A∗ = Γ∗(Geven) ⊗ Λ∗(Godd) ,

where each Gd is a direct sum of nd Frobenius twists I(r) (with possibly
different r ≥ 0).
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Proof. Step 1: Duality. Let E∗ be a graded exponential (non strict poly-
nomial) functor. Then finding the graded strict polynomial algebras A∗ such
that UA∗ = E∗ is equivalent to finding the graded strict polynomial algebras

A♯
∗ such that UA♯

∗ = E♯
∗.

Indeed, if UA∗ = E∗, then for all V,W ∈ Vk the composite

A∗(V ) ⊗A∗(W ) → A∗(V ⊕W )⊗2 → A∗(V ⊕W )

is an isomorphism (indeed, this is true for UA∗). Thus A∗ is an exponential
functor, and UA∗ coincides with E∗ as an exponential functor. Equivalently,

UA♯
∗ coincides with E♯

∗ as an exponential functor. This is in turn equivalent

to the fact that A♯
∗ is a graded strict polynomial algebra such that UA♯

∗

coincides with E♯
∗ as an algebra.

So, to prove lemma 5.4, it suffices to prove that the graded strict poly-
nomial algebras B∗ such that UB∗ = S∗(Feven) ⊗ Λ∗(Fodd) are of the form
S∗(Geven) ⊗ Λ∗(Godd) with G∗ as indicated.

Step 2: Indecomposables. If B∗ is as indicated in step 1, then the
indecomposables of B∗ are a direct summand in B∗. Indeed, since UB∗ =
S∗(Feven) ⊗ Λ∗(Fodd), there exists V ∈ Vk, e.g. V = k, such that the
composite P (B∗)(V ) → B∗(V ) → Q(B∗)(V ) is surjective. Then one applies
lemma 5.3.

Now, the indecomposables of B∗ are an additive strict polynomial functor
with UQ(B∗) = Q(UB∗) = F∗. So by lemma 5.2, Q(B∗)d is a finite direct
sum of nd Frobenius twists for all d ≥ 0.

Step 3: Universal property. The morphism of graded strict polyno-
mial functors induces Q(B∗) →֒ B∗ induces a morphism of strict polynomial
algebras S∗(Q(B∗)even) ⊗ Λ∗(Q(B∗)odd) → B∗. For all V ∈ Vk, this mor-
phism is an isomorphism after evaluation on V . Hence, it is an isomorphism.
Thus B∗ is of the form S∗(Geven)⊗Λ∗(Godd) with G∗ as indicated in lemma
5.4, which concludes the proof. �

Now we determine which strict polynomial structure corresponds to the
homology of B

n
(Γ∗(V [2])). To do this this, we examine further properties

of the operations σ, φp and γr for strict polynomial CDGA algebras.

Lemma 5.5. Let k = Fp with p odd, let A∗(V ) be a strict polynomial CGDA
Fp-algebra and let k be a positive integer.

(1) The suspension σ : Hk(A∗(V )) → Hk+1(B(A∗(V ))) is a morphism
of strict polynomial functors. In particular, it preserves the strict
polynomial degree.

(2) If α ∈ H2k(B(A∗(V ))) has strict polynomial degree d, then for all
r ≥ 1, its r-th divided power γr(α) ∈ H2kr(B(A∗(V ))) has strict
polynomial degree rd.

(3) Assume that ap = 0 in the graded algebra A∗(V ). If α ∈ H2k(A∗(V ))
has strict polynomial degree d, the transpotence φp sends it to an

element of strict polynomial degree pd of H2kp+2(B(A∗(V ))).

Proof. Recall from [Car, Exposes 3 et 4] the properties which characterize
the ‘construction’ (A∗, B(A∗), B(A∗)).

(i) B(A∗) := A∗ ⊗ B(A∗) as a graded strict polynomial algebra. Thus,
both A∗ and B(A∗) can be viewed as graded subalgebras of B(A∗).
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(ii) B(A∗) is equipped with a differential ∂, such that following maps
are morphisms of strict polynomial CDGA Fp-algebras:

A∗
Id⊗1
−−−→ B(A∗)

ǫ⊗Id
−−−→ B(A∗) .

(B) For all k ≥ 1, the composite B(A∗)k+1 →֒ B(A∗)k+1
∂
−→ B(A∗)k is

injective and induces an isomorphism B(A∗)k+1 ≃ ZB(A∗)k onto
the cycles of degree k of B(A∗).

Let us prove (1). Let ZAk denote the degree k cycles of A∗, k ≥ 1. Then σ
is defined on ZAk as the composite [Car, Expose 6, p. 6-01]:

ZAk
Id⊗1
−−−→ ZB(A∗)k ≃ B(A∗)k+1 .

This is a map of strict polynomial functors. By (ii), it has values in the cycles
of the CDGA B(A∗), and it takes boundaries to boundaries. So, it induces
a morphism of strict polynomial functors σ : Hk(A∗) → Hk+1(B(A∗)).

To prove (2), recall from [Car, Theoreme 1, p. 7-02] that the divided
powers γr, r ≥ 1 are actually defined in B(A∗) and satisfy γ1(a) = a and
∂γr(a) = ∂a ∗ γr−1(a) for r ≥ 1. Since ∂ preserves the strict polynomial
degree we have degsp(γr(a)) = degsp(a) + degsp(γr−1(a)) for r ≥ 1 and the
result follows by induction on r.

Finally, φp is defined in the following way [Car, p. 6-05]. Let a ∈ ZA2k ⊂
ZB(A∗)2k representing α. There is an x such that ∂x = a. Now the element
y ∈ ZB(A∗)r2k+2 representing φp(α) satisfies ∂y = ap−1 ∗ ∂x. So we have
degsp(φp(α)) = degsp(ap−1) + degsp(x) = pdegsp(α). �

Remark 5.6. Lemmas 5.5(1) and (2) remain valid over an arbitrary com-
mutative ring k, with the additional hypothesis that A∗(V ) is strictly graded
commutative (i.e. a · a = 0 for all a ∈ Aodd(V )). This hypothesis ensures
that H∗(B(A∗)) has divided powers [Car, Theoreme 1 p. 7-01], and the
proofs carry without change. The transpotence φ2 also exists over a field of
characteristic 2 [Car, p. 6-05] , and lemma 5.5(3) is valid without change in
this setting.

By lemma 5.5, each Vw appearing in Cartan’s computation of the homol-
ogy of B

n
(Γ∗(V [2])) is formed by elements of strict polynomial degree pk,

where k is the number of occurrences of γp and φp in the word w. This
indicates which strict polynomial algebra from lemma 5.4 is the right one.
Thus we obtain the following result.

Theorem 5.7. Let k = Fp be a prime field of odd characteristic, and let V

be a finite dimensional k-vector space. Then the homology of B(Γ∗(V [2]))
equals the graded strict polynomial algebra:

Γ∗
(⊕

k≥0 V
(k+1)[2pk+1 + 2]

)
⊗ Λ∗

(⊕
k≥0 V

(k)[2pk + 1]
)
,

and the homology of B
2
(Γ∗(V [2])) equals the graded strict polynomial alge-

bra:

Γ∗
(⊕

k≥0 V
(k)[2pk + 2]

)
⊗ Λ∗

(⊕
k,ℓ≥0 V

(k+ℓ+1)[pk(2pℓ+1 + 2) + 1]
)

⊗Γ∗
(⊕

k,ℓ≥0 V
(k+ℓ+2)[pk+1(2pℓ+1 + 2) + 2]

)
.
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Corollary 5.8. The computations of theorem 5.7 hold over any field k of
odd characteristic.

Proof. Contrarily to ordinary functors, the strict polynomial functors have
an exact base change. That is, if k is a field of characteristic p, there is an
exact functor [SFB, Prop 2.6]: ⊗Fpk : PFp → Pk. This base change functor
commutes with tensor products and sends divided powers to divided powers
and Frobenius twists to Frobenius twists. Whence the result. �

Remark 5.9. The method developed in this section allows more generally to
obtain the homology of the iterated bar constructions B

n
(Γ∗(V [2])) as strict

polynomial algebras, for any n. The recipe is simple. In Cartan’s theorem
[Car, Theoreme fondamental, p. 9-03], replace each copy of V attached to
a word w (to be more specific, w is a ‘mot admissible de hauteur n + 2 et

de première espèce’), by V (k), k being the number of letters of w equal to
γp or φp. Then what you have written is the description of the homology of

B
n
(Γ∗(V [2])), as a strict polynomial algebra, which is valid for all base field

k of characteristic p. This recipe is also true in characteristic p = 2, as we
will see in section 5.2.

5.1.3. Computation of extension groups. We can now compute the bigraded
strict polynomial algebras E

∗
(S∗,Λ∗;V ) and E

∗
(S∗,Γ∗;V ) (with bigradings

and products specified in example 3.7). The comparison with [C2, Prop 3.1,
Thm 3.2, Cor 4.5] is made in section 5.3. Before stating the result, let us
introduce one more notation.

Notation 5.10. Let A and B be multigraded k-algebras. We denote by

A
◦

⊗ B their naive product, that is A
◦

⊗ B = A ⊗ B as multigraded k-
modules, equipped with the multiplication (a ⊗ b) · (a′ ⊗ b′) = (aa′ ⊗ bb′),
without sign.

If A and B are graded k-algebras, with either A or B concentrated in even
degrees, then the usual tensor product (i.e. with a Koszul sign) and the naive
tensor product coincide. For example, the tensor products in theorem 5.7
could be interpreted as usual ones, or as naive ones. In general, the two
tensor products are different.

Theorem 5.11 (Main computation I). Let k be a field of odd characteristic
p, and let V be a finite dimensional k-vector space. For all k ≥ 0 and i ≥ 0
we consider V (k)[i] with bigrading (i, pk) (i.e. ‘i’ is the explicit homological

grading and ‘pk’ is the implicit strict polynomial grading of V (k)[i]). We
have isomorphisms of bigraded strict polynomial algebras:

⊕

h,d≥0

E
h
(Sd,Λd;V ) ≃ Λ∗


⊕

k≥0

V (k)[pk − 1]


 ◦

⊗ Γ∗


⊕

k≥0

V (k+1)[pk+1 − 2]


 ,
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⊕

h,d≥0

E
h
(Sd,Γd;V ) ≃

Γ∗


⊕

k≥0

V (k)[2pk − 2]


 ◦

⊗ Λ∗


 ⊕

k≥0,ℓ≥0

V (k+ℓ+1)[2pk+ℓ+1 − 2pk − 1]




◦

⊗ Γ∗


 ⊕

k≥0,ℓ≥0

V (k+ℓ+2)[2pk+ℓ+2 − 2pk+1 − 2]


 .

Proof. According to theorem 4.5, there is an isomorphism of strict poly-

nomial algebras
⊕

h,d≥0 E
h
(Sd,Λd;km) ≃ H∗(B(Γ∗(V [2])). The bigrad-

ing (h, d) can be read on the right handside as follows: an element
of Hi(B(Γ∗(V [2])) with strict polynomial degree d is placed in bidegree
(h, d) := (3d − i, d). Now, H∗(B(Γ∗(V [2])) is computed in theorem 5.7.

The generators V (k)[i] are in Hi(B(Γ∗(V [2])), and have strict polynomial
degree pr. Hence they have bigrading (3pr − i, pr) in the bigraded al-

gebra
⊕

h,d≥0 E
h
(Sd,Λd;V ). Whence the result. The computation of

⊕
h,d≥0 E

h
(Sd,Γd;V ) is similar. �

5.2. Computations over a field of characteristic 2. Assume first that
k = F2 and let V be a finite dimensional vector space. The homology of the
iterated bar constructions B

n
(Γ∗(V [2])) are computed in [Car, Theoreme

fondamental, p. 10-02]. In particular, the homology of B(Γ∗(V [2])) and

B
2
(Γ∗(V [2])) equal respectively

Γ∗
(⊕

k≥0 Vσγk
2 σσ

[2k+1 + 1]
)

and Γ∗
(⊕

k,ℓ≥0 Vσγk
2 σγ

ℓ
2σσ

[2k(2ℓ+1 + 1) + 1]
)
,

where the Vσγk
2 σσ

and the Vσγk
2 σγ

ℓ
2σσ

are copies of V . To be more specific,

each copy is obtained from Vσσ = Γ1(V [2]) = H2(Γ
∗(V [2])) by applying a

suitable sequence of supensions σ and divided power operations γ2. Similarly
to the case k = Fp with p odd, the sequence of σ and γ2 to be applied is
the one which enables to complete the word ‘σσ’ into the word indexing
the copy of V considered, going from the right to the left. For example,
Vσγ2σσ = σ(γ2(Vσσ)).

Since the map Vσσ → H2(Γ
∗(V [2])) as well as the suspension and the

divided powers are natural with respect to V , these results yield the com-
putation of the B

n
(Γ∗(V [2])), n = 1, 2 as algebras natural in V . But not as

strict polynomial algebras. However, one can retrieve the strict polynomial
structure exactly as in the case k = Fp with p odd. We first classify all
possible strict polynomial structures.

Lemma 5.12. Let k be a field of characteristic 2, and for all d ≥ 0, let
Fd ∈ Fct(Vk,Vk) be a finite direct sum of nd copies of the identity functor.
The graded strict polynomial algebras A∗ such that UA∗ = Γ∗(F∗) are of the
form: A∗ = Γ∗(G∗), where each Gd is a direct sum of nd Frobenius twists

I(r) (with possibly different r ≥ 0).

Proof. Adapt the proof of lemma 5.4. �
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Then we pick the right strict polynomial structure with the help of remark
5.6 and we extend the result to arbitrary fields of characteristic 2 by base
change. We finally obtain the following computation.

Theorem 5.13. Let k be a prime field of characteristic p = 2, and let V be
a finite dimensional k-vector space. Then the homology of B(Γ∗(V [2])) and

B
2
(Γ∗(V [2])) are respectively equal to the strict polynomial algebras:

Γ∗
(⊕

k≥0 V
(k)[2pk + 1]

)
and Γ∗

(⊕
k,ℓ≥0 V

(k+ℓ)[pk(2pℓ + 1) + 1]
)
.

One can now use theorem 5.13 to compute the strict polynomial algebras⊕
h,d≥0 E

h(Sd,Λd;V ) and
⊕

h,d≥0 E
h(Sd,Γd;V ) over a field k of character-

istic p = 2 exactly as in the case p > 2. The comparison with [C2, Prop3.1,
Thm 3.2, Cor 4.5] is made in section 5.3.

Theorem 5.14 (Main computation II). Let k be a field of characteristic p =
2, and let V be a finite dimensional k-vector space. For all k ≥ 0 and i ≥ 0
we consider V (k)[i] with bigrading (i, pk) (i.e. ‘i’ is the explicit homological

grading and ‘pk’ is the implicit strict polynomial grading of V (k)[i]). We
have isomorphisms of bigraded strict polynomial algebras:

⊕

h,d≥0

E
h
(Sd,Λd;V ) ≃ Γ∗


⊕

k≥0

V (k)[pk − 1]


 ,

⊕

h,d≥0

E
h
(Sd,Γd;V ) ≃ Γ∗


 ⊕

k≥0,ℓ≥0

V (k+ℓ)[2pk+ℓ − pk − 1]


 .

5.3. Comments on the results. We now examine the reliability of our
results. We compare them with some elementary computations and with
the previous computations from [C2].

5.3.1. Even and odd characteristic. As stated in theorems 5.11 and 5.14, the
extension groups E

∗
(S∗,Λ∗;V ) and E

∗
(S∗,Γ∗;V ) have a different behavior

in characteristic p > 2 and in characteristic 2. This phenomenon is already
visible on the Hom-level. Indeed, the algebra H(S∗,Λ∗;V ) is the subalgebra

of E
∗
(S∗,Λ∗;V ) generated by elements of bidegree (0, d), d ≥ 0, hence by

theorems 5.11 and 5.14:

H(Sd,Λd;V ) ≃ Λd(V ) if p > 2, and H(Sd,Λd;V ) ≃ Γd(V ) if p = 2 .

The difference between even and odd characteristic is confirmed by the fol-
lowing elementary computation. Using the exact sequence Λ2 →֒ ⊗2

։ S2,
one sees that HomPk

(S2,Λ2) = H(S2,Λ2;k) is a trivial k-vector space if k
has characteristic p > 2, and is one dimensional in characteristic 2, gener-
ated by the map S2(V ) → Λ2(V ), vw 7→ v ∧ w (which is well defined in
characteristic 2 only).

5.3.2. Comparison with [C2] for E(S∗,Λ∗, V ) in odd characteristic. We ob-
serve that our computation of E(S∗,Λ∗, V ) in odd characteristic coincides
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with [C2, Prop 3.1 and Thm 3.2] only up to a sign. Indeed, [C2, Thm 3.2]
asserts that E

∗(S∗,Λ∗;V ) is isomorphic to

Λ∗
(⊕

k≥0 V
(k)[pk − 1]

)
◦

⊗ Γ∗
(⊕

k≥0 V
(k+1)[pk+1 − 2]

)
,

where the V (k)[pk − 1] are subfunctors of E
pk−1(Spk ,Λpk ;V ) and the

V (k+1)[pk+1− 2] are subfunctors of Epk+1−2(Spk+1
,Λpk+1

;V ), and the tensor
product is to the naive tensor product from notation 5.10. We assert that
the later algebra is isomorphic to E

∗
(S∗,Λ∗;V ).

We think that the signs in [C2] are wrong. Let us show on an example

where the problem lies. Choose u1 6= u2 in V (1)[p − 1] and v ∈ V (1)[p − 2],
let γ2(v) = v⊗2 ∈ Γ2(V (1)[p− 2]) and define

a1 = u1⊗v ∈ E
2p−3(S2p,Λ2p;V ) , and a2 = u2⊗γ2(v) ∈ E

3p−5(S3p,Λ3p;V ) .

Then, according to [C2, Thm 3.2], their product a1 · a2 in E
∗(S∗,Λ∗;V ) is

non zero and moreover:

a1 · a2 = (u1 ∧ u2) ⊗ vγ2(v) = −(u2 ∧ u1) ⊗ γ2(v)v = −a2 · a1 .

The latter computation contradicts the fact that E
∗(S∗,Λ∗;V ) is (1, 1)-

commutative. This phenomenon does not arise with our signs.

5.3.3. Comparison with [C2] for E(S∗,Λ∗, V ) in characteristic p = 2. The
reader can observe that our computation of E(S∗,Λ∗, V ) does not agrees
with [C2, Thm 3.2] in characteristic 2. For example, [C2, Thm 3.2] asserts

that H(S2,Λ2;V ) = Λ2(V )⊕V (1) in characteristic 2, while we assert that it
equals Γ2(V ).

The following elementary computation argues in favor of our result. First,
we have E

∗(I(1),Γ2;V ) = 0 for ∗ = 0, 1 (this follows from [FS, Prop 4.4]

and the long E
∗(I(1),−;V )-exact sequence induced by Λ2 →֒ Γ2

։ I(1), or

alternatively from proposition 7.1). So, the short exact sequence I(1) →֒
S2

։ Λ2 induces an isomorphism H(S2,Λ2;V ) ≃ H(S2, S2;V ). The latter
equals Γ2(V ) by lemma 2.5(1-2).

5.3.4. An alternative method to compute E(S∗,Λ∗, V ) over a field. Let k be
a field of characteristic p > 0. To compute E(S∗,Λ∗, V ), we have proved
that these extension groups equal, up to a regarding, the homology of the
(reduced, normalized) bar construction B(Γ∗(V [2])). Then we have used
Cartan’s computations to obtain the homology of the bar construction. We
now sketch an alternative to obtain the homology of B(Γ∗(V [2])).

The homology of the (reduced, unnormalized) cobar construction of the
algebra of polynomials k[V ] = S∗(V ∨[0]) computes the rational homology
H∗(Va,k) of the additive group Va with trivial coefficients (the symbol ‘∨’
denotes k-linear duality). These homology groups were originally computed
for V = k in [CPSVdK], and the result for all V is given in in [J, I Chap.
4]. They are equal, as a strict polynomial k-algebra, to

Λ∗
(⊕

r≥0 V
∨ (r)[1]

)
⊗ S∗

(⊕
r≥1 V

∨ (r)[2]
)

if p > 2,

S∗
(⊕

r≥0 V
∨ (r)[1]

)
if p = 2.
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Let C be a cocommutative differential graded coalgebra over k with unit
η : k → C (e.g. C = k[V ]). The reduced normalized cobar construction
(based on C = C/Imη) and the reduced unnormalized cobar construction
(based on C) are quasi isomorphic. So we can assume that we work with the
reduced normalized cobar construction, which we denote by ΩC. Moreover,
the shuffle coproduct makes the cobar construction into a Hopf algebra. In
fact, the computation of H∗(Ωk[V ]) made in [J, I Chap. 4] is valid as a
Hopf algebra (indeed, it suffices to check on the generators of the algebra
that the coalgebra structures coincide, and this check is straightforward from
the explicit expressions of the cycles given in [J, I 4.21 and 4.22]). Now the
restricted dual of Ωk[V ] equals B(Γ∗(V [0])) as a Hopf algebra. Since k is a
field, the homology of B(Γ∗(V [0])) is nothing but the dual of H∗(Ωk[V ]) as
a Hopf algebra. Thus we retrieve that H∗(B(Γ∗(V [0]))) equals:

Λ∗
(⊕

r≥0 V
∨ (r)[1]

)
⊗ Γ∗

(⊕
r≥1 V

∨ (r)[2]
)

if p > 2,(4)

Γ∗
(⊕

r≥0 V
∨ (r)[1]

)
if p = 2.(5)

Now, using lemma 4.7, one easily deduces the homology of the bar construc-
tion of the divided power algebra Γ∗(V [d]) over a vector space V placed in
homological degree d. One obtains the same result, but each generator space
V (r)[1], resp. V (r)[2] has to be replaced by V (r)[dpr + 1], resp. V (r)[dpr + 2].

5.3.5. Comparison with [C2] for E(S∗,Γ∗, V ). The reader may observe that

our computation of E
∗
(S∗,Γ∗;V ) does not agree with [C2, Cor 4.5] (take

i = j = 0 in Cha lupnik’s result), even as graded vector spaces. The following
elementary computation argues in favor of our result.

Proposition 5.15. Let k be a field of characteristic p > 0. The extension
groups ExtiPk

(Sp,Γp) equals k if i = 0, 2p − 2 or 2p − 3, and are trivial in
the other degrees.

Our theorems 5.11 and 5.14 agree with proposition 5.15. Indeed,
ExtiPk

(Sp,Γp) is the component of bidegree (i, p) of E
∗
(S∗,Γ∗,k), so ac-

cording to theorems 5.11 and 5.14, Ext∗Pk
(Sp,Γp) equals:

(
Γp(k(0)[0]) ⊗ k⊗ k

)
⊕
(

Γ1(k(1)[2p − 2]) ⊗ k⊗ k

)
⊕
(
k⊗ Λ1(k(1+0)[2p− 3]) ⊗ k

)

if p > 2, and

Γp(k(0+0)[0]) ⊕ Γ1(k(1+0)[2p− 2]) ⊕ Γ1(k(0+1)[2p − 3])

if p = 2. In both cases, the result agrees with proposition 5.15.
On the contrary, [C2, Cor 4.5] predicts that these extension groups have

dimension 2, which is not possible by proposition 5.15 (the mistake seems

to come from a misprint in the computation of ‘HΘ2(D∗(i))’ [C2, p. 980]).

Proof of proposition 5.15. The (elementary) proof relies on the analysis of
long exact sequences. We first recall a few facts. For 0 ≤ k < p, the functor
Λk ⊗ Sp−k is a direct summand of the injective functor ⊗k ⊗ Sp−k, hence is
injective. Moreover, one computes that HomPk

(Sp, Sp) is one dimensional,
generated by the identity map, HomPk

(Sp, S1 ⊗ Sp−1) is one dimensional,
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generated by the comultiplication Sp → S1 ⊗ Sp−1, and HomPk
(Sp,Λk ⊗

Sp−k) = 0 for k ≥ 2. Finally, the functor Γk is isomorphic to Sk for k < p.
We cut the (exact) Koszul complex:

Λp →֒ Λp−1 ⊗ S1 → · · · → Λ1 ⊗ Sp−1
։ Sp

into short exact sequences and analyze the long Ext∗Pk
(Sp,−)-exact sequence

associated to them. We begin on the right. Let K be the kernel of the
multiplication S1 ⊗Sp−1

։ Sp. Since the composite of the comultiplication
Sp → S1 ⊗ Sp−1 and the multiplication S1 ⊗ Sp−1

։ Sp equals p times the
identity map (hence zero), we obtain that Exti(Sp,K) ≃ k if i = 0, 1 and
0 otherwise. For the other short exact sequences, the term Ext∗Pk

(Sp,Λk ⊗

Sp−k) is trivial so the long exact sequence induces a shifting. We finally
obtain that ExtiPk

(Sp,Λp) ≃ k if i = p− 1, p− 2 and zero otherwise.
To get the computation of Ext∗Pk

(Sp,Γp) from Ext∗Pk
(Sp,Λp), we cut the

(exact) Koszul complex:

Γp →֒ Γp−1 ⊗ Λ1 → · · · → Γ1 ⊗ Λp−1
։ Λp

into short exact sequences and proceed similarly. �

6. Extensions between classical exponential functors:

Explicit computations over Z

In this section, we elaborate on [Car] to get explicit computations of

E
∗
(S∗,Λ∗;V ) and E

∗
(S∗,Γ∗;V ) over the ground ring k = Z. Actually, we do

not compute them as bigraded strict polynomial algebras, but only as graded
Gm-algebras (i.e. we do not get the naturality in V , but see conjecture 6.7).

6.1. Graded Gm-algebras. We denote by Gm the multiplicative group
scheme (i.e. Gm = GL1,Z). The representation theory of Gm is very easy
[J, I 2.11]. Indeed, if M is a Gm-module, there is a splitting M =

⊕
d∈ZMd

where Md denotes the subspace of weight d. This defines an equivalence of
categories between the category of Gm-modules and Gm-equivariant maps
and the category of Z-graded abelian groups and graded group morphisms.

The link between Gm modules and strict polynomial functors is as follows.
Let V be a Gm-module, which is free and finitely generated as a Z-module.
Then evaluation on V yields a functor:

evV : P̃Z → Gm−Mod
F 7→ F (V )

.

Assume that V has weight 1, that is Gm acts on V as the subgroup of

homotheties of GL(V ). Then for all F ∈ P̃k, the decomposition of F (V )
induced by the weights of the action of Gm coincides with the decomposition
induced by the splitting F =

⊕
d≥0 Fd into a direct sum of homogeneous

subfunctors: ⊕
d≥0 F (V )d =

⊕
d≥0 Fd(V ) .

Thus, passing from a strict polynomial functor F to a Gm-module F (V )
should be thought of as a mean of forgetting the naturality while keeping
track of the strict polynomial degree (now encoded in the weight of the
Gm-action).
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Definition 6.1. A graded Gm-algebra is a graded Z-algebra with an ac-
tion of Gm, such that the multiplication is Gm-equivariant. A morphism of
graded Gm-algebras is a Gm-equivariant morphism of graded algebras.

One defines similarly differential graded Gm-algebras, etc. Evaluating
a graded strict polynomial algebra on a Gm-module yields a graded Gm-
algebra. The aim of section 6 is to compute the following graded Gm-
algebras:

(1) The homology of the differential graded Gm-algebra B
n
(Γ∗(V [2])),

where V [2] is a Gm-module of weight 1, with homological degree 2.

(2) E
∗
(S∗, Y ∗;V ) =

⊕
h,d≥0 E

h
(Sd, Y d;V ), for Y ∗ = Λ∗ of Γ∗. It is

considered as a graded Gm-algebra with E
h
(Sd,Λd;V ) in homological

degree h, acted on by Gm as a representation of weight d.

6.2. Bar constructions of divided power algebras over Z. The ho-
mology algebra of the iterated bar constructions B

n
(Γ∗(V [2])) for a free

Z-module V of finite rank are computed in [Car, expose 11] (and another
description is given in [D]). Before stating Cartan’s result, we need to recall
elementary facts about dual Koszul and De Rham algebras.

6.2.1. Dual Koszul and De Rham algebras. If V is a graded Z-module, we
denote by sV its suspension ((sV )i := V i−1), and by s−1 the canonical
isomorphism sV ≃ V and by hs−1 (h in an integer) the composite sV ≃

V
hId
−−→ V .

Definition 6.2. Let h be a positive integer. Let U be a positively graded
Z-module, concentrated in odd degree and free of finite type in each de-
gree. The dual Koszul algebra Dκh∗(U) is the CDGA Z-algebra which equals
Γ∗(sU)⊗Λ∗(U) as a graded augmented algebra, and whose differential equals
the composite

Γn(sU) ⊗ Λk(U)
∆⊗Id
−−−→Γn−1(sU) ⊗ sU ⊗ Λk(U)

Id⊗hs−1⊗Id
−−−−−−−−→Γn−1(sU) ⊗ U ⊗ Λk(U)

Id⊗m
−−−→ Γn−1(sU) ⊗ Λk+1(U) .

Let V be a positively graded Z-module, concentrated in even degree and
free of finite type in each degree. The dual De Rham algebra DΩh

∗(V ) is
the CDGA k-algebra which equals Γ∗(V )⊗Λ∗(sV ) as an augmented graded
algebra and whose differential equals the composite

Γn(V ) ⊗ Λk(sV )
Id⊗∆
−−−→Γn(V ) ⊗ sV ⊗ Λk−1(sV )

Id⊗hs−1⊗Id
−−−−−−−−→Γn(V ) ⊗ V ⊗ Λk−1(sV )

m⊗Id
−−−→ Γn+1(V ) ⊗ Λk−1(sV ) .

If F∗ is a graded strict polynomial functor concentrated in odd degree
(resp. even degree), then Dκh∗(F∗(V )) (resp. DΩh

∗(F∗(V ))) is a strict poly-
nomial CDGA Z-algebra.

For h = 1, Dκh∗(V ) and DΩh
∗(V ) are the graded duals of the usual Koszul

and De Rham algebras. Let Z[i] denote a copy of Z placed in degree i, then
Dκh∗(Z[i]) and DΩh

∗(Z[i]) are the elementary complexes of type (II) from
[Car, p. 11-03].
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The graded algebras Dκh∗(V ) and DΩh
∗(V ) satisfy an exponential formula.

Namely, the composite

Dκh∗(V ) ⊗Dκh∗(W ) → Dκh∗(V ⊕W )⊗2 m
−→ Dκh∗(V ⊕W ) ,

where the first map is induced by the canonical inclusions of V and W into
V ⊕W , is an isomorphism of CDGA Z-algebras. Similarly, DΩh

∗(V ⊕W ) is
isomorphic to DΩh

∗(V ) ⊗DΩh
∗(W ).

6.2.2. Cartan’s result. We are now ready to state [Car, Theoreme 1, p. 11-

09], which computes the homology of B
n
(Γ∗(V [2])), or equivalently the sin-

gular homology of K(V, n+ 2), not naturally in the free Z-module V .
Case n = 1. Let Xp(1) be the CDGA Z-algebra:

Xp(1) := Dκp∗

(⊕
k≥0 V [2pk+1 + 1]

)
.

The dual Koszul complex generated by each V [2pk+1 +1] corresponds to the
tensor product of all the elementary complexes attached to the pair of words
φpγ

k
pσσ, βpφpγ

k
pσσ in Cartan’s denomination [Car, p. 11-08 (iii)]. Thus our

Xp(1) is nothing but Cartan’s ‘Xp’ in [Car, Theoreme 1, p. 11-09]. We
denote by pH∗(Xp(1)) the p-primary part of its homology:

pH∗(Xp(1)) = {x ∈ H∗(Xp(1)),∃r ≥ 1 prx = 0}

It is a graded Z-algebra without unit, concentrated in positive degrees. We

make it into a unital Z-algebra p̂H∗(Xp(1)) in the canonical way:

p̂H0(Xp(1)) = Z , p̂H∗(Xp(1)) = H∗(Xp(1)) for ∗ > 0.

Now Cartan’s result [Car, Theoreme 1, p. 11-09] yields an isomorphism of
graded Z-algebras:

H∗

(
B(Γ∗(V [2]))

)
≃ Λ∗(V [3]) ⊗

⊗

p prime

p̂H∗(Xp(1)) .

Case n = 2. Similarly, there is an isomorphism of graded Z-algebras:

H∗

(
B

2
(Γ∗(V [2]))

)
≃ Γ∗(V [4]) ⊗

⊗

p prime

p̂H∗(Xp(2)) ,

where Xp(2) is the CDGA Z-algebra:

Xp(2) := Dκp∗

(⊕
k,ℓ≥0 V [2pk+ℓ+2+2pk+1+1]

)
⊗DΩp

∗

(⊕
k≥0 V [2pk+1+2]

)
.

Each dual Koszul complex generated by V [2pk+ℓ+2 + 2pk+1 + 1] corresponds
to the tensor product of all the elementary complexes attached to the pair of
words φpγ

k
pφpγ

ℓ
pσσ, βpφpγ

k
pφpγ

ℓ
pσσ in Cartan’s denomination [Car, p. 11-08

(iii)]). Similarly, each dual De Rham complex generated by V [2pk+1 + 2]
corresponds to the tensor product of the elementary complexes attached to
the pair of words σφpγ

k
pσσ, βpσφpγ

k
pσσ.
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6.2.3. The Gm-action. The homology of B
n
(Γ∗(V [2])) is a graded strict

polynomial algebra, hence a graded Gm-algebra (we consider V [2] as a Gm-
module of weight 1). We now supplement Cartan’s computation by com-
puting the Gm-action.

Theorem 6.3. Let V be a free finitely generated Z-module, and let Vd denote
a copy of V acted on by Gm with weight d. The homology of B(Γ∗(V1[2]))
is isomorphic, as a Gm-graded algebra, to

Λ∗(V1[3]) ⊗
⊗

p prime

p̂H∗ (Xp(1)) ,

where for all prime p, Xp(1) denotes the CDGA Gm-algebra

Xp(1) := Dκp∗

(⊕
k≥0 Vpk+1 [2pk+1 + 1]

)
.

The homology of B
2
(Γ∗(V1[2])) is isomorphic, as a Gm-graded algebra, to

Γ∗(V1[4]) ⊗
⊗

p prime

p̂H∗ (Xp(2)) ,

where for all prime p, Xp(2) denotes the CDGA Gm-algebra

Dκp∗

(⊕
k,ℓ≥0 Vpk+ℓ+2[2pk+ℓ+2 + 2pk+1 + 1]

)
⊗DΩp

∗

(⊕
k≥0 Vpk+1 [2pk+1 + 2]

)
.

Proof. Let us prove the case of B(Γ∗(V [2])), the case of B
2
(Γ∗(V [2])) is

similar. To compute the Gm-action, we have to come back to the construc-
tion [Car, p. 11-07] of the morphisms of CDGA Z-algebras fp : Xp(1) →

B(Γ∗(V [2])), for p prime, and f0 : Λ∗(V [3]) → B(Γ∗(V [2])).
Case 1: construction of fp, for p prime. Let (ui) be a basis of V .

Then for all basis vector ui and all pair of words βpφpγ
k
pσσ, φpγ

k
pσσ, Cartan

defines a pair of elements xi,k, yi,k ∈ B(Γ∗(V [2])), with respective degrees

(2pk+1 + 1) and (2pk+1 + 2), and such that dyi,k = pxi,k (these elements
correspond to the elements denoted by x′ and y′ in [Car, p. 11-07], and we
recall their precise definition later in the proof).

Since B(Γ∗(V [2])) is a CDGA Gm-algebra, the differential is Gm equivari-
ant, so yi,k and xi,k are acted on by Gm with the same weight. With such a
pair xi,k, yi,k at hand, products and divided powers operations yield a mor-
phism of CDGA-algebras from the elementary complex generated by xi,k, yi,k
to B(Γ∗(V [2])) (cf. [Car, p. 11-03]). The elementary complex generated by
xi,k, yi,k is nothing but the dual Koszul complex on the graded Z-module

Zi,k, which is a copy of Z placed in degree (2pk+1 + 1). That is products
and divided powers operations induce a morphism of CDGA-algebras:

Dκp(Zi,k) → B(Γ∗(V [2])) .

Since Dκp(Zi,k) and B(Γ∗(V [2])) are free as Z-modules, the divided powers
are determined by the products. Now products are Gm-equivariant, so this
morphism of algebras is Gm-equivariant.

Now Xp(1) is the tensor product of all the elementary complexes

Dκp(Zi,k) (and we can rewrite it as Dκp∗(
⊕

k≥0 V [2pk+1 + 1]) by the ex-

ponential formula for Koszul complexes, each V [2pk+1 + 1] being the sum
of the Zi,k over all the indices i). The maps fp : Xp(1) → B(Γ∗(V [2]))
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are defined by tensoring the morphisms Dκp(Zi,k) → B(Γ∗(V [2])) for all i
and all k. Hence they are Gm-equivariant. So, to compute the Gm-action on
Cartan’s description of the homology of B(Γ∗(V [2])), it suffices to determine
how Gm acts on the complexes Dκp(Zi,k). This reduces to determining how
Gm acts on the elements yi,k.

So we now come back to the precise definition of the yi,k [Car, p. 11-07].
This definition involves reduction modulo p. There is a surjective morphism
of Gm-CDGA Z-algebras

B(Γ∗(V [2])) ։ B(Γ∗(V [2])) ⊗Z Fp = B(Γ∗((V/pV )[2])) .

The element yi,k is a lifting of a cycle zi,k of B(Γ∗((V/pV )[2])), repre-
senting a certain homology class in the homology ci,k in the homology of

B(Γ∗((V/pV )[2])) (that is in the singular homology of K(V, 3) with coeffi-
cients in Fp). Since B(Γ∗(V [2])) ։ B(Γ∗(V [2])) ⊗Z Fp is Gm-equivariant,
Gm acts on yi,k with the same weight as it acts on ci,k.

The class ci,k is defined in the following way. Recall that the index ‘i’
refers to a basis element ui of the free Z-module V and that the index ‘k’
refers to a word of the form φpγ

k
pσσ. Let ui be the image of ui through

the canonical projection V 7→ V/pV . We consider ui as an element in the
Fp-vector space

(V/pV ) = (V/pV )σσ = H2

(
Γ∗((V/pV )[2])

)
≃ H2(K(V, 2),Fp) .

By [Car, Exposes 6 et 7], the homology of the B
n
(Γ∗((V/pV )[2])), n ≥ 0, is

endowed with operations γr, σ and φp. So, applying the operations γkp and

φp to the homology class ui, we obtain a class ci,k (of degree 2pk+1+2) in the

homology of B(Γ∗((V/pV )[2])). The class ui is acted on by Gm with weight
1, so by lemma 5.5 and remark 5.6, ci,k is acted on by Gm with weight pk+1.

So, to sum up, we have proved that Cartan’s maps fp are actually Gm-
equivariant morphisms of CDGA Gm-algebras:

Dκp∗(
⊕

k≥0 Vpk+1 [2pk+1 + 1]) → B(Γ∗(V [2])) .

Case 2: construction of f0. The map f0 is simply defined in degree 3d
by sending Λd(V ) into V ⊗d = (Γ1(V ))⊗d ⊂ B(Γ∗(V [2]))3d via the canonical
inclusion. So if we let Gm act on V with weight 1, then f0 : Λ∗(V [3]) →
B(Γ∗(V [2])) is a morphism of Gm-CDGA Z-algebras (we take the trivial
differential on Λ∗(V [3])).

Conclusion. By [Car, Theoreme 1, p. 11-09], the map f0 sends Λ∗(V [3])
injectively into the homology of B(Γ∗(V [2])), whose image is a complement
of the torsion part of the homology, and the maps f0 ⊗ fp induce isomor-
phisms after taking the homology and restricting to the p-primary part.
Since we have written the fi as Gm-equivariant maps, this yields our Gm-
equivariant result. �

To complete the computation of theorem 6.3, let us mention that the
homology of dual Koszul and De Rham complexes is quite concrete. For
example, [D, Thm 2.4.8] yields a description of these graded algebras by
generators and relations. For the homology of B(Γ∗(V [2])), we can offer yet
another nice reformulation, involving Koszul kernel algebras.
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6.2.4. A reformulation with Koszul kernel algebras. Let us first define Koszul
kernel algebras. Let U be a nonnegatively graded Fp-vector space, which is
finite dimensional in each degree. We can consider U as a graded Z-module
and we let:

Γ0
Fp

(U) , Γd
Fp

(U) := (U⊗d)Sd for d > 0.

As usual, all tensor products are taken over the ground ring k, which is
here k = Z. We have denoted the resulting vector space by Γd

Fp
(U) for

two reasons. First, because the symbol ‘Γd(U)’ is already commonly used to
denote another object, namely the universal divided power algebra generated
by U from [EML2, p.107-110] or [Car, Section 7, p.11-11]. Second, the ‘Fp’
index is here to remind the reader that if W is a nonnegatively graded Z-
module which is degreewise free of finite rank, for d > 0 there is a canonical
isomorphism Γd(W ) ⊗ Fp ≃ Γd

Fp
(W ⊗ Fp).

Similarly, we let Λ∗
Fp

(U) be the quotient of the tensor algebra
⊕

d≥0 U
⊗d

by the graded ideal generated by elements of the form x⊗ x, x ∈ U . As for
divided powers, we have Λ0

Fp
(U) = U⊗0 = Z and for d > 0, Λd(W ) ⊗ Fp ≃

Λd
Fp

(W ⊗ Fp)

Definition 6.4. Let p be a prime, and let U be a nonnegatively graded Fp-
vector space which is finite dimensional in each degree. We consider U as
a graded Z-module. We let Dκ1

Fp,∗
(U) be the differential graded Z-algebra

which equals Γ∗
Fp

(sU) ⊗ Λ∗
Fp

(U) as an algebra (as usual, the tensor product

is taken over the ground ring Z), with differential as in definition 6.2. The
Koszul kernel algebra K∗(U) is the graded subalgebra of Γ∗

Fp
(sU) ⊗ Λ∗

Fp
(U)

formed by the cycles of Dκ1
Fp,∗

(U):

K∗(U) := ker
(
Dκ1Fp,∗

(U)
d
−→ Dκ1Fp,∗−1(U)

)
.

Similarly, if W is a nonnegatively graded Z-module which is degreewise free
of finite rank, we denote by K∗(W ) the graded subalgebra of Γ∗(sW ) ⊗
Λ∗(W ) formed by the cycles of Dκ1∗(W ) as defined in definition 6.2.

Observe that if W is graded and degreewise free of finite rank, for all
d > 0 and all prime p the various Koszul kernels are linked by canonical
isomorphisms:

Kd(W )/pKd(W ) ≃ Kd(W ) ⊗ Fp ≃ Kd(W ⊗ Fp) ≃ Kd(W/pW ) .

The Koszul kernel algebras K∗(W ) and K∗(W/pW ) are well known to rep-
resentation theoretists. For example, if W is homogeneous, they equal the
direct sum of all Weyl functors indexed by hooks [BB, Remark III.1.5].

Lemma 6.5. Let p be a prime, and let V be a free finitely generated Z-
module. Then

V 7→ K∗

(⊕
k≥0(V/pV )(k+1)[2pk+1 + 1]

)

is a strict polynomial algebra. In particular if we consider V as a Gm-module
of weight 1, it becomes a graded Gm-algebra. It is isomorphic to the graded
Gm-algebra (where Vd is a copy of V acted on by Gm with weight d)

p̂H∗

(
Dκp∗

(⊕
k≥0 Vpk+1 [2pk+1 + 1]

))
.
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Proof. The first part of lemma 6.5 is obvious. Let us prove the isomorphism
of graded Gm-algebras. For all nonnegatively graded Gm-module W , which
degreewise Z-free of finite type, the homology of Dκ1∗(W ) equals Z, placed
in degree 0 (indeed, by the exponential formula, one reduces to the trivial
case where W is free of rank one). Thus, the cycles K∗(W ) ⊂ Dκ1∗(W ) equal
the boundaries in all positive degrees. So the homology of Dκp∗(W ) equals Z
in degree ∗ = 0, and K∗(W )/pK∗(W ) in degrees ∗ > 0. Whence an isomor-
phism of Gm-algebras (in positive degrees): pH∗ (Dκp∗(W )) ≃ K∗(W ) ⊗ Fp.
The latter Gm-algebra identifies with K∗(W ⊗Fp) ≃ K∗(W/pW ) in positive
degrees, so that we finally obtain an isomorphism of graded Gm-algebras:

p̂H∗ (Dκp∗(W )) ≃ K∗(W/pW ).

To finish the proof, observe that for W =
⊕

k≥0 Vpk+1 [2pk+1 +1], the graded

Gm-module W/pW coincides with
⊕

k≥0(V/pV )(k+1)[2pk+1 + 1]. �

In view of lemma 6.5, theorem 6.3 immediately gives:

Theorem 6.6. Let V be a free Z-module of finite rank. The homology of
B(Γ∗(V [2])) is isomorphic to the graded algebra:

Λ∗(V [3]) ⊗
⊗

p prime

K∗


⊕

k≥0

(V/pV )(k+1)[2pk+1 + 1]


 .

This isomorphism is a priori not natural with respect to V , but however it
preserves the strict polynomial degree.

Conjecture 6.7. We think that theorem 6.6 actually yields a description
of the homology of B(Γ∗(V [2])) as a strict polynomial algebra. A careful
analysis of the proof of [Car, Theoreme 1, p. 11-09] seems to confirm this
for the p primary part when p is odd, but there remain problems to solve
for p = 2.

6.3. The computation of extension groups. We can now compute the
graded Gm-algebras

E
∗
(S∗, Y ∗;V ) =

⊕
h,d≥0 E

h
(Sd, Y d;V ) ,

where Y ∗ = Λ∗ or Γ∗, and where a summand E
h
(Sd, Y d;V ) has degree

h and is acted on by Gm with weight d (as specified in section 6.1). By
theorem 4.5, these graded algebras equal, up to a regrading, the homology
of B

n
(Γ∗(V [2])) for n = 1, 2. So theorem 6.6 almost gives us the result.

To be more specific, we introduce for all s ≥ 0 an additive ‘regrading
functor’:

Rs : {graded Gm-modules} → {graded Gm-modules} ,

which sends a graded Gm-module M of degree i and acted on by Gm with
weight d onto the graded Gm-module RsM , which is concentrated in degree
sd− i and which equals M as a Gm-module. With this definition, theorem
4.5 yields isomorphisms of Gm-algebras:

E
∗
(S∗,Λ∗;V ) ≃ R3H∗

(
B(Γ∗(V [2]))

)
, E

∗
(S∗,Γ∗;V ) ≃ R4H∗

(
B(Γ∗(V [2]))

)
.
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When s is even, the functor Rs does not affect the parity of degrees: RsM is
concentrated in odd degrees if and only if M is concentrated in odd degrees.
So, Rs behaves well with differentials and tensor products of graded algebras
(Koszul signs are preserved). One easily checks the following properties.

Lemma 6.8. Let s be an even integer. Then Rs induces an endofunctor of
differential graded (DG) Gm-algebras:

Rs : {DG Gm-algebras} → {DG Gm-algebras} ,

compatible with tensor products. Moreover, if A is a DG Gm-algebra, then
RsH∗(A) equals H∗(RsA).

If s is odd, Rs might change the parity of degrees. As a consequence,
Rs is not compatible with tensor products of graded algebras. To fix this
problem, we have to define a skew tensor product for Gm-algebras.

Notation 6.9. Let A and B be two graded Gm-algebras. We denote by
A⊗̃B their skew tensor product. As a graded Gm-module, A⊗̃B equals
A⊗B. The product on A⊗̃B is defined as follows. Let a′i,d be a homogeneous
element of A of degree i and acted on by Gm with weight d, and let bj,e be a
homogeneous element of B of degree j, and acted on Gm with weight e. Then
the product (a⊗bj,e)·(a

′
i,d⊗b

′) in A⊗̃B equals (−1)(i+d)(j+e)(a·a′i,d)⊗(b′j,e·b).

One easily checks the following lemma.

Lemma 6.10. Let s be an odd integer and let A, B be graded Gm-algebras.
Then the Gm-algebra Rs(A⊗B) equals (RsA)⊗̃(RsB).

Now we can apply the functors R3 and R4 to the results of 6.6. It
is straightforward to see that R4Dκ

p
∗(M) = Dκp∗(R4M), R4DΩp

∗(N) =
DΩp

∗(R4N) and R3K∗(U) = K∗(R3U) for suitable graded Gm-modules
M,N,U . Combined with lemmas 6.8 and 6.10, this gives us the following
result.

Theorem 6.11 (Main computation III). Let V be a free Z-module of finite

rank. Assume that V [i] and (V/pV )(k+1)[i] have homological degree i and are
acted on by Gm respectively with weight 1 and pk+1. There is an isomorphism
of graded Gm-algebras:

E
∗
(S∗,Λ∗;V ) ≃ Λ∗(V [0])⊗̃

˜⊗

p prime

K∗


⊕

k≥0

(V/pV )(k+1)[pk+1 − 1]


 ,

where K∗ denotes the Koszul kernel algebra from definition 6.4. Let Vd[i]
denote a copy of V placed in homological degree i and acted on by Gm with
weight d. There is an isomorphism of graded Gm-algebras:

E
∗
(S∗,Γ∗;V ) ≃ Γ∗(V1[0]) ⊗

⊗

p prime

p̂H∗

(
X̃p(2)

)
,

where for all prime p, X̃p(2) denotes the CDGA Gm-algebra

Dκp∗

(⊕
k,ℓ≥0 Vpk+ℓ+2[2pk+ℓ+2 − 2pk+1 − 1]

)
⊗DΩp

∗

(⊕
k≥0 Vpk+1 [2pk+1 − 2]

)
.
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7. Extensions between twisted classical exponential functors

Throughout this section, k is a field of positive characteristic p. Our goal is
to compute all the bigraded strict polynomial algebras E

∗
(X∗ (r), Y ∗ (s);V ),

where X∗, Y ∗ are classical exponential functors (with bidegree and prod-
uct as specified in convention 3.6). Duality yields an isomorphism:

E
∗
(X∗ (r), Y ∗ (s);V ) ≃ E

∗
(Y ♯ ∗ (s),X♯ ∗ (r);V ), so it suffices to do the com-

putation for r ≥ s. Thus, our goal reduces to computing the bigraded strict
polynomial algebras:

E
∗
(X∗ (s+t), Y pt∗ (s);V )

for all nonnegative integers s, t and all pairs of classical exponential functors
(X∗, Y ∗). The principle of our proof is to express them in terms of their

untwisted versions E
∗
(X∗, Y ∗;V ) (which are explicitly known from the in-

troduction or from section 5). We proceed in two steps.

(1) We show in section 7.1 that the bigraded strict polynomial algebras

E
∗
(X∗ (t), Y ∗;V ) are equal, up to regrading, to E

∗
(X∗, Y ∗;V (t)).

(2) We show in section 7.2 that E
∗
(Xd (s+t), Y ptd (s);V ) can be expressed

as a function of E
∗
(X∗ (t), Y ∗;V ). This relies on the computational

tools developed in [T3]. In fact, these tools only give the result up
to a filtration, but with additional work, we prove that this filtration
is trivial.

Our method does not depend on the computations of [FFSS, C2], where
these extensions were computed first (with mistakes in the results of [C2],
which we correct below).

7.1. Frobenius twists and bar constructions. Let A∗ be a strict poly-
nomial algebra. Then for all strict polynomial functors F,G, we define an
‘external product’ E∗(F,A∗;V ) ⊗ E

∗(G,A∗;V ) → E
∗(F ⊗ G,A∗;V ) as the

composite:

E
i(F,Ak;V )⊗E

j(G,Aℓ;V ) → E
i+j(F⊗G,Ak⊗Aℓ;V ) → E

i+j(F⊗G,Ak+ℓ;V )

where the first map is induced by tensor products and the second one is
induced by the multiplication of A∗. In particular, if X∗, Y ∗ are classical
exponential functors the product on E

∗(X∗ (t), Y ∗;V ) is obtained by com-

bining the external product and the comultiplication of X∗ (t).

Proposition 7.1. Let k be a field of positive characteristic p. Let F be a
homogeneous strict polynomial functors of d, and let t be a nonnegative in-
teger. For all integer i, there are isomorphisms of strict polynomial functors
(with the convention that Ei(F,G, ;V ) = 0 for i < 0), natural in F :

E
i(F, Sd;V (t)) ≃ E

i(F (t), Sdpt ;V ) ,

E
i(F,Λd;V (t)) ≃ E

i+(pt−1)d(F (t),Λdpt ;V ) ,

E
i(F,Γd;V (t)) ≃ E

i+2(pt−1)d(F (t),Γdpt ;V ) .

Moreover, for Y ∗ = S∗,Λ∗ or Γ∗, and for homogeneous F,G of respective
degrees d, e the external product

E
∗(F, Y d;V (t)) ⊗ E

∗(G,Y e;V (t)) → E
∗(F ⊗G,Y d+e;V (t))
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identifies through the isomorphism with the external product:

E
∗(F (t), Y dpt ;V ) ⊗ E

∗(G(t), Y ept;V ) → E
∗(F (t) ⊗G(t), Y dpt+ept;V ) .

Proof. Let us recall from [T3, Lemmas 2.2 and 2.3] an elementary computa-
tion in Pk. If µ = (µ1, . . . , µn) is a tuple of positive integers, we denote by Sµ

the tensor product Sµ1⊗· · ·⊗Sµn , and by αµ the tuple αµ := (αµ1, . . . , αµn),
for all α ≥ 0. Then for all G ∈ Pk, there are isomorphisms (the first one is

induced by precomposition by I(t), the second one by the canonical inclusion
Sµ (t) →֒ Sptµ):

HomPk
(G,Sµ)

≃
−→ HomPk

(G(t), Sµ (t)) , (i)

HomPk
(G(t), Sµ (t))

≃
−→ HomPk

(G(t), Sptµ) . (ii)

Moreover if λ is not of the form ptµ, HomPk
(G(t), Sλ) equals zero.

If we take G = F V (t)
, then G(t) = (F (t))V , and these isomorphisms yield

an isomorphism H(F, Sµ, V (t)) ≃ H(F (t), Sptµ, V ) compatible with the ex-
ternal product. Since symmetric powers are injective, this proves the case
of E∗(F, Sd;V (t)).

Now we prove the case of E
∗(F,Λd;V (t)). We denote by B(d) the ho-

mogeneous part of strict polynomial degree d of B(S∗(V [0])). By section
4.2.2, for all F ∈ Pd,k, E

d−∗(F,Λd;V ) is isomorphic to the homology of
H(F,B(d)∗;V ), and the external product is read on H(F,B(d)∗;V ) by tak-
ing tensor products and using the multiplication of B(S∗(V [0])). Similarly,

E
dpt−∗(F (t),Λdpt ;V ) equals the homology of H(F (t), B(dpt)∗;V ). Now the

maps Sd (t)(V ) →֒ Sdpt(V ) induce a morphism of graded algebras (concen-

trated in degree 0) B(S∗ (t)(V [0])) →֒ B(S∗(V [0])), whence a graded mor-
phism compatible with external products:

H(F,B(d)∗;V (t)) ≃ H(F (t), B(d)
(t)
∗ ;V ) →֒ H(F (t), B(dpt)∗;V ) . (iii)

It is actually an isomorphism. Indeed, all the summands HomPk
(F (t), Sλ) of

H(F (t), B(dpt)∗;V ) equal zero if λ 6= ptµ, and if λ = ptµ the corresponding

summand is isomorphic to H(F, Sµ;V (t)) by (i) and (ii). So the case of

E
∗(F,Λd;V (t)) follows from isomorphism (iii) by taking the homology. The

case of E∗(F,Γd;V (t)) is similar. �

Corollary 7.2. Let k be a field of positive characteristic p, let t be a positive
integer, and let X∗ and Y ∗ be classical exponential functors. There are
isomorphisms of bigraded strict polynomial algebras:

E
∗(X∗, Y ∗;V (t)) ≃ E

∗(X∗(t), Y ∗;V ) , and

E
∗
(X∗, Y ∗;V (t)) ≃ E

∗
(X∗(t), Y ∗;V ) ,

which map E
i(Xd, Y d;V (t)) onto E

i+αd(Xd(t), Y dpt ;V ), with α = 0 if Y ∗ =
S∗, α = pt − 1 if Y ∗ = Λ∗ and α = 2(pt − 1) if Y ∗ = Γ∗.

Proof. The first isomorphism follows directly from proposition 7.1. If p = 2,
the signed and the unsigned algebras are equal, so there is nothing to add
to get the second isomorphism. If p is odd, for all pair of integers (i, d), the
parity of i is the same as the parity of i+αd, and the parity of d is the same
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as the parity of dpt. So the first isomorphism is also compatible with signed
products. �

Example 7.3. (1) By the Yoneda lemma, we have:

E
∗
(Γ∗,Λ∗;V ) = E

∗(Γ∗,Λ∗;V ) =
⊕

d≥0H(Γd,Λd;V ) ≃
⊕

d≥0 Λd(V ) .

So, corollary 7.2 yields isomorphisms of bigraded strict polynomial algebras:

E
∗
(Γ∗ (t),Λ∗;V ) = E

∗(Γ∗ (t),Λ∗;V ) ≃ Λ∗(V (t)[pt − 1]) ,

where the generator V (t)[pt−1] of the right handside has bidegree (pt−1, pt).

(2) Assume that p = 2. We have computed E
∗
(S∗,Λ∗;V ) = E∗(S∗,Λ∗;V )

in theorem 5.14. Corollary 7.2 yields an isomorphism

E
∗
(S∗ (t),Λ∗;V ) = E

∗(S∗ (t),Λ∗;V ) ≃ Γ∗
(⊕

k≥0 V
(k+t)[pk+t − 1]

)
,

where the V (k+t)[pk+t−1] of the right handside have bidegree (pk+t−1, pk+t).

(3) Assume that p > 2. We have computed E
∗
(S∗,Λ∗;V ) (which equals

E∗(S∗,Λ∗;V ) only up to a sign) in theorem 5.11. By corollary 7.2, the

algebra E
∗
(S∗ (t),Λ∗;V ) is isomorphic to:

Λ∗
(⊕

k≥0 V
(k+t)[pk+t − 1]

)
◦

⊗ Γ∗
(⊕

k≥0 V
(k+t+1)[pk+t+1 − 2]

)
,

where the generators V (k+t)[pk+t− 1] have bidegree (pk+t− 1, pk+t) and the

V (k+t)[pk+t − 2] have bidegree (pk+t − 2, pk+t) , and where
◦

⊗ refers to the
naive tensor product from notation 5.10.

7.2. The twisting spectral sequence and Troesch complexes. Now
we recover the bigraded strict polynomial algebras E

∗
(X∗ (s+t), G∗ (s);V )

from the bigraded strict polynomial algebras E
∗
(X∗ (t), Y ∗;V ). In fact, this

question is already settled (up to a filtration) in [T3], by means of the ‘twist-
ing spectral sequence’. Let us describe briefly how things work.

Let us replace ‘G’ by GV (s) in the statement of [T3, Thm 7.1]. Then the
twisting spectral sequence can be reformulated as follows. For all F,G ∈ Pk

there is a spectral sequence of strict polynomial functors, natural in F,G
and compatible with tensor products:

Ei,j
2 (F,G, s;V ) =⇒ E

i+j(F (s), G(s);V ) .

The i-th column Ei,∗
2 of the second page equals the precomposition of the

strict polynomial functor V 7→ E
i(F,G;V ) by the graded strict polynomial

functor V 7→ Es ⊗ V (s) (Es equals the graded vector space Ext∗Pk
(I(s), I(s)),

and the partial degree denoted by ‘∗’ is the degree arising when one precom-
poses a strict polynomial functor by a graded strict polynomial functor, as
explained in [T3, Section 2.5]).

When we take F = X∗ (t) and G = Y ∗, with X∗ and Y ∗ some classi-
cal exponential functors, this spectral sequence yields a spectral sequence
of trigraded algebras (the extra degree comes from the fact that classical

exponential functors are graded), which converges to E
∗(X∗ (s+t), G∗ (s);V ).

Moreover, we have proved in [T3, Thm 8.11] (with the help of Troesch com-
plexes) that the twisting spectral sequence collapses in this case. Thus,
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the second page actually computes, up to a filtration, the strict polynomial
algebra E

∗(X∗ (s+t), G∗ (s);V ).
The only slight difficulty in using the twisting spectral sequence is to un-

derstand how the degrees are organized. In the remainder of the section
we recall the explicit description of the degrees in the twisting spectral se-
quence. So we get in proposition 7.8 the very concrete and explicit recipe to
determine E

∗
(X∗ (s+t), G∗ (s);V ) from E

∗
(X∗ (t), Y ∗;V ). The result holds up

to a filtration, but we shall prove in section 7.3 that the filtration involved
is trivial.

7.2.1. Evaluation on graded vector spaces. Let Es denote the graded vector
space Ext∗Pk

(I(s), I(s)). So by [FS, Thm 4.5] or [T3, Cor 4.7], we know that
Es is a graded vector space concentrated in even degrees 2i for 0 ≤ i < ps,
and one dimensional in these degrees. In particular Es has dimension ps.

Let P∗
k

denote the category of graded strict polynomial functors. By [T3,
Section 2.5], we can define for all s ≥ 0 an evaluation functor evs (compatible
with tensor products)

evs : Pk → P∗
k

F 7→ F (Es ⊗ V (s))
.

By definition the graded strict polynomial functor F (Es ⊗ V (s)) equals

F (kp
s

⊗V (s)) as an ungraded strict polynomial functor. To define the grad-
ing, we let the multiplicative group Gm act on each homogeneous degree
i part of Es with weight i. Thus V 7→ F (kp

s

⊗ V (s)) is a strict polyno-
mial functor with Gm-action, and we define the degree of an element of
F (kp

s

⊗V (s)) as its weight under the Gm-action. In particular, F (Es⊗V
(s))

is concentrated in even degrees.
For our purposes, we evaluate bigraded strict polynomial algebras on

Es ⊗ V (s). So the resulting objects are trigraded. We decide to place the
‘new degree’ (i.e. the degree which pops up from the evaluation on a graded
functor) in second position. We also decide to work with multigraded alge-
bras whose last partial degree coincides with the strict polynomial degree
(e.g. bigraded algebras A∗,∗ such that for all (i, d) Ai,d ∈ Pd,k). Since

V 7→ Es ⊗ V (s) is a homogeneous strict polynomial functor of strict polyno-
mial degree ps, evaluation on Es⊗V (s) multiplies the last degree by ps. We
gather these conventions in the following statement.

Convention 7.4. We denote by PkA
∗,∗ (resp. PkA

∗,∗,∗) denote the cat-
egory of bigraded (resp. trigraded) strict polynomial algebras, whose last
degree coincides with the strict polynomial degree. For all A∗,∗ ∈ PkA

∗,∗,
the tridegree on the strict polynomial algebra A∗,∗(Es ⊗ V (s)) is defined as
follows. For all pair of nonnegative integers (i, d), the evaluation of the strict

polynomial functor Ai,d on Es ⊗ V (s) has tridegrees (i, ∗, psd). This yields a
functor

evs : PkA
∗,∗ → PkA

∗,∗,∗

which commutes with tensor products of algebras (in the naive sense, as in
notation 5.10). Moreover, the objects in the image of evs are concentrated
in even second partial degree.
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In practice, the following concrete rule (together with the compatibil-
ity with tensor products) will be sufficient to describe the trigrading on
A∗,∗(Es ⊗ V (s)) for our cases of interest. Let X∗ be a classical exponen-
tial functor, and consider the bigraded strict polynomial algebra A∗,∗(V ) =

X∗(V (k)[ℓ]), where the elements of V (k)[ℓ] have bidegree (ℓ, pk). Then

A∗,∗(Es ⊗ V (s)) = X∗
(
E(k)

s ⊗ V (s+k)[ℓ]
)

= X∗
(⊕

0≤i<ps V
(s+k)

2ipk
[ℓ]
)

is trigraded by considering the V
(s+k)

2ipk
[ℓ] above are copies of V (s+k) with

tridegree (ℓ, 2ipk, ps+k).

Example 7.5. (1) If A∗,∗(V ) = Λ∗(V (t)[pt − 1]), then

A∗,∗(Es ⊗ V (s)) = Λ∗
(⊕

0≤i<ps V
(s+t)
2ipt [pt − 1]

)
,

where each V
(s+t)
2ipt [pt − 1] equals V (s+t) with tridegree (pt − 1, 2ipt, ps+t).

(2) If A∗,∗(V ) = Γ∗(
⊕

k≥0 V
(k+t)[pk+t − 1]), then

A∗,∗(Es ⊗ V (s)) = Γ∗
(⊕

0≤i<ps
⊕

k≥0 V
(k+t+s)

2ipk+t [pk+t − 1]
)
,

where each V
(c)
b [a] is a copy of V (c) with tridegree (a, b, pc).

(3) If A∗,∗(V ) is the algebra from example 7.3(3), then A∗,∗(Es ⊗ V (s))
equals:

Λ∗


 ⊕

0≤i<ps

⊕

k≥0

V
(k+s+t)

2ipk+t [pk+t − 1]


 ◦

⊗ Γ∗


 ⊕

0≤i<ps

⊕

k≥0

V
(k+s+t+1)

2ipk+t+1 [pk+t+1 − 2]




where each V
(c)
b [a] is a copy of V (c) with tridegree (a, b, pc).

7.2.2. The twisting spectral sequence. Let X∗, Y ∗ be classical exponential
functors. The twisting spectral sequence is a spectral sequence of trigraded
strict polynomial algebras,

Ei,j
2 (X∗ (t), Y ∗pt , s;V ) =⇒ E

i+j(X∗ (s+t), Y ∗pt (s);V )

explicitly described as follows.

(a) The second page equals the evaluation of the bigraded strict polyno-

mial algebra E
∗(X∗ (t), Y ∗;V ) on Es⊗V

(s). The elements of tridegree

(i, ∗, ps+td) arise from the evaluation of V 7→ E
i(Xd (t), Y dpt ;V ) on

Es ⊗ V (s) as specified in convention 7.4.
(b) The spectral sequence converges to the bigraded strict polynomial

algebra E
∗(X∗ (s+t), Y ∗ (s);V ). To be more specific, an element with

tridegree (i, j, d) in the E∞ page corresponds to an element of bide-
gree (i+ j, d) of the abutment.

The precise meaning of the convergence of the twisting spectral sequence

Ei,j
r (X∗ (t), Y ∗, s;V ) is the following.

(b1) The bigraded strict polynomial algebra E
∗(X∗ (s+t), Y ∗ (s);V ) is fil-

tered (and the product preserves the filtration).

(b2) The associated graded object Gr(E∗(X∗ (s+t), Y ∗ (s);V )) is isomor-
phic, as a strict polynomial algebra, to the E∞ page.
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7.2.3. Collapsing. We proved in [T3, Thm 8.11] (with the help of Troesch

complexes) that the twisting spectral sequence Ei,j
r (X∗ (t), Y ∗, s;V ) collapses

at the second page if with X∗ and Y ∗ are classical exponential functors.
So the bigraded algebra Gr(E∗(X∗ (s+t), Y ∗ (s);V )) equals the evaluation

of the bigraded algebra E
∗(X∗ (t), Y ∗;V ) on Es⊗V

(s). We want an analogous
statement for signed algebras. For this, we first check that the operation
of taking signed algebras commutes with the operation of taking graded
objects, and with the operation of evaluation on Es⊗V

(s). The first lemma
is straightforward.

Lemma 7.6. Let A∗,∗ be a filtered bigraded strict polynomial algebra. If
A∗,∗ is (1, ǫ)-commutative, then (GrA)∗,∗ is also (1, ǫ)-commutative and fur-

thermore (GrA)∗,∗ equals (GrA)
∗,∗

.

Lemma 7.7. Let us denote by ‘tot’ the partial totalization functor

tot : PkA
∗,∗,∗ → PkA

∗,∗ , A∗,∗,∗ 7→ (totA)∗,∗

defined by (totA)k,ℓ =
⊕

i+j=kA
i,j,ℓ. If A∗,∗ is (1, ǫ)-commutative, then for

all positive integer s, the bigraded strict polynomial algebra (tot(evsA))∗,∗ is

also (1, ǫ)-commutative and furthermore (tot(evsA))
∗,∗

equals (tot(evsA))∗,∗.

Proof. In characteristic p = 2 there is nothing to prove. So let us assume that
the characteristic p is odd. Let A∗,∗ be a bigraded strict polynomial algebra.
Then for all i, d the elements of Ai,d(Es⊗V

(s)) have degree (i+∗, psd), with
∗ an even integer, in (tot(evsA))∗,∗. Hence, the parity of i, resp. d, is the
same as the parity of i+ ∗, resp. psd. The result follows. �

We are now ready to prove the main result of section 7.2.

Proposition 7.8. Let k be a field of positive characteristic p, let s, t
be nonnegative integers, and let X∗, Y ∗ be classical exponential functors.
By evaluating the bigraded strict polynomial algebras E

∗(X∗ (t), Y ∗;V ) and

E
∗
(X∗ (t), Y ∗;V ) on the graded strict polynomial functor Es ⊗ V (s), we get

trigraded strict polynomial algebras, with tridegree (i, j, d) as in convention
7.4.

There are filtrations on the bigraded strict polynomial algebras
E
∗(X∗ (s+t), Y ∗ (s);V ) and E

∗
(X∗ (s+t), Y ∗ (s);V ) such that we have isomor-

phisms of strict polynomial algebras:

Gr
(
E
∗(X∗ (s+t), Y ∗ (s);V )

)
≃ E

∗(X∗ (t), Y ∗;Es ⊗ V (s)) ,

Gr
(
E
∗
(X∗ (s+t), Y ∗ (s);V )

)
≃ E

∗
(X∗ (t), Y ∗;Es ⊗ V (s)) .

Elements with tridegree (i, j, d) on the right handside correspond through this
isomorphism to elements of bidegree (i+ j, d) on the left handside.

Proof. The case of the unsigned algebras E
∗(X∗ (s+t), Y ∗ (s);V ) follows from

the discussion in the beginning of section 7.2.3. To get the signed case, we
take the associated signed algebra on both sides of the first isomorphism
and we apply lemmas 7.6 and 7.7. �
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Example 7.9. (1) There is, up to a filtration, an isomorphism of bigraded

strict polynomial algebras (where the V (s+t)[2ipt +pt−1] on the right hand-
side are copies of V (s+t) with bidegree ((2i + 1)pt − 1, pt+s)):

E
∗
(Γ∗(t+s),Λ∗(s);V ) ≃ Λ∗

(⊕
0≤i<ps V

(t+s)[(2i + 1)pt − 1]
)
.

Observe that E
∗
(Γ∗(t+s),Λ∗(s);V ) equals the algebra E

∗(Γ∗(t+s),Λ∗(s);V )
since everything is concentrated in even Ext-degree if p is odd. As a par-
ticular case, if V = k then Ext∗Pk

(Γ∗(s+t),Λ∗(s)) is an exterior algebra on

generators gi ∈ Ext
(2i+1)pt−1
Pk

(I(s+t),Λpt (s)), 0 ≤ i < ps. This result coin-

cides with [FFSS, Thm 5.8(3)].
(2) Assume that p = 2. There is, up to a filtration, an isomorphism of

bigraded strict polynomial algebras (where the V (k+t)[(2i+1)pk+t−1] on the

right handside are copies of V (k+t+s) with bidegree ((2i+1)pk+t−1, pk+t+s)):

E
∗
(S∗ (t+s),Λ∗ (s);V ) ≃ Γ∗

(⊕
0≤i<ps

⊕
k≥0 V

(k+t+s)[(2i + 1)pk+t − 1]
)
.

(3) Assume that p is odd. There is, up to a filtration, an isomorphism of
bigraded strict polynomial algebras:

E
∗
(S∗ (t+s),Λ∗ (s);V ) ≃Λ∗

(⊕
0≤i<ps

⊕
k≥0 V

(k+s+t)[(2i + 1)pk+t − 1]
)

◦

⊗ Γ∗
(⊕

0≤i<ps
⊕

k≥0 V
(k+s+t+1)[(2i+ 1)pk+t+1 − 2]

)

where each V (b)[a] is a copy of V (b) with bidegree (a, pb), and where
◦

⊗ refers
to the naive tensor product from notation 5.10.

Our results hold up to a filtration. But the filtration is actually not a
problem: we prove that it must be trivial in section 7.3.

7.3. Solving filtration problems. The purpose of this section is to prove
that for some families of filtered bigraded strict polynomial algebras with
prescribed Gr, the filtration always split. As we will see in section 7.4, all
the bigraded strict polynomial algebras E

∗
(X∗ (s+t), Y ∗ (s);V ) belong to these

families, so proposition 7.8 actually computes E
∗
(X∗ (s+t), Y ∗ (s);V ) (i.e. not

up to a filtration). We begin with the case when k has odd characteristic.

7.3.1. Triviality of filtrations for p odd. Let us begin with general facts about
filtered strict polynomial functors.

Lemma 7.10. Let k be a field of positive characteristic p (p even or odd)
and let F be a filtered strict polynomial functor.

(i) The filtration of F automatically has finite length.
(ii) If Ext1Pk

(GrF,GrF ) = 0, there is an isomorphism F ≃ GrF .

Proof. To prove (i), observe that a filtration of F is the same as a filtration
of the S(kd, d)-module F (kd) where d is the strict polynomial degree of F .
Hence the filtration is finite for dimension reasons. Let us prove (ii). Let
F1 ⊂ F2 ⊂ · · · ⊂ Fn = F be the filtration of F . If Ext1Pk

(GrF,GrF ) equals

zero, then Ext1Pk
(F1, F2/F1) equals zero. Hence the extension F1 →֒ F2 ։

F2/F1 splits, that is F2 ≃ F1 ⊕ F2/F1. In this way we build inductively an
isomorphism F ≃ GrF . �
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We can find huge families of functors G satisfying Ext1Pk
(G,G) = 0 in odd

characteristic.

Lemma 7.11. Let k be a field of odd characteristic. Let m,n be positive
integers. If λ and α are m-tuples of nonnegative integers and µ and β are
n-tuples of nonnegative integers, we denote by Sλ (α) ⊗ Λµ (β) the functor:

(⊗m
i=1 S

λi (αi)
)
⊗

(⊗n
i=1 Λµi (βi)

)
.

If G is a finite sum of such strict polynomial functors (for various m,n),
then Ext1Pk

(G,G) = 0.

Proof. First, by iterated uses of lemma 2.12 (or use [FFSS, Cor 1.8]), the
proof reduces to checking that Ext1(X,Y ) = 0 if X and Y are of the form

Sℓ (r) or Λm (s).
We first check that it is true if the functors are not twisted: Ext1(Sd, Sd) =

Ext1(Λd, Sd) = 0 by injectivity of Sd, Ext1(Λd,Λd) = 0 by remark 4.6, and
Ext1(Sd,Λd) = 0 by theorem 5.11. By proposition 7.1, Ext1 also vanish
if only one of the two functors X,Y is twisted (indeed, the Ext-degree is
shifted by an even integer since p is odd). Finally proposition 7.8 shows
the vanishing of Ext1(X,Y ) in the general case (since the trigraded strict
polynomial algebra E

∗(X∗, Y ∗;Es ⊗ V ) are trivial in odd second partial
degree, as explained in convention 7.4). �

We are now ready to prove our first splitting result.

Proposition 7.12 (Splitting result I). Let k be a field of odd characteristic,
and let A∗,∗ be a (1, ǫ)-commutative filtered bigraded strict polynomial algebra
over k. Assume that F ∗,∗ and G∗,∗ are bigraded additive strict polynomial
functors such that the bigraded strict polynomial algebra (GrA)∗,∗ equals

S∗(F ∗,∗)
◦

⊗ Λ∗(G∗,∗). Then A∗,∗ ≃ (GrA)∗,∗ and A
∗,∗

≃ (GrA)∗,∗ as bigraded
strict polynomial algebras.

Proof. If we have an isomorphism A
∗,∗

≃ (GrA)∗,∗, then the same isomor-
phism is compatible with unsigned products. Thus, it suffices to build an
isomorphism A

∗,∗
≃ (GrA)∗,∗.

Step 1: splitting without products. By lemma 7.11, for all integers
k, ℓ, Ext1Pk

((GrA)k,ℓ, (GrA)k,ℓ) equals zero. So lemma 7.10 yields an isomor-

phism of bigraded strict polynomial functors (GrA)∗,∗ ≃ A
∗,∗

. In particular,

we have a bigraded injection φ∗,∗ : F ∗,∗ ⊕G∗,∗ →֒ A
∗,∗

, compatible with fil-
trations (take the trivial filtration on F ∗,∗⊕G∗,∗), which equals the injection
F ∗,∗ ⊕G∗,∗ →֒ (GrA)∗,∗ after taking graded objects.

Step 2: universal property. We know that A∗,∗ is (1, ǫ)-commutative,

so by lemma 3.3, Tot2+ǫA
∗,∗

is graded commutative. Since Tot2+ǫ(GrA)∗,∗

is the free graded commutative algebra on Tot2+ǫ(F ∗,∗ ⊕G∗,∗), products in

A∗,∗ define a morphism of algebras ψ : Tot2+ǫ(GrA)∗,∗ → Tot2+ǫA
∗,∗

whose
restriction to Tot2+ǫ(F ∗,∗ ⊕G∗,∗) coincides with Tot2+ǫ(φ∗,∗).

Conclusion. Now, φ∗,∗ preserves the bigrading, and so do products in
A

∗,∗
. So ψ actually preserves the bigrading. Thus, ψ : (GrA)∗,∗ → A

∗,∗
is

a morphism of strict polynomial functors, compatible with filtrations (take
the trivial filtration on (GrA)∗,∗), and Grψ is the identity map. So ψ is an
isomorphism. �
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Now we turn to the case of filtered algebras with divided power algebras
as graded objects. To get back to the situation of proposition 7.12, we shall
use the following lemma.

Lemma 7.13. The following statements are equivalent.

(i) A∗,∗ is a filtered bigraded strict polynomial algebra, such that
(GrA)∗,∗ is an exponential functor.

(ii) A∗,∗ is a filtered bigraded strict polynomial exponential functor, such
that (GrA)∗,∗ is an exponential functor.

(iii) A∗,∗ is a filtered bigraded strict polynomial coalgebra, such that
(GrA)∗,∗ is an exponential functor.

Proof. It is trivial that (ii)⇒(i), and (ii)⇒(iii). Let us prove (i)⇒(ii) (the
proof for (iii)⇒(ii) is similar). We know that (GrA)∗,∗ is an exponential
functor. That is, if we consider the A∗,∗(V ) ⊗A∗,∗(W ) as a bigraded object
(with total bidegree), with the tensor product filtration

F i
(
A∗,∗(V ) ⊗A∗,∗(W )

)
=

∑
k+ℓ=i F

kA∗,∗(V ) ⊗ FℓA
∗,∗(W ) ,

then the multiplication induces a bigraded map A∗,∗(V ) ⊗ A∗,∗(W )
mult∗,∗
−−−−→

A∗,∗(V ⊕W ) compatible with the filtrations, and whose associated graded

map Gr(multk,ℓ) is an isomorphism in each bidegree (k, ℓ). Now since the
filtrations have finite length in each bidegree (k, ℓ), by iterated uses of the

five lemma, the map multk,ℓ is also an isomorphism. Whence (ii). �

We are now ready to prove our second splitting result.

Proposition 7.14 (Splitting result II). Let k be a field of odd characteristic,
and let A∗,∗ be a (1, ǫ)-commutative filtered bigraded strict polynomial algebra
over k. Assume that F ∗,∗ and G∗,∗ are bigraded additive strict polynomial
functors such that the bigraded strict polynomial algebra (GrA)∗,∗ equals

Γ∗(F ∗,∗)
◦

⊗ Λ∗(G∗,∗). Then A∗,∗ ≃ (GrA)∗,∗ and A
∗,∗

≃ (GrA)∗,∗ as bigraded
strict polynomial algebras.

Proof. First, by lemma 7.13, A∗,∗ is a (1, ǫ)-commutative filtered bigraded

strict polynomial exponential functor, and (GrA)∗,∗ equals Γ∗(F ∗,∗)
◦

⊗
Λ∗(G∗,∗) as a bigraded exponential functor. So by lemma 2.9, it is suffi-
cient to find a coalgebra isomorphism (GrA)∗,∗ ≃ A∗,∗.

Step 1: splitting without coproducts. For all k, ℓ, the extension
group Ext1((GrA)k,ℓ, (GrA)k,ℓ) equals Ext1((GrA)k,ℓ ♯, (GrA)k,ℓ ♯), which
equals zero by lemma 7.11. So lemma 7.10 yields an isomorphism of bi-
graded strict polynomial functors A

∗,∗
≃ (GrA)∗,∗.

Step 2: duality. Thus, A∗,∗ is a (1, ǫ)-commutative bigraded coalgebra
with trivial filtration. That is, each Ak,ℓ splits as a direct sum of subfunctors
GmAk,ℓ and the filtration · · · ⊂ F iAk,ℓ ⊂ F i−1Ak,ℓ ⊂ . . . of Ak,ℓ is defined
by F iAk,ℓ =

⊕
m≥iG

mAk,ℓ. And moreover the comultiplication respects the

filtration, i.e. for all integer i, it takes
⊕

m≥iG
mAk,ℓ to

⊕

m+n≥i , k1+k2=k , ℓ1+ℓ2=ℓ

GmAk1,ℓ1 ⊗GnAk2,ℓ2 .
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If we apply duality to this situation, we obtain that A∗,∗ ♯ is a filtered bi-
graded strict polynomial algebra (with trivial dual filtration), and

Gr(A
∗,∗ ♯

) = (GrA)∗,∗,♯ = S∗(F ∗,∗)
◦

⊗ Λ∗(G∗,∗)

as bigraded strict polynomial algebras. So by proposition 7.12, we get an iso-
morphism of bigraded strict polynomial algebras (GrA)∗,∗,♯ = Gr(A∗,∗ ♯) ≃
A∗,∗ ♯. Using once again duality, we recover an isomorphism of bigraded
strict polynomial coalgebras (GrA)∗,∗ ≃ A∗,∗ and we are done. �

7.3.2. Triviality of filtrations in characteristic 2. The following proposition
is proved exactly in the same fashion as proposition 7.12 and 7.14. The
proof is actually even simpler, since there are no signs to handle.

Proposition 7.15 (Splitting result III). Let k be a field of characteristic
2, and let A∗,∗ be a commutative filtered bigraded strict polynomial algebra
over k. Assume that F ∗,∗ is a bigraded additive strict polynomial functor,
and

(GrA)∗,∗ = S∗(F∗,∗) or (GrA)∗,∗ = Γ∗(F ∗,∗) .

Then A∗,∗ ≃ (GrA)∗,∗ as bigraded strict polynomial algebras.

Proposition 7.15 is sufficient to prove that the filtrations on the abutment
of the twisting spectral sequence split in characteristic 2, except for the cases
of E

∗
(Λ∗(t+s), S∗(s);V ) and E

∗
(Γ∗(t+s),Λ∗(s);V ). In these cases, the algebras

are, up to a filtration, exterior algebras of the form

Λ∗
(⊕

0≤i<ps V
(s+t)[di]

)

where the V (s+t)[di] are some copies of V (s+t) placed in some degree di (the

computation is made in example 7.9(1) for the case of E
∗
(Γ∗(t+s),Λ∗(s);V ),

the case of E
∗
(Λ∗(t+s), S∗(s);V ) is similar).

So we need a analogue of proposition 7.15 when (GrA)∗,∗ = Λ∗(F ∗,∗). Two
difficulties arise when we want to adapt the proof of proposition 7.12 to this
case. First, there might be non-trivial extensions between certain twisted
exterior powers in characteristic 2 (e.g. the extension Λ2 →֒ Γ2

։ Λ1 (1)).
Second, exterior algebras are universal algebras for strictly anticommutative
algebras (i.e. algebras in which squares are trivial). So the best we can easily
prove is the following statement.

Proposition 7.16 (Splitting result IV). Let k be a field of characteristic
2, and let A∗,∗ be a strictly anticommutative filtered bigraded strict polyno-
mial algebra over k. Let r be an integer, and let F ∗,∗ be a bigraded strict
polynomial functor, such that all F k,ℓ are finite direct sums of copies of
I(r). If the bigraded strict polynomial algebra (GrA)∗,∗ equals Λ∗(F ∗,∗), then
A∗,∗ ≃ (GrA)∗,∗ as bigraded strict polynomial algebras.

Proof. The proof that Ext1Pk
((GrA)k,ℓ, (GrA)k,ℓ) equals zero reduces, by it-

erated uses of lemma 2.12, to checking that for all d ≥ 0, Ext1Pk
(Λd (r),Λd (r)).

But the latter fact follows from proposition 7.8 and the vanishing of
Ext1Pk

(Λd,Λd). So lemma 7.10 yields an isomorphism of bigraded strict
polynomial functors A∗,∗ ≃ (GrA)∗,∗. To get an isomorphism of algebras,
we use the universal property of exterior algebras, exactly as in the second
step of the proof of proposition 7.12. �
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In order to use proposition 7.16, we need to show that E
∗
(Λ∗(t+s), S∗(s);V )

and E
∗
(Γ∗(t+s),Λ∗(s);V ) are strictly anticommutative.

Lemma 7.17. Let k be a field of characteristic 2. For all nonnegative
integers s, t, the bigraded strict polynomial algebras

E
∗
(Λ∗(t+s), S∗(s);V ) and E

∗
(Γ∗(t+s),Λ∗(s);V )

are strictly anticommutative (that is, for all x, x · x = 0 in these algebras).

Proof. Let us prove that E
∗
(Γ∗(t+s),Λ∗(s);V ) is strictly anticommutative.

Since k has characteristic 2, we have an injective morphism of algebras
α : Λ∗ →֒ Γ∗. It induces a morphism of algebras:

β : E
∗
(Γ∗(t+s),Λ∗(s);V ) → E

∗
(Λ∗(t+s),Λ∗(s);V ) .

To prove that E
∗
(Γ∗(t+s),Λ∗(s);V ) is strictly anticommutative, it suffices to

prove that β is injective and that E
∗
(Λ∗(t+s),Λ∗(s);V ) is strictly anticom-

mutative.
Let us prove that β is injective. For all d ≥ 0, we have a commutative

square, where the vertical arrows are injections induced by the canonical
map Λd →֒ ⊗d:

H(Γd,⊗d;V )
H(α,⊗d;V )

// H(Λd,⊗d;V )

H(Γd,Λd;V )
H(α,Λd;V )

//
?�

OO

H(Λd,Λd;V )
?�

OO
.

Now the map H(α,⊗d;V ) is an isomorphism (by lemma 2.10), so H(α,Λd;V )

is injective. Using proposition 7.1, we get an injection H(Γd (t),Λdpt ;V ) →֒

H(Λd (t),Λdpt ;V ). By proposition 7.8, Gr(β) equals the evaluation of this

map on Es ⊗ V (s), hence it is injective. We conclude the injectivity of β.
Now E

∗
(Λ∗(t+s),Λ∗(s);V ) is strictly anticommutative since it is a di-

vided power algebra. Indeed, E
∗
(Λ∗,Λ∗;V ) equals H(Λ∗,Λ∗;V ) and the

latter equals Γ∗(V ). We apply propositions 7.1, 7.8 and 7.15 to conclude

that E
∗
(Γ∗(t+s),Γ∗(s);V ) is isomorphic to Γ∗(

⊕
0≤i<ps V

(t+s)[(2i+2)pt−2]).

Whence the result. The proof for E
∗
(Λ∗(t+s), S∗(s);V ) is similar. �

7.4. Final results. In this section, we state the computations of the bi-
graded strict polynomial algebras E

∗
(X∗ (t+s), Y ∗ (s);V ). Let us recall the

conventions used.

Convention 7.18. In the statements of theorems 7.19-7.23, we adopt the
following conventions.

(1) On the left handside, the algebras E
∗
(X∗ (t+s), Y ∗ (s);V ) denote the

bigraded strict polynomial functors
⊕

h,d≥0 E
h
(Xd (t+s), Y dpt (s);V )

with E
h
(Xd (t+s), Y d (s);V ) = E

h(Xd (t+s), Y d (s);V ) placed in bide-
gree (h, ps+td), and equipped with the signed product (as in conven-
tion 3.6).
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(2) On the right handside, the generators V (d+s+t)[h] denote copies of

V (d+s+t) with bidegree (h, pd+s+t). Thus, V (d+s+t)[h] is a subfunctor
of Eh(Xd (t+s), Y d (s);V ).

Let us order the classical exponential functors from the ‘more projective’
to the ‘more injective’ one Γ∗ < Λ∗ < S∗. In theorems 7.19 and 7.20, we get
the computations for pairs (X∗, Y ∗) with X∗ ≤ Y ∗. Observe that in these

cases E
∗
(X∗ (t+s), Y ∗ (t);V ) is concentrated in even Ext-degree when p is odd,

so this algebra actually equals the unsigned algebra E
∗(X∗ (t+s), Y ∗ (t);V ).

These results were computed first in [FFSS, Thm 5.8] (for V = k) and our
results agree with this theorem. Finally, we mention that theorem 7.19 is
a particular case of [T3, Cor. 5.8] which computes E

∗(C∗ (s+t), S∗ (t);V ) for
all graded strict polynomial coalgebra C∗.

Theorem 7.19 (Pairs (X∗, S∗)). Let k be a field of positive characteristic
p, and let s, t be positive integers. For all classical exponential functor X∗,
there is an isomorphism of bigraded strict polynomial algebras:

E
∗
(X∗ (t+s), S∗ (s);V ) ≃ X∗♯


 ⊕

0≤i<ps

V (t+s)[2ipt]


 .

Theorem 7.20 (Pairs (X∗, Y ∗) with X∗ ≤ Y ∗ < S∗). Let k be a field of
positive characteristic p, and let s, t be positive integers. There are isomor-
phisms of bigraded strict polynomial algebras:

E
∗
(Γ∗ (t+s),Λ∗ (s);V ) ≃ Λ∗


 ⊕

0≤i<ps

V (t+s)[(2i + 1)pt − 1]


 ,

E
∗
(Λ∗ (t+s),Λ∗ (s);V ) ≃ Γ∗


 ⊕

0≤i<ps

V (t+s)[(2i + 1)pt − 1]


 ,

E
∗
(Γ∗ (t+s),Γ∗ (s);V ) ≃ Γ∗


 ⊕

0≤i<ps

V (t+s)[(2i+ 2)pt − 2]


 .

Now we turn to the pairs (X∗, Y ∗), with X∗ > Y ∗. These pairs were not
computed in [FFSS], where the authors suspected that there are ‘no easy
answer’ for such pairs. Our approach somehow explains why Ext-groups
for these pairs are much more difficult to compute. Indeed, for all pairs
(X∗, Y ∗), the extension groups E

∗
(X∗ (t+s), Y ∗ (t);V ) can be deduced from

E
∗
(X∗, Y ∗;V ). The latter are very easy to compute if X∗ ≤ Y ∗ (they reduce

to Hom-groups), but far from being trivial if X∗ > Y ∗ since they amount
to computing the homology of some Eilenberg Mac Lane spaces.

In theorems 7.21 and 7.23, the signed algebras E
∗
(X∗ (t+s), Y ∗ (t);V ) are

actually equal to the unsigned algebras E
∗(X∗ (t+s), Y ∗ (t);V ). But it is not

the case in theorem 7.22. Our results are quite different from the results
computed in [C2], but as already observed in section 5.3, one can find coun-
terexamples to the latter.
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Theorem 7.21 (Pairs (X∗, Y ∗) with X∗ > Y ∗ for p = 2). Let k be a field of
characteristic p = 2, and let s, t be positive integers. There are isomorphisms
of bigraded strict polynomial algebras:

E
∗
(S∗ (t+s),Λ∗ (s);V ) ≃ Γ∗


 ⊕

0≤i<ps , 0≤k

V (k+t+s)[(2i + 1)pk+t − 1]


 ,

E
∗
(Λ∗ (t+s),Γ∗ (s);V ) ≃ Γ∗


 ⊕

0≤i<ps , 0≤k

V (k+t+s)[(2i + 2)pk+t − pk − 1]


 ,

E
∗
(S∗ (t+s),Γ∗ (s);V )

≃ Γ∗


 ⊕

0≤i<ps , 0≤k , 0≤ℓ

V (k+ℓ+t+s)[(2i + 2)pk+ℓ+t − pk − 1]


 .

Recall from notation 5.10 that
◦

⊗ denotes the naive tensor product of

bigraded algebras, that is A∗,∗
◦

⊗ B∗,∗ equals A∗,∗ ⊗ B∗,∗ as a bigraded
object, and the product of a⊗ b and a′ ⊗ b′ equals aa′ ⊗ bb′ with no Koszul
sign.

Theorem 7.22. Let k be a field of odd characteristic p, and let s, t be posi-
tive integers. The bigraded strict polynomial algebra E

∗
(S∗ (t+s),Λ∗ (s);V ) is

isomorphic to the naive tensor product:

Λ∗


 ⊕

0≤i<ps , 0≤k

V (k+t+s)[(2i + 1)pk+t − 1]




◦

⊗ Γ∗


 ⊕

0≤i<ps , 0≤k

V (k+1+t+s)[(2i+ 1)pk+1+t − 2]


 .

The bigraded strict polynomial algebra E
∗
(Λ∗ (t+s),Γ∗ (s);V ) is isomorphic to

the naive tensor product

Λ∗


 ⊕

0≤i<ps , 0≤k

V (k+t+s)[(2i + 2)pk+t − pk − 1]




◦

⊗ Γ∗


 ⊕

0≤i<ps , 0≤k

V (k+1+t+s)[(2i + 2)pk+1+t − pk − 2]


 .

Theorem 7.23. Let k be a field of odd characteristic p, and let s, t be
positive integers. The bigraded strict polynomial algebra E

∗
(S∗ (t+s),Γ∗ (s);V )
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is isomorphic to the naive tensor product:

Γ∗


 ⊕

0≤i<ps , 0≤k

V (k+t+s)[(2i+ 2)pk+t − 2]




◦

⊗ Λ∗


 ⊕

0≤i<ps , 0≤k , 0≤ℓ

V (k+ℓ+1+t+s)[(2i + 2)pk+ℓ+1+t − 2pk − 1]




◦

⊗ Γ∗


 ⊕

0≤i<ps , 0≤k , 0≤ℓ

V (k+ℓ+2+t+s)[(2i + 2)pk+ℓ+2+t − 2pk+1 − 2]




proof of theorems 7.19-7.23. Step 1. We first compute the bigraded strict
polynomial algebra E

∗
(X∗, Y ∗;V ). There are two cases. If X∗ ≤ Y ∗, then

E
∗
(X∗, Y ∗;V ) reduces to H(X∗, Y ∗;V ) and is very easy to compute (see

section 1.3). If X∗ > Y ∗, then E
∗
(X∗, Y ∗;V ) is rather complicated, and

computed in theorems 5.11 and 5.14. In all cases, E
∗
(X∗, Y ∗;V ) is a sym-

metric, an exterior or a divided power algebra (or a tensor product of these)

on some generators V (b)[a] which are copies of the functor V (b) placed in
bidegree (a, pb).

Step 2. By proposition 7.1, E
∗
(X∗ (t), Y ∗;V ) is isomorphic, up to a

regrading, to E
∗
(X∗, Y ∗;V (t)). To be more specific, each generator V (b)[a]

of E
∗
(X∗, Y ∗;V ) corresponds to a generator V (b+t)[a + (pt − 1)pbα(Y ∗)] of

E
∗
(X∗ (t), Y ∗;V ), where α(S∗) = 0, α(Λ∗) = 1 and α(Γ∗) = 2.

Step 3. By proposition 7.8, E
∗
(X∗ (t+s), Y ∗ (s);V ) is, up to a filtration,

an algebra of the same kind as E
∗
(X∗ (t), Y ∗;V ), but with more genera-

tors. To be more specific, each generator V (b+t)[a + (pt − 1)pbα(Y ∗)] of

E
∗
(X∗ (t), Y ∗;V ) gives birth to a family of generators (indexed by an integer

i, with 0 ≤ i < ps):

V (b+t+s)[a+(pt−1)pbα(Y ∗)+2ipb+t] = V (b+t+s)[(2i+α(Y ∗))pb+t−α(Y ∗)pb+a].

Step 4. Finally, all the filtrations involved are trivial by section 7.3.
Whence the results. �

8. Appendix: the basic theory of strict polynomial functors

In this appendix, we recall (without proofs) the main features of strict
polynomial functors. The basic references are [FS, Sections 2 and 3] or
[F, P] for strict polynomial functors over fields, and [SFB, Section 3] for the
variants. One can also consult [T2, Section 2].

8.1. Strict polynomial functors over a field. Let k be a field. We denote
by Vk the category of finite dimensional k-vector spaces. For X,Y ∈ Vk we
denote by HomPol(X,Y ) the polynomials with source X and target Y , that
is HomPol(X,Y ) = S∗(X∨) ⊗ Y , where ‘∨’ stands for k-linear duality.

8.1.1. Definition. We let Pk be the abelian category of strict polynomial
functors over field k.
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The objects of Pk are functors F : Vk → Vk equipped with an extra
‘strict polynomial structure’. Such a strict polynomial structure is a collec-
tion of polynomials FV,W ∈ HomPol(Homk(V,W ),Homk(F (V ), F (W )) for
all V,W ∈ Vk, which satisfy the following conditions.

(i) For all k-linear map f : V → W the k-linear map F (f) : F (V ) →
F (W ) equals FV,W (f).

(ii) For all U, V,W ∈ Vk, the polynomials FV,W (g)◦FU,V (f) and FU,W (g◦
f) are equal.

(iii) The set of integers {deg(FV,W ) , V,W ∈ Vk} is bounded.

The integer supV,W∈Vk
{degFV,W } is the strict polynomial degree (or simply

the degree when no confusion is possible) of F . If all the polynomial FV,W

are homogeneous of degree d, then F is said to be homogeneous of degree d.
The morphisms of Pk are the natural transformations θ : F → G, satis-

fying the following condition.

(iv) For all V,W ∈ Vk the polynomials θW ◦ FV,W (f) and GV,W (f) ◦ θW
are equal (both are polynomials in the variable f ∈ Homk(V,W ),
with values in Homk(F (V ), G(W ))).

8.1.2. Examples. The tensor powers ⊗d : V 7→ V ⊗d are homogeneous strict
polynomial functors of degree d. The strict polynomial structure can be
explicitly described as follows. Let (ei) be a basis of Homk(V,W ) and
let (e∨i ) be the dual basis. The polynomial ⊗d

V,W ∈ Sd(Homk(V,W )∨) ⊗

Homk(V,W )⊗d equals:

∑

i1≤···≤id

e∨i1 · · · e
∨
id
⊗


 ∑

σ∈S(i1,...,id)

eiσ(1)
⊗ · · · ⊗ eiσ(d)


 ,

where S(i1, . . . , id) is the subset of the symmetric group Sd formed by the
permutations σ satisfying σ(k) < σ(ℓ) for all 1 ≤ k < ℓ ≤ d such that ik = iℓ
(that is, the parenthesis contains one copy of each elementary tensor which
can be obtained from ei1 ⊗ · · · ⊗ eid by changing the order of the eik). An
elementary check shows that this definition of ⊗d

V,W does not depend on the

choice of the basis (ei), and that conditions (i), (ii) and (iii) are satisfied.
One can also compute that HomPk

(⊗d,⊗d) is the free k-module with basis
the natural transformations induced by the permutations σ ∈ Sd

V ⊗d → V ⊗d

⊗d
i=1vi 7→ ⊗d

i=1vσ−1(i)
.

The symmetric powers Sd, the exterior powers Λd or the divided powers
Γd(V ) = (V ⊗d)Sd = (Sd(V ∨))∨ are also homogeneous strict polynomial
functors of degree d. And if X = S,Λ or Γ, the multiplications Xk ⊗Xℓ →
Xk+ℓ and the comultiplications Xk+ℓ → Xk ⊗Xℓ are morphisms in Pk. If
k has prime characteristic p > 0, another example is the Frobenius twist
I(r) which sends V to the subspace of Spr(V ) generated by the elements of
the form vp

r

. Also, tensor products of strict polynomial functors F ⊗ G :
V 7→ F (V ) ⊗G(V ), and compositions F ◦G : V 7→ F (G(V )) are once again
strict polynomial functors. (the degree is additive with respect to tensor
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products and multiplicative with respect to compositions of homogeneous
strict polynomial functors).

8.1.3. Structure of the category Pk. The main structural results about Pk

are the following:

(1) The abelian category Pk has enough projectives; a projective gener-
ator is the family of tensor products of divided powers. It also has
enough injectives ; an injective cogenerator is the family of tensor
products of symmetric powers. In particular Pk is a nice framework
for homological algebra and computing extensions groups.

(2) The Kuhn dual F ♯ : V 7→ F (V ∨)∨ of a strict polynomial func-
tor (‘∨’ denotes k-linear duality) is a strict polynomial functor of
the same degree, and it induces an isomorphism, natural in F,G:
Ext∗Pk

(F,G) ≃ Ext∗Pk
(G♯, F ♯). We have Λd ♯ = Λd, I(r) ♯ = I(r) and

Sd ♯ = Γd.
(3) The abelian category Pk splits as the direct sum of its full abelian

subcategories Pk,d of homogeneous strict polynomial functors of de-
gree d. In practice, it means that:

• Each functor F splits as a finite direct sum of homogeneous
functors.

• If F,G are homogeneous functors, Ext∗Pk
(F,G) = 0 if F and G

have different degrees, and Ext∗Pk
(F,G) = Ext∗Pk,d

(F,G) if F,G

are homogeneous of degree d.
(4) For d ≥ 1, let ΓdVk be the category with objects the finite di-

mensional k-vector spaces and with morphism V → W the Sd-
equivariant k-linear maps V ⊗d → W⊗d:

HomΓdVk
(V,W ) = HomSd

(V ⊗d,W⊗d) = Γd(Homk(V,W )) .

Then the category Pk,d is isomorphic to the category of k-linear

functors ΓdVk → Vk. So, the Yoneda lemma yields an isomorphism

HomPk,d
(Γd(Homk(V,−)), F (−)) ≃ F (V ) .

(5) Evaluating a strict polynomial functor F on V ∈ Vk yields a functor
from Pk,d to the category of finite dimensional modules over the

Schur algebra S(V, d) = EndΓdVk
(V ) = EndSd

(V ⊗d). One proves
that if dimV ≥ d, the evaluation functor induces an equivalence of
categories Pk,d ≃ S(V, d)-mod. Now S(V, d)-modules are rational
GL(V )-modules, so one has an evaluation morphism:

Ext∗Pk
(F,G) → Ext∗rat−GL(V )(F (V ), G(V )) ,

which is an isomorphism if dimV ≥ degF ,degG.

8.1.4. Strict polynomial vs ordinary functors. Let Fct(Vk,Vk) denote the
category of endofunctors of Vk. Then a strict polynomial functor is an
element of Fct(Vk,Vk) together with a strict polynomial structure. Thus,
forgetting the strict polynomial structure yields a forgetful functor

U : Pk → Fct(Vk,Vk) .

Many subtle properties of the forgetful functor are proved in [FFSS, Section
2 and 3], we only recall very basic properties here. First, U is faithful (indeed,
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a morphism of strict polynomial functors is a natural transformation of
functors satisfying an extra condition). Moreover, U reflects isomorphisms,
that is f : F → G is an isomorphism if and only if Uf is an isomorphism.
Indeed we can assume that F,G are homogeneous of degree d. If Uf is an
isomorphism, fV : F (V ) → G(V ), for dimV ≥ d is a k-linear isomorphism.
Thus, fV is an isomorphism of S(V, d)-modules, which is equivalent to say
that f : F → G is an isomorphism.

Assume that k is an infinite field. So, evaluation induces an injective map
HomPol(X,Y ) →֒ Map(X,Y ). Thus, for a given functor F ∈ Fct(Vk,Vk),
there can be at most one collection of polynomials FV,W satisfying conditions
(i) and (iii) from the definition (and condition (ii) is automatically satisfied).
Moreover, all natural transformations between strict polynomial functors
automatically satisfy condition (iv). Thus, U is an embedding.

If k is a finite field, the situation is quite different. First U is not full. For
example, if k = Fp, then HomPk

(S1, Sp) = 0 since these two functors are
homogeneous of different degrees. But the natural transformation v 7→ vp

is a non trivial element of HomFct(Vk,Vk)(S
1, Sp). Also, U is not injective on

objects. For example, if k = Fp, the Frobenius twist functors I(r) and I(s),

for r 6= s are not ismorphic, but UI(r) and UI(s) both equal the identity
functor.

8.2. Generalizations.

8.2.1. Strict polynomial functors over a commutative ring k. Let k be a
commutative ring, and let Vk be the category of finitely generated k-modules.
Then the definition of the category Pk can be transposed without change
over k. (i.e. strict polynomial functors are functors F : Vk → Vk, endowed
with a strict polynomial structure, satisfying conditions (i), (ii) and (iii).

Then all that is written in section 8.1 carries word for word in this more
general setting, up to the following minor change. The categories Pk and Pk,d

are no longer abelian: there are not enough kernels or cokernels in general.

For example, if k = Z, the cokernel of the multiplication by 2: F
×2
−−→ F does

not take projective values, hence is not an object of Pk. However, if we define
admissible short exact sequences to be the F → G → H which are short
exact sequences after evaluation on all V ∈ Vk, then Pk and Pk,d become
exact categories in the sense of Quillen, with enough admissible projectives
(divided powers) and injectives (symmetric powers). Hence, Pk is still a
good framework for homological algebra, Ext-computations and so on, see
[Bu] for a recent detailed account of exact categories (classical homological
algebra works without change in this setting if one replaces the concept of
short exact sequences by the concept of admissible ones).

Such strict polynomial functors were used in [SFB], and the reader can
find more details in this article.

8.2.2. Strict polynomial functors with values in arbitrary k-modules. Let
k be a commutative ring. One can also define strict polynomial func-
tors with values in arbitrary k-modules. To be more specific, a strict
polynomial functor with values in arbitrary k-modules is a functor:
F : Vk → k-Mod, equipped with a collection of polynomials FV,W ∈
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HomPol(Homk(V,W ),Homk(F (V ), F (W ))) satisfying the same conditions as
in the field case.

Let P̃k denote the category of strict polynomial functors with values in
arbitrary k-modules. Then it is easy to prove (the proofs are the same as in
the field case) that:

• P̃k is an abelian category, which splits as a direct sum of its full

abelian subcategories P̃k,d of homogeneous functors of degree d, ex-
actly as in the field case.

• The abelian categories P̃k,d are equivalent to the categories of k-

linear functors ΓdVk → k-Mod.
• P̃k has enough projectives (a projective generator is the tensor prod-

ucts of divided powers), so P̃k is a nice framework for classical homo-
logical algebra. (But we warn the reader that unlike in the category
Pk, symmetric powers are no longer injective, that Kuhn duality is
no longer a self anti-equivalence of categories, and that tensor prod-
ucts are no longer exact).

Finally, Pk equals the full subcategory of P̃k whose objects are functors
taking values in finitely generated projective modules. Moreover the inclu-

sion Pk →֒ P̃k is exact and preserves projectives. So for all F,G ∈ Pk the
inclusion induces an isomorphism:

Ext∗Pk
(F,G) ≃ Ext∗

P̃k

(F,G) .

Thus, one can think of the extension groups between F and G, as being

computed in the exact category Pk, or in the abelian category P̃k (since the
two categories have slightly different properties, the two viewpoints might
be interesting).
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Pierre Curie, Paris, 1955 (French). Available online on www.numdam.org

[C1] M. Cha lupnik, Extensions of strict polynomial functors. Ann. Sci. École Norm. Sup.
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