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Abstract

For a representative class of subgroups of Fr , the image of their stabilizer subgroup under

the action of Aut(Fr ) in GLr (Z) is calculated.

1 Preface

Let Fr be the free group of rank r . Aut(Fr ) naturally acts on the set of subgroups of fixed index

n and gives rise to the stabilizer StabAut(Fr )(U ) of such a subgroup U . Here, we study its image

in GLr (Z) under the map B : Aut(Fr ) → GLr (Z) induced by the abelianization of Fr and show

that for a “general subgroup” U and r large enough, the image B (GLr (Z)) is a congruence

subgroup of level two.

To this end we consider a certain class of subgroups of Fr , which we dub loop subgroups,

due to the appearance of their coset graphs (cf. Definition 1) with regard to a suitable set of

generators of Fr , and obtain as the main result the following theorem:

Theorem 1 For a loop subgroup U ≤ Fr , r ≥ 3, with at most r −2 looplets, we have

B (StabAut(Fr )(U )) = {M ∈ GLr (Z) | v ·M ≡ v (mod 2)}

for a particular row vector v ∈Zr .

Jan-Christoph Schlage-Puchta pointed out to us that for large r in relation to the index n =

[Fr : U ], there are only two large Aut(Fr )-orbits, both of which consist of loop subgroups. This

follows from a result by John D. Dixon [Dix69, Theorem 1], whereby the probability that two

random permutations generate Sn or An is high, and Robert Gilman [Gil77, Proof of Theo-

rem 3], whereby all generating G-vectors of length r lie in the same orbit under the action

of Aut(Fr ), if r is large enough in relation to |G|. Therefore Theorem 1 holds for the “general”

subgroups.
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This articles was motivated by the study of imprimitive translation surfaces, especially origamis

[Sch04], where the map B : Aut(Fr ) → GLr (Z) is used to obtain Veech groups of translation

surfaces. An origami defines a special type of translation surface, also called square-tiled sur-

face, coming from a covering of the torus. Each origami can be associated with a subgroup

U ≤ F2 of finite index. The image of the stabilizer group of U in Aut(F2) under B intersected

with SL2(Z) gives the Veech group of the origami. In the case of origamis, an interesting ques-

tion is which subgroups of SL2(Z) occur as Veech groups. There is a positive answer for many

congruence subgroups (see [Sch05]), and for all subgroups of the principal congruence group

of level 2 that contain −I (see [EM09, Theorem 1.2]). Further results about Veech groups of

coverings of n-gons are found in [Fin10]. The construction of a Veech group can be general-

ized to subgroups of Fr for a general r ∈N instead of origamis. For rank 3 or higher, there is

a reason to hope that these groups will be easier to understand, as every normal subgroup of

SLr (Z) besides {I } and {I ,−I } is a congruence group and can be thought of as a subgroup of

SLr (Z/lZ), where l is the congruence level of the subgroup, see e.g. [Sur03]. The loop sub-

groups studied here can be considered as generalizations of L-origamis, which are studied in

detail in [HL05]. We find that for loop subgroups, their analogs to Veech groups show very

different behavior.

This paper was written under the guidance of Gabriela Schmithüsen, who was generous with

time, advice, regular proof-reading, ideas and inspiration. Fruitful discussions on the topic

arouse with Myriam Finster. The work was partially supported by the Landesstiftung Baden-

Württemberg within the project “With origamis to Teichmüller curves in moduli space”.

2 Loop subgroups

Definition 1 A subgroup U ≤ Fr is called a s1/. . . /sr loop subgroup, si ∈N, if there is a a basis

{g1, . . . , gr } of Fr such that

• the action of gi on the left cosets of U is a permutation consisting of one cycle of length

si and no other non-trivial cycles,

• each such non-trivial cycle includes the coset U and

• these non-trivial cycles are otherwise distinct.

The sequence of nodes U , g 1
i

U , . . . , g
si−1
i

U ,U is called a loop, where si is the the length of the

loop. A loop is called odd (resp. even) if its length is odd (resp. even). A loop of length 1 is

called looplet1.

1The German language allows to build diminutive forms of almost all nouns by appending the suffix -chen. I

take the liberty to do the same in English, as it makes the text easier and more pleasant to read than if I had

named them small loops.
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This definition is invariant under the natural action of Aut(Fr ) on subgroups of Fr . In the

remainder of this article, {g1, . . . , gr } is a basis of Fr as in the above definition. If we fix a set

of generators, the lengths of the loops s1/. . ./sr fully determine the subgroup and allow us to

speak of the loop subgroup.

The reason for our nomenclature becomes evident if we draw the coset graph of a loop sub-

group:

Example 2 The coset graph of the 3/3/1 loop subgroup of F3, a subgroup with only odd loops

and one looplet, is shown in Figure 1.
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Figure 1: The left coset graph of the 3/3/1 loop subgroup of F3.

The following set of words in Fr is a basis of the s1/. . . /sr loop subgroup of Fr with respect to

the basis {g1, . . . , gr }

{g
si

i
, i = 1, . . . ,r }∪ {g−k

i g j g k
i , i , j = 1, . . . ,r, i 6= j , k = 1, . . . , si −1}.

Before we start investigating loop subgroups, some preparational definitions and calcula-

tions are due.

3 Permutations of cosets

For a subgroup U of Fr we formalize the coset action of Fr by the homomorphism π : Fr →

Sym(N ), π(w )(vU ) := w vU , where N denotes the set of left cosets of U and Sym(N ) is the

symmetric group thereon.
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Remark 3 Recall the following useful properties of π for w ∈ Fr :

1. π(w )(U ) =U ⇐⇒ w ∈U .

2. π(w )= Id ⇐⇒ w ∈ NT(U ) :=
⋂

v∈Fr
v−1U v .

3. For γ ∈ StabAut(Fr )(U ), π(γ(w )) is conjugate to π(w ).

Part 3 of the previous lemma can be formulated more precisely as π(γ(w )) = π(γ) ◦π(w ) ◦

π(γ)−1, where the permutation π(γ) is defined by abuse of notation as π(γ)(vU ) := γ(v)U for

v ∈ Fr . This is well defined, as stabilizers map left cosets to left cosets.

We will repeatedly construct automorphisms of the following form:

Remark 4 A map γ : Fr → Fr defined by

γ(g j ) =

{

w gi , if j = i

g j , if j 6= i

is an automorphism if the generator gi does not occur in w , i.e.

w ∈ 〈g1, . . . , gi−1, gi+1, . . . , gr 〉.

It stabilizes the subgroup U if w ∈ NT(U ), as then π(w ) = Id holds, implying π(γ(v)) = π(v)

and thus γ(v)∈U ⇐⇒ v ∈U .

The following fact about permutations will be very useful for our later calculations:

Lemma 5 Let σ,ω ∈ Sn be permutations of the form σ = (1,2, . . . ,m) and ω = (1,m +1, . . . ,n)

with 1 < m < n. Then all even permutations are in the commutator subgroup of the group

generated by σ and ω, i.e. they can be written as a product of commutations of σ and ω:

An ≤ [〈σ,ω〉,〈σ,ω〉]

where An is the alternating group of degree n and [G ,G] denotes the commutator subgroup of

G.

PROOF The alternating group An , n ≥ 3, is generated by all three-cycles in Sn . We first gener-

ate all three-cycles which do not fix the 1. These are cycles of the form (1, i , j ). There are four

cases:

• 1 < j ≤ m and m < i ≤ n. In this case, we take the inverse and enter the next case.

• 1 < i ≤ m and m < j ≤ n. We write the cycle using commutators of ω and σ:

(1, i , j ) =σ
i−1

◦ω
j−m

◦σ
−(i−1)

◦ω
−( j−m)
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• 1 < i ≤ m and 1 < j ≤m. We can reduce this case to the previous by writing:

(1, i , j ) = (1, j ,m +1)−1
◦ (1, i ,m +1)

• m < i ≤n and m < j ≤ n. This case works analogously to the previous case:

(1, i , j ) = (1,2, j )◦ (1,2, i )−1

Observe that ω◦σ = (1,2, . . . ,n). If we now have a general three-cycle (k , i , j ), it is conjugate

to a three-cycle that moves the 1:

(k , i , j )= (ω◦σ)k−1
◦ (1, i − (k −1), j − (k −1))◦ (ω◦σ)−(k−1)

So we can write any even permutation in Sn as a product of ω’s and σ’s, such that for either of

the two generators, the sum of its occurrences, counting negative powers negatively, is zero.■

4 The linear group and the principal congruence subgroup

The elementary matrix Xi j ∈ GLr (Z), i 6= j is the matrix with ones on the diagonal, one ad-

ditional one in the i -th row and j -th column and zeroes everywhere else. The elementary

matrices generate SLr (Z). Another generating set is

{Xi k ,k 6= i }∪ {X j i , j 6= i }

for a fixed i . This follows from the relations [X j i , Xi k ] = X j k for j 6= k [Sur03, Theorem 4-

3.2].

The matrix Ti := Diag(1, . . . ,1,−1,1, . . . ,1) is defined as the identity matrix with the exception

of one −1 on the diagonal in the i -th row. Together with T1 either of the generating sets above

generate the whole group GLr (Z).

Remark 6 For the principal congruence subgroup of level two

Γ2 = {A ∈ GLr (Z) | A ≡ Id (mod 2)},

a similar generating set

{X 2
i j , i 6= j }∪ {Ti , i = 1, . . . ,r }

consisting of squares of elementary matrices and diagonal matrices which are the identity

matrix with the exception of one −1 on the diagonal can be given. This can be proven by

transforming a matrix M ∈ Γ2 to the identity matrix using the row- and column-operations

described by the alleged generators.
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Corollary 7 The set

{Xi k ,k 6= i }∪ {X 2
j i , j 6= i }∪ {T j , j = 1, . . . ,r }

for some fixed i ∈ {1, . . . ,r } generates a superset of Γ2.

This follows from the relation X 2
j k

= [X 2
j i

, Xi k ] for distinct i , j ,k .

5 Stabilizer subgroups in GLr (Z/2Z)

When we inspect the loop subgroup with even loops, we will come across the group of integral

matrices with odd column sums. It contains the principal congruence subgroup of level 2,

hence it is completely determined by its image in GLr (Z/2Z):

S(1) := {M ∈ GLr (Z/2Z) |1 ·M =1}

where 1 = (1, . . . ,1) ∈ (Z/2Z)r is the row vector, all of whose entries are one. More generally,

we will be interested in the stabilizer subgroup of a row vector v = (v1, . . . , vr ) ∈ (Z/2Z)r under

the action of right multiplication:

S(v) := {M ∈ GLr (Z/2Z) | v ·M = v}

Lemma 8 The group S(1) is generated by “double elementary matrices” of the form Xi k X j k ,

i , j ,k ∈ {1, . . . ,r } pairwise distinct, having ones on the diagonal and in two additional positions

in the same column, and zeros everywhere else.

More general, S(v) is generated by the elementary matrices Xi j for i 6= j and vi = 0 and the

double elementary matrices Xi k X j k for vi = v j = 1, i , j ,k ∈ {1, . . . ,r } pairwise distinct.

Note that the case v = 0 is covered by the lemma, as S(0) = GLr (Z/2Z) is generated by all the

elementary matrices Xi j , i 6= j . If the vector v is a unit vector, i.e. precisely one entry is 1, the

generating set does indeed not contain any double elementary matrices.

PROOF Direct computation shows that the alleged generators are in S(v).

Recall that the multiplication from the left of an elementary matrix Xi j has the effect of

adding the j -th row on the i -th row and the multiplication from the left of a double elemen-

tary matrix Xi k X j k has the effect of adding the k-th row simultaneously on the i -th and the

j -th row.

We will now transform a matrix in S(v) into the identity matrix by multiplying the alleged

generators from the left. To do so, we suppose that the first i −1 columns are already that of

the identity matrix and treat column i ∈ {1, . . . ,r } as follows:
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1. Ensure that there is a 1 on the diagonal. If there is none, there still must be at least one

1 in the column, otherwise the matrix would not be regular. There even must be a 1

in a row j with j > i , as otherwise the current column would be a linear combination

of the columns to the left of it, which are, due to our transformation, the unit vectors

e1, . . . ,ei−1.

Now add this row j on the i -th row (multiplication with Xi j ). If vi = 1, then, to be

allowed to do that, also add the j -th row on any other row k with vk = 1 (multiplication

with Xi j Xk j ). This step does not alter the previous columns, as the row j has zeros

there.

If there is no such other row k , that is, if there are exactly two ones in the vector v ,

namely vi = v j = 1, and if the current column has only one 1 in the j -th row, some

additional shuffling is necessary. Let k 6= i , j be any other row. This implies vk = 0. The

matrix

(Xi k X j k ·Xki ·Xk j )2

is actually the permutation matrix that swaps the i -th and j -th row, and is here written

in terms of the given generators. Multiplying this matrix from the left, we move the 1 to

the right spot, while again not altering the previous columns.

2. Eliminate all ones that are not on the diagonal. Ones in rows j with v j = 0 are elimi-

nated directly with X j i . Ones in rows j and k with v j = vk = 1 can only be eliminated

pairwise with X j i Xki . But in any case there is an even number of them: Either vi = 0.

Then we know from the equation v ·M = v that there is an even number of ones to be

eliminated. Or vi = 1, then there is an odd number of ones in this column. vi = 1 means

that we count the one on the diagonal, which we want to retain, leaving us with an even

number of ones to eliminate.

So any matrix in S(v) can be transformed into the identity matrix using the given generators,

thus they indeed generate all of S(v). ■

6 Preimages

After these calculations we will start investigating B (StabAut(Fr )(U )) for a loop subgroup U .

Recall that the map B is the map naturally induced by the abelianization Fr →Z
r , which can

be given explicitly with regard to a basis {g1, . . . , gr } of Fr :

Definition 9 The map B : Aut(Fr ) → GLr (Z) is defined by

γ 7→
(

#g i
γ(g j )

)

i , j=1...r ,

where #g i
: Fr →Z is the map that counts the i -th generator, sending gi 7→ 1 and g j 7→ 0 for

j 6= i .
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To find a lower bound of the group B (StabAut(Fr )(U )), the following three lemmata identify

sufficient conditions for elementary matrices, squared elementary matrices or double ele-

mentary matrices to be in this group.

Lemma 10 Let U ≤ Fr , r ≥ 3, be the s1/. . ./sr -loop subgroup, i , j ∈ {1, . . . ,r } with i 6= j and si

odd. If si = 1 or there exists k ∈ {1, . . . ,r }, k 6= i , j , with sk > 1, then

Xi j ∈ B (StabAut(Fr )(U )).

Example 11 For the 3/3/1 loop subgroup seen in Example 2, the following preimages to the

elementary matrices X31, X32, X13 and X23 are constructed:

γ31(x, y, z)= (z ·x, y, z)

γ32(x, y, z)= (x, z · y, z)

γ13(x, y, z)= (x, y, y x y−1x y x−2y−1
·x · z)

γ23(x, y, z)= (x, y, x y x−1y x y−2x−1

︸ ︷︷ ︸

∈[〈x,y〉,〈x,y〉]

·y · z).

PROOF (OF LEMMA 10) We construct a preimage of the elementary matrix Xi j as a map of

the form

γi j (gk ) =

{

w · gi · g j , k = j

gk , k 6= j

with a suitable w ∈ Fr . By Remark 4, this is an automorphism that stabilizes U if the generator

g j does not occur in w and π(w · gi ) = Id.

To have B (γi j ) = Xi j , the number of occurrences of all generators in w must be zero each,

that is w ∈ [Fr ,Fr ]. If the i -th loop actually is a looplet, we have π(gi ) = Id and we can choose

w = Id.

If si > 1, this is where our preliminary calculations about permutations kick in. gk is another

generator whose loop is not a looplet, i.e. sk > 1. If we only consider the set of cosets of U that

are on the loops i or k ,

Ni k := {U , g 1
i U , . . . , g

si−1
i

U , g 1
kU , . . . , g

sk−1
k

U },

we can interpret the permutations π(gi ) and π(gk ) as elements of Sym(Ni k ). We are now in

the situation of Lemma 5 with σ = π(gi ) and ω = π(gk ), hence ANi k
≤ π([〈gi , gk〉,〈gi , gk〉]).

Since π(gi ) is a cycle of odd length si , it is itself an even permutation, thus π(gi ) ∈ ANi k
. This

proves the existence of a word w ∈ [〈gi , gk〉,〈gi , gk〉] with π(w )=π(gi )−1, that is π(w · gi ) = Id.

With this word, the automorphism γi j is indeed in StabAut(Fr )(U ) and a preimage of Xi j . ■

Lemma 12 Let U ≤ Fr , r ≥ 3, be an s1/. . . /sr -loop subgroup and i , j ,∈ {1, . . . ,r } with i 6= j . If

si = 1 or there exists k ∈ {1, . . . ,r }, k 6= i , j , with sk > 1, then

X 2
i j ∈ B (StabAut(Fr )(U )).

8



PROOF Just as in the proof for Lemma 10, we will find preimages of squares of elementary

matrices X 2
i j

as maps γ(2)
i j

of the form

γ
(2)
i j

(gk ) =

{

w · g 2
i
· g j , k = j

gk , k 6= j .

Note that whileπ(gi ) may not be an even permutation,π(g 2
i

)=π(gi )2 ∈ AN certainly is. There-

fore Lemma 5 provides us with a suitable w ∈ Fr so that γ(2)
i j

∈ StabAut(Fr )(U ) by Remark 4. ■

Lemma 13 Let U ≤ Fr , r ≥ 3, be an s1/. . ./sr -loop subgroup and i , j ,k ∈ {1, . . . ,r } distinct with

si and s j even. Then

Xi k X j k ∈ B (StabAut(Fr )(U )).

PROOF We again vary the construction of the previous two lemmata. Here we find automor-

phisms γi j k of the form

γi j k (gl ) =

{

w · gi g j · gk , l = k

gl , l 6= k .

such that γi j k is a preimage of Xi k X j k . We know that the cycles π(gi ) and π(g j ) are both of

even length, thus odd permutations. Therefore, their productπ(gi g j ) ∈ AN and with Lemma 5

we can find a suitable w ∈ [〈gi , g j 〉,〈gi , g j 〉], such that γi j k ∈ StabAut(Fr )(U ) by Remark 4. ■

7 The lower bound

We will first show Γ2 ≤ B (StabAut(Fr )(U )), i.e. StabAut(Fr )(U ) is a congruence subgroup of level

2, and then consider the problem in GLr (Z/2Z).

Lemma 14 For a loop subgroup U ≤ Fr , r ≥ 3, with at most r −2 looplets, we have

Γ2 ≤ B (StabAut(Fr )(U )).

PROOF We will find preimages in StabAut(Fr )(U ) to the elements of a generating set of Γ2. As

preimages for the matrices {T j , j = 1, . . . ,r } we choose the automorphisms τ j , which invert

the j -th generator g j and do not modify the other generators.

If we have at most r −3 looplets, we find preimages to all squares of elementary matrices by

Lemma 12. By Remark 6, these generate Γ2.

If we have r −2 looplets, we fix a loop i with si = 1 and find preimages for each of

{Xi k ,k 6= i }∪ {X 2
j i , j 6= i },

invoking Lemma 10 for the elementary matrices and Lemma 12 for the squares of elementary

matrices. By Corollary 7 these generate Γ2. ■
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Recall that S(v), introduced in section 5, is the set of matrices stabilizing the row vector v

under multiplication from right.

Proposition 15 For a loop subgroup U ≤ Fr , r ≥ 3, with at most r −2 looplets, we have

S(v)≤ B (StabAut(Fr )(U ))

where

vi =

{

0, if si odd

1, if si even.

PROOF By Lemma 8, S(v) is generated by the elementary matrices Xi j for i 6= j and vi = 0

and the double elementary matrices Xi k X j k for vi = v j = 1.

The double elementary matrices Xi k X j k are in B (StabAut(Fr )(U )) for vi = v j = 1, as shown in

Lemma 13.

Let i , j ∈ {1, . . . ,r }, i 6= j and vi = 0. We need to show that Xi j is in B (StabAut(Fr )(U )). If

si = 1 or there is k ∈ {1, . . . ,r } with k 6= i , j and sk > 1, this follows from Lemma 10. If that

is not the case, we are in the situation of r − 2 looplets with si > 1, s j > 1 and sk = 1 for

k 6= i , j . Invoking Lemma 10 for Xi k and for Xk j , and using [Xi k , Xk j ] = Xi j , we obtain that

Xi j ∈ B (StabAut(Fr )(U )). ■

8 The upper bound

To fully understand the situation, we yet have to find out whether the lower bound S(v) from

Proposition 15 is already the full group B (StabAut(Fr )(U )). It turns out that this is the case, and

this group is the upper bound of the image of the stabilizer subgroup even for an arbitrary

finite index subgroup U of Fr :

Proposition 16 Let U ≤ Fr be a subgroup of finite index and let

vi :=

{

0, if π(gi ) is an even permutation

1, if π(gi ) is an odd permutation.

Then,

B (StabAut(Fr )(U )) ≤ S(v).

PROOF Let γ ∈ StabAut(Fr )(U ). For a generator gi , i ∈ {1, . . . ,r }, the permutation π(γ(gi )) has

the same parity as π(gi ), by Remark 3 (3). Therefore, the number of generators in the word

γ(gi ) whose associated permutation is odd equals vi modulo 2:

r∑

j=1

#g j
γ(gi ) ·v j ≡ vi (mod 2)

This equation can be written as v ·B (γ)= v , hence B (γ)∈ S(v). ■
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This is an interesting result, as the subgroups S(v) are maximal, but far from the only maximal

groups.

Theorem 1 For a loop subgroup U ≤ Fr , r ≥ 3, with at most r −2 looplets, B (StabAut(Fr )(U )) is

a congruence subgroup of level 2 and its image in GLr (Z/2Z) is S(v) where

vi =

{

0, if si odd

1, if si even.

PROOF Proposition 15 applies because Γ2 ≤ B (StabAut(Fr )(U )) by Lemma 14 and the permu-

tation π(gi ) is odd if and only if si is even. Proposition 16 provides the inclusion in the other

direction. ■

9 The excluded case

In the previous sections, we have always excluded loop subgroups with exactly r −1 looplets.

These subgroups have some special properties that make them break rank and therefore, they

are handled separately here.

Let U be a loop subgroup with exactly r −1 looplets, and, without loss of generality, assume

that s1 6= 1. The subgroup can now be written as

U = {w ∈ Fr | #g1
w ≡ 0 (mod s1)}.

Let A : Fr →Z
r be the surjective abelianization map defined by w 7→ (#g i

w )i=1,...,r . Then U =

A−1(U ′) with U ′ := {v ∈Zr | v1 ≡ 0 mod s1} ≤Z
r . This allows us to calculate B (StabAut(Fr )(U ))

using the following, more general observation:

Remark 17 Let ϕ : G →G ′ be a surjective group homomorphism with its kernel characteristic

in G . Let H ≤G and H ′ ≤G ′ be subgroups such that H =ϕ−1(H ′). Let ψ : Aut(G) → Aut(G ′) be

the map induced by ϕ. Then

ψ(StabAut(G)(H ))= StabAut(G ′)(H ′)∩ψ(Aut(G)).

PROOF For γ ∈ Aut(G), y ∈ G ′ the map ψ : Aut(G) → Aut(G ′) is defined by ψ(γ)(y) := ϕ(γ(x))

for an x ∈ϕ−1(y). This is well-defined because the kernel of ϕ is characteristic. Thus

ψ(StabAut(G)(H )) =ψ({γ ∈ Aut(G) | γ(H )= H })

= {ψ(γ) | γ ∈ Aut(G), ∀x ∈ H : γ(x) ∈ H }

= {ψ(γ) | γ ∈ Aut(G), ∀x ∈ H : ϕ(γ(x)) ∈ϕ(H )}

= {ψ(γ) | γ ∈ Aut(G), ∀y ∈ H ′ : ϕ(γ(ϕ−1(y))) ∈ϕ(H )}

= {ψ(γ) | γ ∈ Aut(G), ∀y ∈ H ′ : ψ(γ)(y) ∈ H ′}

= {γ′ ∈ Aut(G ′) | ∀y ∈ H ′ : γ′(y)∈ H ′}∩ψ(Aut(G))

= StabAut(G ′)(H ′)∩ψ(Aut(G)) ■
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Proposition 18 For the s1/1/. . . /1 loop subgroup U , si ∈N, of Fr we have

Γs1
≤ B (StabAut(Fr )(U )) = StabGLr (Z)(U

′) ≤GLr (Z)

where

U ′ := {v ∈Z
r
| v1 ≡ 0 mod s1}.

PROOF As noted before, U = A−1(U ′). B is surjective, because preimages of a generating

set of GLr (Z) are given by τ1 and the automorphisms in the proof of Lemma 10. Therefore,

Remark 17 gives us

B (StabAut(Fr )(U )) = StabGLr (Z)(U
′).

Since every matrix in Γs1
stabilizes U ′, B (StabAut(Fr )(U )) contains Γs1

. ■

As a matter of fact, s1 is the level of the congruence subgroup B (StabAut(Fr )(U )). The difference

to the other loop subgroups is evident: While here we easily reach any congruence subgroup

level, in the other cases we do not exceed level 2.
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