
ar
X

iv
:1

01
2.

26
28

v1
  [

cs
.IT

]  
13

 D
ec

 2
01

0

Throughput and Latency in Finite-Buffer Line Networks
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Abstract—This work investigates the effect of finite buffer sizes
on the throughput capacity and packet delay of line networks
with packet erasure links that have perfect feedback. These
performance measures are shown to be linked to the stationary
distribution of an underlying irreducible Markov chain tha t
models the system exactly. Using simple strategies, boundson
the throughput capacity are derived. The work then presentstwo
iterative schemes to approximate the steady-state distribution of
node occupancies by decoupling the chain to smaller queueing
blocks. These approximate solutions are used to understandthe
effect of buffer sizes on throughput capacity and the distribution
of packet delay. Using the exact modeling for line networks,it is
shown that the throughput capacity is unaltered in the absence
of hop-by-hop feedback provided packet-level network coding
is allowed. Finally, using simulations, it is confirmed that the
proposed framework yields accurate estimates of the throughput
capacity and delay distribution and captures the vital trends and
tradeoffs in these networks.

Index Terms—Finite buffer, line network, Markov chain, net-
work coding, packet delay, throughput capacity.

I. I NTRODUCTION

In networks, packets have to be routed between nodes
through a series of intermediate relay nodes. Each intermediate
node in the network may receive packets via multiple data
streams that are routed simultaneously from their source nodes
to their respective destinations. In such conditions, packets
may have to be stored at intermediate nodes for transmission
at a later time. If buffers are unlimited, intermediate nodes
need not have to reject or drop arriving packets. However, in
practice, buffers are limited in size. Although a large buffer
size is preferred to minimize packet drops, large buffers have
an adverse effect on thelatency, i.e., the delay experienced by
packets stored in the network. Further, using larger buffersizes
at intermediate nodes would also result in secondary practical
issues such as increased memory-access latency. Though our
work is motivated by such concerns, our work is far from
modeling realistic conditions. This work modestly aims at
providing a theoretical framework to understand the funda-
mental limits of single information flow in finite-buffer line
networks and investigates the tradeoffs between throughput,
packet delay and buffer size.

The problem of computing capacity1 and designing efficient
coding schemes for lossy wired and wireless networks has
been widely studied [1]–[5]. However, the study of capacityof
networks with finite buffer sizes has been limited. This can be
attributed solely to the fact that analysis of finite buffer systems
are generally more challenging. With the advent of network
coding as an elegant and effective tool for attaining optimum
network performance, the interest in finite-buffer networks has
increased [5]–[8].

1In this work, we use capacity to refer to the throughput capacity, i.e., the
supremum of all rates of information flow achievable by any coding scheme.

The problem of studying lossy networks with finite buffers
has been investigated in the area of queueing theory under a
different but similar framework. The queueing theory frame-
work attempts to model packets in a network as customers,
the delay due to packet loss over links as service times in
the nodes, and the buffer size at intermediate nodes as the
queue size. Further, the phenomenon of packet overflow in
communications network is modeled by blocking (commonly
known as type II or blocking after service) in queueing
networks [9]. However, this packet-customer equivalence fails
in general network topologies due to the following reason.
When the communications network contains multiple disjoint
paths from the source to the destination, the source node can
choose to duplicate packets on multiple paths to minimize
delay. This replicating strategy cannot be captured directly
in the customer-server based queueing model. Therefore,
the queueing framework cannot be directly applied to study
packet traffic in general communications networks. However,
queueing theory offers solid foundation for studying buffer
occupancies and packet flow traffic in line networks. There
has been extensive study in queueing theory literature on
the behavior of open tandem queues, which are analogous to
line networks [10]–[15]. However, approaches from queueing
theory literature predominantly consider a continuous-time
model for arrival and departure of customers/packets. In this
work, we consider a discrete-time model for packet arrival and
departure processes by lumping time into epochs. This model
is similar to those in [16], [17].

The broad contributions of this paper can be summarized as
follows. The bulk of this work operates under the assumption
of perfect hop-by-hop feedback. We present a Markov-chain
based model for exact analysis of line networks. The capacity
of a line network is shown to be related to the steady-state
distribution of an underlying chain, whose state space grows
exponentially in the number of hops in the network. Simple
assumptions of renewalness of intermediate packet processes
are employed to estimate the capacity of such networks.
The estimates are exact for two-hop networks. However, the
estimates extend the results of [17] to networks of any number
of hops and buffer sizes of intermediate nodes. Using the esti-
mates, the profile of packet delay is derived and studied. Using
the exact Markov chain model in conjunction with network
coding, it is shown that the throughput capacity is not affected
by the absence of feedback in line networks. This result is
similar to the information-theoretic result that feedbackdoes
not increase capacity of point-to-point channels [18]. Finally,
simulations reveal that our estimates closely predict the trends
and tradeoffs between hop-length, buffer size, latency, and
throughput in these networks.

This paper is organized as follows. First, we present the
formal definition of the problem and the network model in
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Section II. Next, we present our framework for analyzing
capacity of finite-buffer line networks in Section III. The pro-
posed Markovian framework is then employed to investigate
packet delay in Section IV. We compare our analytical results
with simulations in Section V and conclude it with a brief
discussion on the inter-dependence of buffer usage, capacity
and delay. Finally, Section VI concludes the paper.

II. N ETWORK MODEL AND PROBLEM STATEMENT

This work focuses on the class of line networks. As il-
lustrated in Fig. 1,h denotes the number of hops in the
network, andV = {v0, v1, . . . , vh} and

−→
E = {(vi, vi+1) :

i = 0, . . . , h − 1} to denote the set of nodes and the set of
links in the network, respectively. Such a network hash − 1
intermediate nodes, which are shown by black squares in the
figure. Each intermediate nodevi is assumed to have a buffer
of mi packets. Note that buffer sizes of different nodes can
be different. Without loss of generality, we assumeh ≥ 2
and mi > 0, for i = 1, . . . , h − 1. Further, it is assumed
that the destination node has no buffer constraints and that
the source node possesses an infinitude of innovative packets
at all times. The system is analyzed using a discrete-time
model, where each node can transmit at most one packet
over a link in any epoch. Intermediate buffers are assumed
to be empty at epochl = 0 and the dynamics forl ≥ 0 are
steered by the loss processes on the edges of the network. The
loss process on each link is assumed to be memoryless and
statistically independent of the loss processes on other links.
We let εi+1 ∈ (0, 1) to denote the erasure probability on the
link (vi, vi+1) for i = 0, . . . , h − 1. In this model, a node
receives a packet on an incoming link when the neighboring
upstream node transmits a packet and when the packet is not
erased over the link. The reader is directed to Appendix A
for a discussion on how the assumed discrete-time model
relates to continuous-time exponential model that is commonly
employed in queueing theory.

For the bulk of this work, we assume that the network
has a perfect hop-by-hop feedback mechanism indicating the
transmitting node of the receipt and storage of the transmitted
packet by the receiving node. However, a subsequent section
of this paper drops this assumption to study the capacity of
line networks without feedback. It is also assumed in this work
that nodes operate in atransmit-firstmode, i.e., each node first
generates a packet (if it has a non-empty buffer) and transmits
it on the outgoing edge. The node then processes the buffer
after receiving the acknowledgement from the next-hop node
before accepting/storing the packet on its incoming edge2.

For notational convenience, the random process on the
link (vi−1, vi) is denoted by{Xi(l)}Z≥0

. Xi(l) = 1 if and
only if the packet transmitted at epochl is deleted by the
channel(vi−1, vi), and Xi(l) = 0 otherwise. For the sake
of succinctness, we letE , (ε1, . . . , εh) and buffer sizes
M , (m1, . . . ,mh−1).

The focus of this paper is two-fold. The foremost aim is
to identify the supremumof all rates that are achievable by

2Note that the need for such an ordering arises due to the discrete nature
of time assumed in this work.
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Fig. 1. An illustration of the line network.

the use of any coding strategy between the ends of a line
network with erasure probabilitiesE and buffer sizesM. In
the line network illustrated in Fig. 1, we first aim to identify
the maximum rate of information that the nodev0 can transmit
to nodevh, which is denoted byCPF (E ,M). The next issue
on which we focus is the delay experienced by packets in
intermediate node buffers when the network operates near the
throughput capacity.

In our analysis, we employ the following notations. Vectors
will be denoted by boldface letters, eg.,r, s. The indicator
function for the setR>0 = (0,∞) is represented byσ[·].
For anyx ∈ [0, 1], x , 1 − x. The convolution operator is
denoted by⊗ and⊗lf is used as a shorthand for thel-fold
convolution off with itself. For0 < λ < 1, G(λ) denotes the
probability mass function of a positive random variable that
is geometric with mean 1

1−λ
. For a discrete random variable

Z with probability mass functionfZ , 〈Z〉 and 〈fZ〉 are both
used to denote the mean of the random variableZ. Lastly, for
appropriateq ∈ N, Fq denotes the Galois field of sizeq.

III. C APACITY OF L INE NETWORKS

In this section, we investigate the effect of finite buffers on
the capacity of line networks. First, we present a frameworkfor
exact computation of the capacity of line networks that have
perfect hop-by-hop feedback. We then present bounds on the
capacity using techniques from queueing theory. Subsequently,
we present our approaches to approximate the capacity of a
line network. In the concluding subsection, we illustrate that
the throughput capacity remains unaltered when feedback is
absent provided packet-level network coding is allowed.

A. Exact Computation of Capacity

The problem of identifying capacity is related to the prob-
lem of identifying schemes that arerate-optimal. In the pres-
ence of lossless hop-by-hop feedback, the scheme performing
the following steps in the given order is rate-optimal.

1. If the buffer of a node is not empty at an epoch, then it
must transmit one of the stored packets at that time.

2. A node deletes the packet transmitted at an epoch if it
receives an acknowledgement of packet storage from the
next-hop node at that epoch.

3. After performing1 and 2, a node accepts an arriving
packet if it has space in its buffer and sends an acknowl-
edgment of packet storage to the previous node.

Notice that in the above scheme, at each epoch, the buffer
of the last intermediate node is updated first, and the buffer
of the first intermediate node is updated last. To determine
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the throughput capacity of the network, we need to track
the number of packets that each node possesses at every
instant of time by using the rules of buffer update under the
above optimal scheme. Letn(l) = (n1(l), . . . , nh−1(l)) be the
vector whoseith component denotes the number of packetsvi
possesses at timel. The variation of state at thelth epoch can
be tracked using auxiliary random variablesYi(l) defined by

Yi(l) =







σ[ni−1(l)]Xi(l) i = h
Xi(l)σ[ni−1(l)(mi − ni(l) + Yi+1(l))] 1 < i < h
Xi(l)σ[mi − ni(l) + Yi+1(l)] i = 1

.

(1)

From the definition of the auxiliary binary random variables
in (1), we see thatYi(l) = 1 only if all the following three
conditions are met:

1. Nodevi−1 has a packet to transmit tovi.
2. The link (vi−1, vi) does not erase the packet at thelth

epoch, i.e.,Xi(l) = 1, and
3. Node vi is not full after its buffer update due to its

transmission over(vi, vi+1) at thelth epoch.

The changes in the buffer states can then by seen to be given
by the following.

ni(l + 1) = ni(l) + Yi(l)− Yi+1(l), 1 ≤ i < h. (2)

Note that sinceY(l) = (Y1(l), . . . , Yh(l)) is a function
of n(l) and X(l) = (X1(l), . . . , Xh(l)), n(l + 1) depends
only on its previous staten(l) and the channel conditions
X(l) at the lth epoch. Hence,{n(l)}l∈Z≥0

forms a Markov
chain. The number of states corresponds to the number of
possible assignments ton(l), which amounts to

∏h−1
i=1 (mi+1)

possibilities. However, since at each time instant the number
of packets that can be transmitted over any link is bounded
by unity, we see that for everyi = 1, . . . , h− 1 and l ∈ Z≥0,

Yi(l) ∈ {0, 1} and |ni(l + 1)− ni(l)| ≤ 1. (3)

Therefore, the number of non-zero entries in each row
of the probability transition matrix3 P (E ,M) represent-
ing the transitions in the occupancy is bounded above by
min(3h−1,

∏h−1
i=1 (mi + 1)).

A detailed categorization of the statesS that enables further
understanding can be performed thus. We can order the states
of the chain in such a way that the state(s1, . . . , sh−1) ∈ S
corresponds to the row index1+s1+

∑h−1
i=2 si

∏i−1
j=1(mj+1)

in the matrixP (E ,M). DenoteTι to be the set of states that
havesh−1 = ι for ι = 0, . . . ,mh−1. Let Γ−

ι ,Ωι,Γ
+
ι represent

the transition matrices for transitions from states inTι to those
in Tι−1, Tι, Tι+1, respectively. Then, it can be shown that
Γ+
i = Γ+, Ωi = Ω, andΓ−

i = Γ− for ι = 1, . . . ,mh−1 − 1
(see Lemma 1). Therefore, the transition matrix of the chain
can be structurally represented as follows.

3The ij th term of the matrixP (E,M) represents the probability that the
next state isj given that state is presentlyi.

P (E ,M)=











Ω0 Γ+
0 0 · · · 0

Γ−

1 Ω1 Γ+
1 · · · 0

0 Γ−

2 Ω2 · · · 0

...
0 · · · Γ−

mh−1−1 Ωmh−1−1 Γ+
mh−1−1

0 · · · 0 Γ−

mh−1
Ωmh−1











.

The dynamics given by the above equation can be depicted
pictorially by the chain in Fig. 2. Note that due to the
finite buffer condition and the non-negativity of occupancy,
the transitions from the first block and from the last block
differ from the transitions from the blocks between them.
Further, the states within eachTi, i = 0, . . . ,mh−1, can be
organized intomh−2 +1 sets in a similar fashion. In addition
to this structural property, the transition sub-matrices satisfy
the following algebraic properties.

Ω0 Ω1Ω1Ω1 Ωmh−1

Γ+
0

Γ−
1

Γ+
1 Γ+

1Γ+
1Γ+

1

Γ−
1Γ−

1Γ−
1 Γ−

mh−1

T
0

T
1

T
2

T
m

h
−

1
−
1

T
m

h
−

1

Fig. 2. The Markov chain for the dynamics of occupancy in a line network.

Lemma 1: In a generic line network, the following hold.

a. Γ+
i = Γ+

1 , Ωi = Ω1, and Γ−
i = Γ−

1 for i =
1, . . . ,mh−1 − 1.

b. For h ≥ 2, Γ−
i is non-singular and upper triangular for

i = 1, . . . ,mh−1.
c. For h > 2, Γ+

i is singular and lower triangular fori =
0, . . . ,mh−1 − 1 .

d. I − Ωi is non-singulari = 0, . . . ,mh−1.

Proof: See Appendix B.
To illustrate the implications of the above lemma, con-

sider the Markov chain for a three-hop line network with
erasure probabilitiesE = (ε1, ε2, ε3), and with buffer sizes
M = (2, 2) presented in Fig. 3. For this network, the algebraic
properties of Lemma 1 can be understood as follows.

1. Any transition involving a decrease in the second com-
ponent involves a non-negative change in the magnitude
of the first component.

2. Any horizontal transition involving a decrease in the sec-
ond component is always feasible (provided the second
component of the starting state is positive).

3. Any transition involving an increase in the second com-
ponent involves a non-positive change in the magnitude
of the first component.

4. Not all horizontal transitions involving an increase in
the second component are feasible. For example, the
transitions from the state(0, 0) to (0, 1) and from the
state(0, 1) to (0, 2) are infeasible, and hence(Γ+

0 )11 =
(Γ+

1 )11 = 0.

While the first two facts relate to the upper triangular
structure and non-singularity ofΓ−, the latter two relate to the
lower triangular and singularity properties ofΓ+. This Markov
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Fig. 3. Markov chain for a line network of three hops with erasure probabilitiesε1, ε2, ε3 and intermediate nodes having a buffer size of two packets each.

chain for the dynamics of the state of a line network with
perfect feedback isirreducible, aperiodic, positive-recurrent,
andergodic[19], [20]. By ergodicity, we can obtain temporal
averages by statistical averages. Therefore, the throughput
capacityCPF (E ,M) can be identified by appropriately scaling
the likelihood of the event that the system is in a state wherein
the last node buffer is non-empty. This quantity is given by

CPF (E ,M) = εh Pr[{s ∈ S : sh−1 > 0}] (4)

Notice that packets are not erased from the buffers without
a receipt of acknowledgement of storage from the next-hop
node. Therefore, the packet-flow rate is conserved. Therefore,
for 0 < i < h − 1, the throughput capacity can also be
identified from

CPF (E ,M) = εi+1 Pr

[{

s ∈ S :
si > 0
si+1 < mi+1

}]

. (5)

Thus, the problem of identifying the capacity of line networks
is reduced to the problem of computing the steady-state prob-
abilities of the aforementioned Markov chain. However, dueto
the size of the Markov chain and its transition matrix, and the
presence of multiple reflections due to the limited buffers at
intermediate nodes, the problem of computing the steady-state
distribution and capacity is computationally tedious evenfor
networks of reasonable hop-lengths and buffer sizes.

As the first step towards estimation, we can define a finite
sequence of matrices by

Hi =







I i = 0

Γ−
1

−1
(I − Ω0) i = 1

Γ−
i

−1(
(I − Ωi−1)Hi−1 − Γ+

i−2Hi−2

)
1 < i ≤ mh−1

.

Note that these matrices relate the steady-state distribution πTi

of the states inTi, i = 0, . . . ,mh−1 by πTi
= HiπT0 . Using

these relations, we can, in theory, estimate the capacity by

CPF (E ,M) ≤ εh

(

1−
1

||
∑mh−1

j=0 Hj ||1

)

(6)

However, this matrix-norm approach does not provide insight
into occupancy statistics of various nodes. Therefore, we focus
on an approximations-based approach to capacity estimation
in the remainder of this work.

B. Bounds on the Capacity of Line Networks

In queueing theory, problems of identifying the steady-state
probability of stochastic networks have often been dealt with
approximations. Most approaches to problems in this area
have been to approximate the dynamics of the network by
focussing on local dynamics of the network around each node
and the edges incident with it. The key idea in this section isto
modify the exact Markov chain to derive bounds on throughput
capacity. To do so, notice that the main reason for intractability
of the exact system is the strong dependence ofYi(l) on not
only Yi−1(l), but alsoYi+1(l). This dependence translates to
a strong dependence ofni(l) on bothni−1(l) and ni+1(l).
Relaxation of this strong dependence will be a step towards
possible decoupling of the system, and a deeper understanding
of the tradeoffs in such networks.

Consider a network operation mode where each intermedi-
ate note transmits an acknowledgement whenever itreceives
a packet (as opposed to the rate-optimal setting where it
sends an acknowledgement whenever itreceives and stores
a packet successfully). Under this new mode of operation,
we notice that the dependence of the state ofith node on
that of nodes further downstream is eliminated. This mode of
operation is equivalent to assuming that a packet that arrives at
a node whose buffer is full gets lost/dropped unlike the optimal
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mode of operation where it gets re-serviced. In this mode, the
state updates are given by a simplified Markov chain that is
generated by the following rule for alll ∈ Z≥0 and1 ≤ i < h.

ñi(l + 1) = ñi(l)+ Ỹi(l)σ[mi− ñi(l)+ Ỹi+1(l)]− Ỹi+1(l), (7)

where

Ỹi(l) =

{
σ[ñi−1(l)]Xi(l) 1 < i ≤ h
Xi(l) i = 1

. (8)

To avoid confusion, we appellate the chain that is obtained
by the dynamics defined by (1) and (2) as the Exact Markov
Chain (EMC) and the one defined by (7) and (8) as the
Approximate Markov Chain (AMC). Also, we allown(l) and
ñ(l) to always denote the state of an instance of the process
generated by the EMC and the AMC, respectively. Then, the
following property holds.

Theorem 1: (Temporal Boundedness Property of the AMC)
Consider a line network withh hops and an instance of
channel realizations{Xi(l) : i = 1, . . . , h}l∈Z≥0

. Suppose
we track the variation of the states of the EMC and the AMC
using this instance of channel realizations with the same initial
staten(0) = ñ(0). Then, for anyl ∈ Z≥0 and1 ≤ i ≤ h− 1,
the following holds.

ni(l) ≥ ñi(l). (9)

Proof: The proof is detailed in Appendix C.
The Temporal Boundedness Property guarantees that sta-

tistically, the probability that a node has an empty buffer is
overestimated by the AMC. In fact, if we can identify the
steady-state distribution of the states of AMC, we can provide
a lower bound for the steady-state probability of any subset
of statesA ⊆ S that have the form

A =
{

s ∈ S : (sj ≥ aj), j = 1, . . . h− 1
}

, (10)

where0 ≤ aj ≤ mj for j = 1, . . . , h− 1. Using the Temporal
Boundedness property in conjunction with (4), we can provide
a lower boundCPF (E ,M) for the capacity of the line network
by underestimating the probability in (4) by using the steady-
state distribution of the AMC instead of that of the EMC.
Equivalently, the capacity of the line network is at least that
of the throughput achievable by the AMC. This above idea
of lower bound extends easily to an upper bound using the
following result. The fundamental idea behind the following
bound is to manipulate the buffer sizes at each node so that
the packet drop in the modified network is provably infrequent
than in the actual network.

Theorem 2:Let the operatorΣ be defined by(b1, . . . , bk)
Σ

7→
(b1, b1 + b2, . . . , b1 + . . . + bk). For a given network with
distinct erasure probabilitiesE and buffer sizesM, denote
C
PF

(E ,M) to be the throughput computed from the steady-
state distribution of the AMC defined by (7) and (8) with era-
sure probabilitiesE and buffer sizesΣ(M), i.e.,C

PF
(E ,M) ,

CPF (E , Σ(M)). Then,

CPF (E ,M) ≤ C
PF

(E ,M) (11)

Proof: A detailed proof is presented in Appendix D.

Thus, the problem of bounding capacity is reduced to
identifying the steady-state probability of the AMC. Notice
that the above bounds are not in a computable form, since
they still involve identifying the steady-state distribution of
the AMC. Even though the AMC is significantly simpler
than the EMC, the output process from each intermediate
node is not renewal [15]. Therefore, the distribution of inter-
departure times from each intermediate node is insufficientto
completely describe the arrival process at intermediate nodes
vi for 1 < i < h. Therefore, a straightforward hop-by-hop
analysis (without further assumptions) seems insufficientto
identify the capacity of such networks.

C. Iterative Estimation of the Capacity of Line Networks

In this section, we present two iterative estimates for the
capacity of line networks that is based on certain simplifying
assumptions regarding the EMC. We notice that the difficulty
of exactly identifying the steady-state probabilities of the EMC
stems from the finite buffer condition that is assumed. The
finite buffer condition introduces a strong dependency of state
update at a node on the state of the node that is downstream.
This effect is caused by blocking when the state of a node
is forced to remain unchanged because the packet that it
transmitted is successfully delivered to the next-hop node, but
the latter is unable to store the packet due to lack of space
in its buffer. Additionally, the non-tractability of the EMC
is compounded by a non-renewal packet departure process
from each intermediate node. In this section, we ignore some
of these issues to develop iterative methods for estimation.
Figure 4 encapsulates the assumptions made in both estimation
approaches. While both approaches ignore the non-renewal
nature of packet arrival process at each node, the first approach
makes an additional memoryless assumption on the arrival
process. Additionally, both approaches model the effect of
blocking by the introduction of a single parameterpb that
represents the probability that an arriving innovative packet
will be blocked.

1) Rate-based Iterative Estimate:This estimate makes the
following assumptions to decouple the dynamics of the system
and enable capacity estimation.
A1. The packet departure process at each intermediate node is

memoryless. In other words, each nodevi sees a packet
arrival process that is memoryless with (average) rate
ri packets/epoch. This assumption allows us to track
information rates over links while simplifying the higher
order statistics.

A2. Any packet that is transmitted unerased by the channel
(vi, vi+1) is blocked independently with a probability
pbi+1. That is, for any0 < k ≤ mi,

Pr[Yi+1(·) = 0, Xi+1(·) = 1|ni(·) = k] = εi+1pbi+1.

Here,pbi+1 denotes the blocking probability due to full
buffer state atvi+1. This assumption allows us to track
the blocking probability ignoring higher order statistics
of the blocking process.

A3. For each nodevi and epochl, the event of packet arrival
and the event of blocking fromvi+1 are independent of
each other.

v



ni−1(l) ni(l)
Memoryless Blocking

Pbi

Renewal process

{Yi(l)}

Fig. 4. Illustration of the assumptions in iterative estimation.
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Fig. 5. The Markov chain forni under the simplifying assumptions.

The above assumptions are valid in the limiting case of large
buffers provided the system corresponds to a stable queueing
configuration. By assuming that they hold in general, the
effect of blocking is spread equally over all non-zero states
of occupancy at each node. Similarly, the assumptions also
spread the arrival rate equally among all occupancy states.
Given that the arrival rate of packets at the nodevi is ri
packets/epoch, and the blocking probability of the next node
is pbi+1, the local dynamics of the state change for the node
vi under assumptions A1-A3 is given by the Markov chain of
Fig. 5 with the parameters set to the following.

α = ri(εi+1 + εi+1pbi+1)
β = (1− ri)pbi+1εi+1

α0 = ri

. (12)

Using these parameters, the steady-state distribution4

{φvi(k) , ϕ(k|ri, εi+1, pbi+1)}
mi

k=0 of the chain of Fig. 5
can be computed to be

ϕ(k|ri, εi+1, pbi+1) ,







1

1+
α0
β

(∑mi−1

l=0
αl

βl

) k = 0

α0αk−1

βk

1+
α0
β

(∑mi−1

l=0
αl

βl

) 0 < k ≤ mi

. (13)

Assuming thatvi observes a packet arrival rate ofri from vi−1

and a blocking probability ofpbi+1 from vi+1, the blocking
probabilitypbi that the nodevi−1 perceives from the nodevi
and the arrival rateri+1 that vi+1 observes can be computed
via (13) using the following equations.

pbi = (εi+1 + εi+1pbi+1)ϕ(mi|ri, εi+1, pbi+1) (14)

ri+1 = εi+1(1− ϕ(0|ri, εi+1, pbi+1)) (15)

Note that the blocking probabilitypbi is computed using the
full occupancy probability of the nodevi. While in reality,
a packet is blocked byvi only if at the arriving instant,

4If pbi+1 = 1, then we setϕ(mi|ri, εi+1, pbi+1) = 1.

the node has full occupancy, A2 models any arriving packet
to be blocked with the above probability irrespective of the
occupancy ofvi. Also, in (14) and (15) the arrival rate from
the nodev1 is r1 = ε1 and the blocking probabilitypbh = 0.

Given two vectorsr = (r1, . . . , rh) ∈ [0, 1]h and pb =
(pb1, . . . , pbh) ∈ [0, 1]h, we term(r,pb) as a rate-approximate
solution to EMC, if they satisfy the equations (14) and (15)
in addition to havingr1 = ε1 and pbh = 0. Since these
relations were obtained from making assumptions on the
EMC, it is a priori unclear if there exist rate-approximate
solutions for a given system(E ,M). Fortunately, the following
result guarantees both the uniqueness and an algorithm for
identifying the rate-approximate solution to the EMC.

Theorem 3:Given a line network with link erasuresE =
(ε1, . . . , εh) and intermediate node buffer sizesM =
(m1, . . . ,mh−1), there is exactly one rate-approximate solu-
tion (r∗(E ,M),pb

∗(E ,M)) to the EMC. Further, the rate-
approximate solution satisfies flow conservation. That is,

r∗i (1− pb
∗
i ) = r∗j (1− pb

∗
j ), 1 ≤ i, j ≤ h.

Proof: The proof is detailed in Appendix E
Finally, the estimate of the capacity can be obtained from the
rate-approximate solution by computing the average rate of
packet storage at each node using

C∗(E ,M) = r∗i (1− pb
∗
i ), i = 1, . . . , h. (16)

Note that by the conservation of flow, anyi ∈ {1, . . . , h} can
be used in the above equation to identify capacity.

As an illustration, consider a simple four-hop network with
erasuresE = (0.5, 0.4999, 0.4998, 0.4) and buffer sizesM =
(5, 5, 5). From the above estimation method, we arrive at

r∗ = (0.5, 0.46797, 0.43958, 0.43484), (17)

pb
∗ = (0.13031, 0.07078, 0.01076, 0), (18)

C∗(E ,M) = 0.43484 packets/epoch. (19)

From simulations, the throughput capacity was found to be
0.43501 packets/epoch for the same network.

2) Distribution-based Iterative Estimate:In this section, we
assume that the given line network(E ,M) satisfiesεi 6= εj
for i 6= j. Since the capacity of a line network is a continuous
function of the system parameters, this assumption is not
restrictive. A system with non-distinct erasure parameters can
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be approximated to any degree of precision by a system with
distinct erasure probabilities.

Before we introduce the second approach for estimation, we
present the following technical result5 wherein we denoteI to
be the identity distribution for the convolution operator.

Theorem 4:Consider a tandem queueing system of two
nodes where the first node possessingm buffer slots is fed
by a renewal process whose inter-arrival time distributionis
gin =

∑N−1
i=1 piG(ζi) with p1, . . . , pN−1 ∈ R and ζi 6= ζj

for 1 ≤ i < j ≤ N − 1. Suppose that the distribution of
service time isG(ζN ), whereζN 6= ζi for 1 ≤ i ≤ N − 1.
Further, suppose that the second node blocks an arriving packet
memorylessly with probabilityq ∈ (0, 1), and that any blocked
packet gets re-serviced. Then, the distribution of inter-arrival
times as seen by the second node is given by

gout = Υ(gin,m, ζN , q)⊗G(ζN ), (20)

whereΥ(gin,m, ζN , q) =
(

αI+ α
∑N−1

l=1 p′lG(ζl)
)

for some

0 < α < 1 andp′l ∈ R, l = 1, . . . , N − 1, with
∑

l p
′
l = 1.

Proof: A detailed analysis including the means of iden-
tifying α, {p′i : i = 1, . . . , N} is given in Appendix F.

Just as in the Rate-based Iterative Estimate, this estimate
also makes three assumptions to simplify the EMC. While the
Distribution-based Iterative Estimate makes assumptionsA2
and A3, it relaxes assumption A1 to the following:

A1∗. The packet departure process at each intermediate node
is renewal.

Note that Assumption A1 allows for tracking only the average
rate of information flow on edges whereas A1∗ allows tracking
of the distribution of packet inter-arrival times. However, A1∗

ignores the fact that the distribution of an inter-arrival time
changes with the knowledge of past inter-arrival times. To
track the inter-arrival distribution and blocking probabilities
at each node, the Distribution-based Iterative Estimate uses
Theorem 4 in a hop-by-hop fashion. Assuming that the packet
arrival process atvi is renewal with an inter-arrival distribution
fi, and that the memoryless blocking fromvi+1 occurs with
probabilitypbi+1, we see that the packet inter-arrival distribu-
tion seen byvi+1 is given by

fi+1 = Υ(fi,mi, εi+1, pbi+1)⊗G(εi+1). (21)

Notice that just like in (12),Υ uses the effective erasure
probability to incorporate the effect of blocking byvi+1.
However, this corrective term does not appear inG(·) term,
becausefi+1 represents the distribution of packet inter-arrival
times atvi+1, and not the distribution of the time between
two adjacent successful packet storages atvi+1. Further, the
blocking probability ofvi as perceived byvi−1 is given by

pbi = Pr[A packet arriving atvi sees full buffer] (22)

(60)
= P(fi,mi, εi+1, pbi+1). (23)

Just as in the Rate-based Iterative Estimate, we call a solution
to (21) and (23) with boundary conditionspbh = 0 and

5For this theorem, note that we do not require that allpis or all p′is be
positive. We only need that their sum be unity and that they generate a valid
probability distribution, respectively.

f1 = G(ε1) as a distribution-approximate solution. Though
the existence and uniqueness of the distribution-approximate
solution for a given system(E ,M) has eluded us, simulations
reveal that for each system, the solution is unique and can be
found by iteratively using the following algorithm.

Algorithm 1 Distribution-based Iterative Estimate
1: Count = 1 andpbi[Count] = 0, i = 1, . . . , h− 1.
2: while Count≤Max_Iter do
3: f1[Count] = G(ε1), pbh[Count] = 0, andj = 1.
4: while j < h do
5: Computefj+1[Count], pbj [Count + 1] employing

(21) and (23) (that usefj [Count], pbj+1[Count])
6: j ← j + 1.
7: end while
8: Count← Count+ 1.
9: end while

Note that during any round ofCount in the above algo-
rithm, (21) can be iteratively used to identifyfi[Count] in
Step 5 only if the output distribution of inter-departure times
from each node is a weighted sum of geometric distributions.
This is however guaranteed if the erasure probabilities of no
two links are equal. Alternately, Step 2 can be replaced by a
convergence-type criterion instead of theMax_Iter criterion.
After sufficiently large number of iterations, the distributions
and blocking probabilities usually converge (tof⋆

i and pb⋆i ),
and upon convergence the capacity can be estimated via

C⋆(E ,M) =
1

〈f⋆
h〉
. (24)

Using the above approach for the four-hop example network
at the end of Sec. III-C1, we have

f⋆
4 = 138240.92G(0.5)− 275765.59G(0.4999)

+ 137525.64G(0.4998)+ 0.03G(0.4), (25)

pb
⋆ = (0.12983, 0.070006, 0.010406), (26)

C⋆(E ,M) = 0.435089 packets/epoch. (27)

D. Capacity of Line Networks without Feedback

Feedback from next-hop node provides a natural means of
buffer update and packet deletion. In the absence of feedback,
due to the finiteness of buffers, each intermediate node must
have a local rule for buffer update to accept packets that arrive.
A rule for packet deletion or update must be maintained at
each node so that the buffers are used efficiently. A network
coded-scheme based on random linear combinations over a
large finite fieldFq of sizeq as is described in [21] presents an
effective means of buffer update and packet delivery. Consider
the following scheme based on network coding.

1. At each epoch, a node having a buffer size ofm packets
picks a vectora ∈ Fm

q uniformly at random to generate
a random linear combination in the following manner.
For each buffer sloti ∈ {1, . . . ,m}, the packetPi stored
in that slot is represented as a vector overFq and the
output packet is generated by computing

∑m
i=1 aiPi. This

generated packet is then transmitted during the epoch.
2. If a packetP is received by a node at an epoch, it

first generates the output packet at that instant and then
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updates its buffer in the following manner. The node
selects a vectorb ∈ Fm

q uniformly at random and for
eachk ∈ {1, . . . ,m}, adds the packetbkP to the packet
stored in thekth buffer slot.

Note that in the network coding scheme described above,
after sufficient time after the commencement of packet transfer
from the source, all buffer slots of every intermediate node
almost always have non-trivial contents unlike the scheme
with perfect feedback. However, it is not true that all of
these packets areinnovative, i.e., packets may contain common
information6. Such a condition may occur when the packets
are linearly dependent in the algebraic sense. With this notion
of information, the rate of information received by the desti-
nation node can be seen to be the asymptotic rate of arrival
of innovative packets. The following result characterizesthese
rates achieved by the network coding scheme over the fieldFq and relates it to throughput capacity in the presence of
lossless feedbackCPF (E ,M).

Theorem 5:Let CNFFq
(E ,M) denote the rate of arrival of

innovative packets at the destination node of a line network
without feedback assuming that the aforementioned network
coding scheme over the fieldFq is employed. Then, for each
sequence of finite fields{Fql}l∈N such thatql → ∞, we have

lim
l→∞

CNFFql
(E ,M) = CPF (E ,M). (28)

Proof: The proof is presented in Appendix G.
From (28), we observe that there is no loss in achievable
rates when feedback is absent and that the aforementioned
network coding scheme is rate-optimal for line networks
without feedback, provided a large field size is employed.

IV. PACKET DELAY DISTRIBUTION

In this section, we use the iterative estimates of Section III-C
to obtain estimates on the probability distribution of the delay
experienced by information packets in line networks with
perfect feedback under the optimal strategy of Section III-A.
We abstain from defining latency of data packets in networks
without feedback, since optimal schemes for such networks
involve packet-level coding.

When perfect feedback is available, we define the delay
of a packet as the time taken from the instant when the
packet is stored in the buffer of the first intermediate node
to the instant when the destination receives it. Since the
delay statistics depend on how the packets are handled in
intermediate nodes, in addition to the optimal scheme of
Section III-A, we assume afirst-come first-servetreatment of
packets at intermediate node buffers. Note that this assumption
is made only for the ease of presentation. The framework
permits the analysis of randomized schemes where each node
after a successful transmission selects a packet in its buffer
randomly and memorylessly, and transmits it repeatedly until
it is stored at the next-hop node.

In order to compute the distribution of delay that a packet
experiences in the network, one can proceed in a hop-by-hop

6Here, we use information to represent the number of linearlyindependent
packets w.r.t. the chosen base field. A setS = {P1, . . . , PN} is said to
containn packets of information ifdim(span(S)) = n.

fashion using two parameters: (1)ρj, an estimate of blocking
probability at nodevi, i = 1, . . . , h, and (2)ψi(k), an estimate
of the distribution of occupancy at nodevi (for each i =
1, . . . , h − 1 and k = 0, . . . ,mi) just before packet arrival
conditioned on the event that the arriving packet is successfully
stored.

In the last relay nodevh−1, the additional delay perceived
by a packet arriving atlth epoch depends on the occupancy
nh−1(l) of the nodevh−1 and εh. Suppose at epochl, node
vh−1 hask ≤ mh−1−1 packets excluding the arriving packet.
Then, the packet has to wait for thek already-stored packets
to leave before it can be serviced. Since the services are
memoryless, the distribution of delay is given by a sum ofk+1
independent geometric distributions each with a mean inter-
arrival time 1

1−εh
, i.e.,⊗k+1G(εh). Hence, the distribution of

additional delay induced by waiting in the buffer ofvh−1 is

Dh−1 =

mh−1−1
∑

i=0

ψh−1(i)
[
⊗i+1G(εh)

]
. (29)

However, the situation is different for other intermediatedelays
because of the effect of blocking. The additional delay incurred
while being stored in the nodevj , 0 < j < h− 1, is given by

Dj =

mj−1
∑

i=0

ψj(i)
[
⊗i+1G(εj+1 + ρj+1εj+1)

]
, (30)

since a packet is deleted from the buffer ofvj only if the
channel successfully transmits it andvj+1 does not block the
arriving packet, which by assumption A2 occurs memorylessly
with a probabilityε′j+1 , εj+1+ρj+1εj+1. Assuming that the
delays incurred by waiting in the buffer of each node is inde-
pendent of each other, we obtain the total delay considering
all hops to be

D = D1 ⊗ · · · ⊗ Dh−1. (31)

Note that in addition to the above delay, the source node at-
tempts to transmit the packet multiple times before the packet
is successfully accepted at the first intermediate node. The
distribution of this time spent in this is approximately given
by a random variable whose distribution isG(ε′1). Thus, the
iterative estimation technique provides us with a framework
to approximately but analytically compute the delay profile
using an estimate of distribution of packets seen by an arriving
packet that is successfully stored, and an estimate of the
blocking probabilities.

Finally, the pair of estimates (ψj(·), ρj) can be obtained
from the rate-approximate solution by using

ρj = pb
∗
i , (32)

ψj(i) =







φ∗
vj

(i)+φ∗
vj

(i+1)(1−ε′j+1)

1−φ∗
vj

(mj)ε′j+1
i = 0

φ∗
vj

(i)ε′j+1+φ∗
vj

(i+1)(1−ε′j+1)

1−φ∗
vj

(mj)ε′j+1
1 ≤ i < mj

. (33)

Similarly, another pair of estimates can be obtained using
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the Distribution-based Iterative Estimate by

ρj = pb
⋆
i , (34)

ψj(i) =







π⋆
j (i+1)

1−pbj
i = 0, . . . ,mj − 2

π⋆
j (m)−pb

⋆
j

1−pb
⋆
j

i = mj − 1
, (35)

whereπ⋆
j (·) is the eigenvector of the (59) upon convergence.

Combining the above equations, two estimates for the delay
profile for line networks with feedback can be obtained.

V. RESULTS OFSIMULATION

In this section we present the results of simulation com-
paring our analytic results to simulations of line networks
with perfect feedback. First, the simulations for the capacity
are presented, and then the simulations for delay profiles are
presented. This section ends with a discussion on the efficient
usage of buffers and the interplay of buffer size, capacity and
delay.

In our model, a line network is completely defined by
the number of hops, the erasure probability for each link
and the buffer size at each intermediate node. To study the
accuracy of our bounds and estimates, we vary one of these
three parameters while keeping the remaining two fixed. In
each of the figures, the actual capacity and bounds obtained
via simulations are presented in addition to our estimates.
Further, for the sake of brevity, we abbreviate Distribution-
based Iterative Estimate (Algorithm 1)), Rate-based Iterative
Estimates (Algorithm 2), Lower Bound (Thm. 1), and Upper
Bound (Thm. 2) to DbIE, RbIE, LB, and UB, respectively.

Figure 6 presents the variation of the capacity with the
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Fig. 6. Capacity of line networks withm = 5 and varying hop-lengthh.

number of hops of line networks when each intermediate node
possesses a buffer size of five packets. The figure presents
simulations for networks when the probability of erasure on
each link is set to either0.25 or 0.5. First, it is noticed that the
bounds and iterative estimates agree with the actual capacity
for two-hop networks. Second, it is noticed that the bounds
and estimates capture the variation of the actual capacity of
the network. However, the estimates are more accurate. For
both choices of channel parameters, both estimates predict
throughput capacity within an error of 1%. Further, it is also

noticed from the figures that the independence assumptions of
the estimates generally over-estimate the actual capacityof the
network.

In order to study the effect of buffer size on capacity,
we simulated a five-hop line network with each link having
erasure probabilities just as in the previous setting. Figure 7
presents the variation of our results and the actual capacity as

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

 

 

Buffer sizem

C
ap

ac
ity

(p
ac

ke
ts

/e
po

ch
)

DbIE (ε = 0.25)
RbIE (ε = 0.25)
Capacity (ε = 0.25)
LB (ε = 0.25)
UB (ε = 0.25)
DbIE (ε = 0.50)
RbIE (ε = 0.50)
Capacity (ε = 0.50)
LB (ε = 0.50)
UB (ε = 0.50)
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the buffer size of the intermediate node is varied. It can be
seen that as the buffer size is increased, all curves approach
the ideal min-cut capacity of1 − ε. Also, as is expected, the
accuracy of the bounds improve with the buffer size.

Finally, the effect of the channel conditions on the capacity
of a five-hop line network with intermediate buffer sizes of
five packets each is presented in Figure 8. It is noticed that as
the probability of erasure increases, the loss in capacity due to
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finite buffer becomes more pronounced. For example, for the
simulation setting of Fig. 8, the loss in capacity varies from
3.85% at ε = 0.1 to 16.1% at ε = 0.5 in a near-linear fashion.
From these figures, we infer that it is paramount that the effect
of blocking be considered as realistically as possible. Modeling
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the effect of blocking as packet loss (as is done to derive our
bounds) only allows us to loosely bound the capacity of such
networks.
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Figure 9 presents the variation of delay profile for the
optimal strategy in an eight-hop line network with the erasure
probability on every link set to0.25. The delay profiles were
simulated for three different buffer sizes. As in Section IV,
the estimate and simulations were performed for the first-
come first-serve strategy. From the first sub-plot, it is noticed
that both mean and variance of the delay distribution increase
as buffer sizes increase. While the mean delay obtained via
simulations for the three memory settings are30.22, 55.18, and
81.29 epochs, whereas the analytical result for the same using
the Dist.-based Iterative Estimate are30.09, 55.22, and81.68
epochs, respectively. Note that the analytical estimates for the
mean delayµ∗(E ,M) can be obtained without computing the
delay profile by the use of Little’s theorem [22] as follows.

µ∗(E ,M) =
h−1∑

i=1

〈φ∗vi〉

C(E ,M)
=

h−1∑

i=1

〈φ∗vi〉

εh(1 − φ∗vh−1
(0))

, (36)

where, as before,φ∗vi(·) denotes the distribution of occupancy
of vi at steady state given by the Rate-based Estimate. Note
that each term in the above sum can be viewed as the
contribution of the corresponding node to overall delay. It
is noted that the analytic prediction of the delay profile is
more conservative than the actual delay profile in the sense
that the estimate of the variance is higher than the actual
variance of packet delay. The second sub-plot of the figure
illustrates the difference in the cumulative distributionof delay
predicted by the two estimates. It is noticed from all the above
simulations that there is only a minor difference between the
two estimation schemes if the parameters of interest are either
the throughput capacity or the delay profile.

Figure 10 highlights the difference between the two es-
timates when continuous-time models are emulated using
discrete-time epochs. Consider a three-hop line network where
intermediate nodes have a buffer of three packets and their
packet service distributions are exponential with(λ2, λ3) =
(3, 2.99) s−1. Suppose that the arrival process at the first node

is renewal with inter-arrival distribution being exponential with
λ1 = 10 s−1. The following figure presents the distribution of
inter-departure duration from the second node. It is observed
that by lumping∆ = 0.001 seconds into each epoch, the
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Fig. 10. The probability density of packet inter-arrival duration at the
destination in a three-hop continuous-time line network.

Distribution-based Iterative Estimate provides a near-accurate
distribution of the inter-departure durations. On the other hand,
the Rate-based Iterative Estimate approximates the distribution
as an exponential, which yields a less accurate estimate. Note
that for this settingCΛ(M) = 2.2467 packets/sec, and the
Distribution-based and Rate-based Estimates are 2.2447 and
2.2413 packets/sec, respectively.

A. Buffer Allocation in Line Networks

In this section, we present a brief discussion on two ques-
tions pertaining to efficient usage of buffers in intermediate
nodes.Is the use of more buffer slots, the merrier?andHow
to allocate buffers to different nodes so that operation ensures
near-min-cut throughput and acceptable delay?

To address the first question, consider the eight-hop network
of Fig. 9. As the buffer size is varied from 10 to 15 packets,
the Rate-based Estimate for capacity changes from 0.7135 to
0.7254 packets/epoch – a change of less than 1.5% (of the min-
cut bound). However, the mean latency changes from 55.18 to
81.29 epochs – a 47% change. Therefore, for eachE , it is likely
that there is a critical buffer size for each node beyond which
the throughput capacity improvement is marginal; however,
with increase in buffer sizes, the average time packets spend
in the network continues to grows significantly. One must
therefore identify the correct size of buffers to be used so
that both latency and throughput capacity are acceptable.

To discuss the second issue, we illustrate with the fol-
lowing example. Consider a four-hop network withE =
[0.3 0.5 0.5 0.2] for which a good choice of buffer allocation
needs to be identified under the constraint that the total number
of buffers in the network must be no more than 30 packets. To
this end, we use the Rate-based Estimate to study the effect
of individual buffer sizes on throughput and delay. Fig. 11
shows the variation of the throughput and delay contributed
by each node when its memory is varied from 1 to 20 packets,
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while the buffer sizes of other intermediate nodes are kept
at 20 packets. In this example, it is noticed that maximum
throughput estimate for all choices of memory estimates is
0.4871 packets/epoch whenMa = (5, 21, 4). This setting of-
fers a mean packet delay of32.24 epochs. However, minimum
delay configuration amongst those that offer a throughput more
than 0.485 packets/epoch isMb = (4, 20, 6), which offers a
throughput of0.4851 packets/epoch and a mean packet latency
of 28.46 epochs. The actual capacity and delay for these
configurations were found to beC(E ,Ma) = 0.4871 pack-
ets/epoch,µ(E ,Ma) = 32.17 epochs andC(E ,Mb) = 0.4858
packets/epoch,µ(E ,Mb) = 28.33 epochs, respectively.

To understand further these patterns, we present in Fig. 12
the steady-state occupancy of the three intermediate nodes
when buffer sizes are set toMa = (5, 21, 4) packets,Mb =
(4, 20, 6) packets andMc = (15, 15, 15) packets, respectively.
In all settings, it is noted that the nodev1 is congested because
the sub-network fromv1 to v4 has a min-cut capacity of0.5,
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Fig. 12. Estimated Buffer occupancy distribution in intermediate nodes.

whereas it receives packets at the rate of0.7. Therefore, the
steady-state occupancy of the nodev1 for Ma andMc are
translates of that ofMb. Due to congestion, an arriving packet
at such a node usually sees very high occupancy. Hence,

in a first-come first-serve mode of operation, the arriving
packet has to wait long before getting serviced. Therefore,
it is critical that the buffer size of congested nodes (such as
v1) be kept to absolute minimum to minimize average packet
delay. Similarly,v3 can at most receive packets at a rate of
0.5, however the outgoing link can communicate packets at
a much higher rate. Therefore, the buffer ofv3 is never full
as long as the buffer size is greater than five. Nodes such
as v3 that are never congested contribute little to the delay
experienced by packets. Hence, limiting buffer sizes of such
nodes is not critical for delay as long as the sizes are bigger
than their threshold sizes (beyond which throughput increase
is marginal).

Occupancy in nodes likev2 that are neither congested nor
starved undergo non-trivial changes with changes in buffer
sizes. These nodes contribute significantly to both the through-
put and average packet delay in the network. For example, in
the example networkv2 has a near-uniform distribution for
both Ma and Mb. Just like congested nodes, such nodes
have to be allocated buffer sizes so that the they neither block
packets nor contribute to delay significantly. Though the clas-
sification of nodes as congested, starved or neither can usually
be done by focusing onE , good memory allocation requires
knowledge of trends of latency and throughput with buffer
sizes, which in turn require the help of more sophisticated
estimates such as those proposed in this work.

As a second example, consider another four-hop network
with Ec = [0.51 0.50 0.49 0.48]. In the infinite buffer setting,
the queueing system corresponding to this buffer configura-
tion is stable. Hence, no node can be classifieda priori as
congested. Suppose that a throughput-optimal allocation of
buffer sizes for intermediate nodes is to be designed with the
constraint that the total number of packets in the network
be limited to 60. Clearly, a naı̈ve first guess is to assign
Md = [20 20 20]. However, notice that no matter how large
the buffer sizes are, the probability of blocking at any nodeis
always non-zero. Hence, the rate of arrival thatv2 andv3 see
is smaller than that noticed byv1. Therefore, it is meaningful
to assignv1 a larger buffer size to minimize blocking atv1
and maximize throughput. Although this intuition is correct,
it is unclear as to how to allocate buffers. The strength of
the iterative technique is in resolving exactly this issue by
assigning estimates to each buffer allocation configuration.
By searching around the neighborhood ofMd, the maximum
throughput configuration is found to beMe = [27 20 13].

As is illustrated by these examples, the proposed iterative
estimation techniques presents a framework to identify nodes
in line networks that are either: (a) starved and therefore play
an insignificant role in capacity and packet delay (such as
v3 of Fig. 12), or (b) congested and contribute significantly
to packet delay (such asv1 of Fig. 12), or (c) contribute
significantly to both capacity and packet delay (such asv2
of Fig. 12). On identifying these nodes, it is possible to
identify configurations that make efficient use of the buffers
without severely compromising on either throughput capacity
or average packet delay.
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VI. CONCLUSIONS

This work focused on the effect of finite buffers on the
throughput capacity and packet delay profile in line networks
with packet erasure links. First, an exact Markovian frame-
work for modeling line networks with perfect feedback was
presented. The framework was simplified using independence
assumptions to derive iterative estimation techniques that yield
approximations of all marginal buffer statistics and also allow
to identify the packet delay profile in such networks. Further,
it was shown that the absence of feedback has no effect on
the throughput capacity of line networks provided packet-level
coding is permitted. Finally, via simulations, the proposed iter-
ative techniques were noticed to be computationally-efficient
and near-accurate models to analyze and study the behavior
of line networks.

APPENDIX A
DISCRETE ANDCONTINUOUS MODELS

In this section, we argue that the discrete model assumed
in the paper can be used to study the capacity of tandem
queue model with type II blocking (see [9]) and independent
exponential service times at each node. Consider a tandem
queue ofh links and h − 1 intermediate nodes. Suppose
Λ = (λ1, . . . , λh) denotes the parameters for the exponential
service times atv0, . . . , vh−1, respectively. Assuming that each
intermediate node has buffers given byM = (m1, . . . ,mh−1)
and thatNt denotes the number of packets collected byvh
in the period[0, t), the throughput capacityCΛ(M)7 of the
system is defined by

CΛ(M) , lim
t→∞

Nt

t
(37)

can be computed from a discrete model assumed in this paper.
For example, Fig. 13 considers a four-hop system with each
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Fig. 13. Throughput of continuous and discrete systems for varying buffer
sizes

node having exponential processing times with parameterλ =
2 s−1 and compares it with four discretized models. Note that
the approximations become finer as smaller values ofτ are
chosen. This fact can be formalized as follows.

7Note that the definition of throughput using (37) hinges on the ergodicity
of the continuous-time system.

Theorem 6:

CΛ(M) = lim
τ→0

τ−1CPF (1− Λτ,M), (38)

where the right-hand side uses the discrete-time model of (4).
Proof: We begin by constructing the probability transition

matrices for continuous and discrete chains that track the state
of the system just before a departure from the last intermediate
node. Note that both chains use the same state spaceS =
{(s1, . . . , sh−1) : 0 ≤ si ≤ mi}, however their transition
probabilities are different.

Let Π denote the probability transition matrix for the
continuous model. LetM denote the transition matrix that
effects the change in states when a departure from the last
intermediate node occurs and letPt denote the transition
matrix corresponding to changes in state over a duration oft
seconds given that no departure occurs in that duration. Then,

Π =M

∫

R

PtdFλh
(t), (39)

where Fλh
denotes the cumulative density function of the

exponential RV with parameterλh. Notice that for anyτ > 0,
Pt = (Pτ )

⌊ t
τ
⌋Pt−τ⌊ t

τ
⌋. Therefore,

Pt = lim
τ→0

(Pτ )
⌊ t
τ
⌋Pt−τ⌊ t

τ
⌋

(a)
= lim

τ→0
(Pτ )

⌊ t
τ
⌋, (40)

where (a) follows sincePt−τ⌊ t
τ
⌋ → I. LetP∆

τ denote the state
transition matrix for one time epoch of the discretized model
with E = 1− Λτ . Then, we have

Pτ = P∆
τ + o(τ2) ⇒ Pt = lim

τ→0

(

P∆
τ + o(τ2)

)⌊ t
τ
⌋

= lim
τ→0

(

P∆
τ

)⌊ t
τ
⌋

. (41)

Therefore, we have

Π =M

∫

R

PtdFλh
(t) =M

∫

R

lim
τ→0

(

P∆
τ

)⌊ t
τ
⌋

dFλh
(t)

(a)
= lim

τ→0
M

∫

R

(

P∆
τ

)⌊ t
τ
⌋

dFλh
(t)

= lim
τ→0

∞∑

i=0

MP∆
τ

i
∫ iτ+τ

iτ

dFλh
(t)

= lim
τ→0

(
∞∑

i=0

[(

e−iλhτ − e−(i+1)λhτ
)

MP∆
τ

i
])

, (42)

where (a) follows from Fubini-Tonelli Theorem [23]. The
discrete equivalentΠ∆

τ of the above transition matrix that
tracks the state between departures for the corresponding time-
discretized system is given by

Π∆
τ = λhτM + (λhτ )λhτMP∆

τ + (λhτ )
2λhτMP∆

τ

2
+ · · ·

=

∞∑

i=0

[(

(λhτ)(λhτ )
i
)

MP∆
τ

i
]

(43)
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Let ξ(s, s′) , limτ→0

(

Π(s, s′) − Π∆
τ (s, s

′)
)

for any pair of

statess, s′. Then,

ξ(s, s′)
(b)

≤ lim
τ→0

[ ∞∑

i=0

∣
∣
∣e−iλhτ (e−λhτ )− (λhτ)(λhτ )

i
∣
∣
∣

]

(c)

≤ lim
τ→0

[ ∞∑

i=0

(λhτ)
∣
∣
∣e−iλhτ − (λhτ )

i
∣
∣
∣+

e(λhτ)
2

e−λhτ

]

= lim
τ→0

[ ∞∑

i=0

(λhτ)
∣
∣
∣e−iλhτ − (1 − λhτ)

i
∣
∣
∣

]

(d)
= lim

τ→0

[

(λhτ)

∞∑

i=0

(

e−iλhτ − (1− λhτ)
i
)]

= lim
τ→0

( λhτ

1− e−λhτ
− 1
)

= 0. (44)

Note that (b) follows sinceMP∆
τ

i
is a probability matrix and

hence each component is bounded above by unity, and (c)
follows since forλhτ < 1, it is true that

|1− eλhτ | − λhτ =
∑

i≥2

(λhτ)
i

i!
≤ e(λhτ)

2,

and (d) follows frome−x > 1 − x for x > 0. ThusΠ∆
τ → Π

as τ → 0. Let ν∆τ and ν be the eigenvectors ofΠ∆
τ andΠ,

respectively. Then, since the steady-state distribution of a chain
is a continuous function of the transition matrix, it follows that
ν∆τ → ν, as τ → 0. However, the capacity computed using
continuous and discrete models are given by

CΛ(M) = λh
∑

s:sh−1>0

ν(s)

CPF (1− Λτ,M) = λhτ
∑

s:sh−1>0

ν∆τ (s).

Therefore,τ−1CPF (1− Λτ,M) → CΛ(M).

APPENDIX B
PROOF OFLEMMA 1

(a) Suppose that the state of the system isn =
(n1(l), . . . , nh−1(l)) with 0 < nh−1(l) < mh−1, then from
(1), we notice thatYh = Xh and Yh−1 = σ[nh−2(l)]Xh−1.
Hence, given the eventmh−1 > nh−1(l) > 0, Y(l) =
(Y1(l), . . . , Yh(l)) depends only on(n1(l), . . . , nh−2(l)) and
(X1(l), . . . , Xh(l)) and not onnh−1(l). This guarantees that
(Γ−

i ,Γ
+
i ,Ωi) = (Γ−

j ,Γ
+
j ,Ωj) for 0 < i, j < mh−1.

(b) First supposeh > 2. ConsiderΓ−
i for some i >

0 and the state of the system at some timel ∈ N.
Γ−
i represents transitions from states that have the form

(n1(l), n2(l), . . . , nh−1(l) = i) to states of the form(n1(l +
1), n2(l+ 1), . . . , nh−1(l+ 1) = i− 1). Sincenh−1(l+ 1) =
nh−1(l)− 1, it must be thatYh−1(l) = 0 and that the channel
must have erased the packet transmitted byvh−2. Denote
Li =

∏

1≤k<i(mi + 1) for i > 1 andL1 = 1. Then, it is
seen that for any realization of{Xi(l)}

h−3
i=0 , it is true that the

state transition must obey

1 + n1(l) +

h−2∑

i=2

ni(l)Li ≤ 1 + n1(l + 1) +

h−2∑

i=2

ni(l + 1)Li.

However,
(

1 + n1(l) +
∑h−2

i=2 ni(l)
∏i−1

j=1(mj + 1)
)

is the

index of the row corresponding to the staten(l) within Γ−
i and(

1+ni(l+1)+
∑h−2

i=2 n1(l+1)
∏i−1

j=1(mj+1)
)

is the index of

the column corresponding ton(l+1) within Γ−
i . Therefore, all

possible transitions inΓ−
i correspond to transitions from states

to other state that involve a non-positive change in the row-
index. Therefore,Γ−

i is upper triangular. Finally, since each
diagonal term ofΓ−

i is bounded below byεh
∏h−2

k=0 εk+1, we
conclude that

det(Γ−
i ) ≥

(

εh

h−2∏

k=0

εk+1

)Lh−1

> 0. (45)

Finally, if h = 2, it is easy to see thatΓ−
i = [ε2ε1].

(c) Consider a transition underΓ+
i for i < mh−1 from

a state that has the form(n1(l), n2(l), . . . , nh−1(l) = i) to
another that has the form(n1(l+ 1), n2(l+ 1), . . . , nh−1(l+
1) = i+1) after an epoch. Sincenh−1(l+1) = nh−1(l) + 1,
it must be that the packet transmitted during this epoch on
the link (vh−2, vh−1) must have reached successfully, i.e.,
Yh−2(l) = 1. By an argument similar to the above one,
we can show thatΓ+

i is lower triangular. However, certain
diagonal terms are zero. In specific, consider the transition
from state (n1(l) = 0, . . . , nh−2(l) = 0, nh−1(l) = i) to
the state(n1(l) = 0, . . . , nh−2(l) = 0, nh−1(l) = i + 1)
which corresponds to the(Γ+

i )11. However, this transition is
impossible whenh > 2, since the nodevh−2 has no packets
to send during this epoch. Thus,det(Γ+

i ) = 0 if h ≥ 3.
(d) The non-singularity ofI − Ωi follows from the fact

that (I − Ωi) is diagonal dominant [24], since(I − Ωi)kk ≥
∑

k′ 6=k |(I − Ωi)kk′ |. On the other hand, sinceΓ+
i ,Γ

−
i 6= 0,

there exists at least onek for which the inequality is strict,
which guarantees the non-singularity of these matrices.

APPENDIX C
PROOF OFTHEOREM 1

We proceed by mathematical induction on the time indexl.
Clearly, the condition holds forl = 0. Suppose that the claim
is true for all nodes and for timesl = 0, . . . , k for somek ≥ 0.
Consider the states of the nodevi for somei = 2, . . . , h−1 in
both chains at time instantk. One of the two following cases
must apply.

1. ni(k) = ñi(k): In this case, we note that

ni(k+1)−ñi(k+1) = Yi(k)−Ỹi(k)−Yi+1(k)+Ỹi+1(k).

If ni(k) = ñi(k) = 0, thenYi+1(k) = Ỹi+1(k) = 0 and

Yi(k)− Ỹi(k) = Xi(k)[σ[ni−1(k)]− σ[ñi−1(k)] ≥ 0.

Thusni(k + 1)− ñi(k + 1) ≥ 0.
Now, if ni(k) = ñi(k) = mi, it is seen from (1) and (8)
that Ỹi+1(k)−Yi+1(k) ≥ 0. Further, ifYi+1(l) = 0, then
clearly,ni(k+1) = mi andñi(k+1) ≤ mi = ni(k+1).
If Yi+1(k) = 1, then Ỹi+1(k) = 1 and ñi(k + 1) ≤
ni(k + 1) follows since

Yi(k)− Ỹi(k) = Xi(k)
(
σ[ni−1(k)]− σ[ñi−1(k)]

)
≥ 0.
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Now, if 0 < ni(k) = ñi(k) < mi, then (1) and (8)
again implyỸi+1(k)−Yi+1(k) ≥ 0 andYi(k)− Ỹi(k) =
Xi(k)

(
σ[ni−1(k)]−σ[ñi−1(k)]

)
≥ 0, and henceni(k) ≥

ñi(k) follows.
2. ni(k) ≥ ñi(k) + 1: Assume let̃ni(k) > 0. Then,

ñi(k + 1)
(7)
≤ ñi(k) + 1− Ỹi+1(k)

= ñi(k) + 1− σ[ñi(k)]Xi(k)

≤ ñi(k) + 1− Yi+1(k) ≤ ni(k)− Yi+1(k)

≤ ni(k) + Yi(k)− Yi+1(k) = ni(k + 1).

Lastly, if ñi(k) = 0, then the claim can be violated only if
ñi(k+1) = 1 andni(k+1) = 0, which can happen only
if Xi(k) = Xi+1(k) = 1. However, under this channel
instance,ni(k+1) ≥ ni(k) ≥ 1. Thus,ni(k1) ≥ ñ(k+1).

Thus, we have the following.

ni(k) ≥ ñi(k), i = 2, . . . h− 1. (46)

The proof is then complete by following the above argument
for v1 and interpretingσ[n0(k)] = σ[ñ0(k)] = 1, since the
source always possesses innovative packets.

APPENDIX D
PROOF OFTHEOREM 2

If h = 2 comparing (1) and (8), we see that the AMC
and the EMC are identical. Hence, we may assumeh > 2.
The proof in this case is based on mathematical induction
on the time indexl. At each time, we compare the state of
the EMC with that of the modified AMC. Let the extended
state of the EMC at an instantl ∈ Z≥0 be denoted by
ne(l) = (n1(l), . . . , nh(l)), where the notation is identical to
that of Sec. III with the addition thatnh(l) denotes the number
of packets that the destination has received by thelth epoch.
Similarly define the extended state of the AMC with modified
buffer sizes at an instantl ∈ Z≥0 by qe(l). Define a partial
ordering of vectors ofZh

≥0 in the following manner. For two

vectorsv,v′ ∈ Zh
≥0, v � v′ if

∑h
k=i vk ≥

∑h
k=i v

′
k for each

i = 1, . . . , h. We track the system starting from initial rest (all
buffers being empty) using an instance of channel realizations.
Clearlyqe(0) � ne(0).

Suppose thatqe(l) � ne(l) for l = 0, . . . k − 1. Consider
l = k. One of the following two situations may arise8.

1. {i < h : qei (k − 1) =
∑i

j=1mi} = ∅: In this case, no
node is saturated in the AMC and hence every node
can potentially accept packets provided both the node
preceding it has packets to send and the channel allows
it. Consider the number of packets that are in the buffers
of nodesvj , . . . , vh for some0 < j ≤ h in both chains.
(i) If nj−1(k − 1) = 0 or if both nj−1(k − 1) > 0 and
Xj(k − 1) = 0 are true, then

h∑

s=j

qes(k) =
h∑

s=j

qes(k−1) ≥
h∑

s=j

ne
s(k−1) =

h∑

s=j

ne
s(k).

8For convenience, we setq0(k) = n0(k) , ∞, k ≥ 0 in this proof.

(ii) If nj−1(k−1) > 0, Xj(k−1) = 1 andqj−1(k−1) =
0 then

h∑

s=j−1

qes(k − 1) ≥
h∑

s=j−1

ne
s(k − 1)

⇒
h∑

s=j

qes(k − 1) ≥
h∑

s=j

ne
s(k − 1) + nj−1(k − 1)

≥
h∑

s=j

ne
s(k − 1) + 1.

Therefore,
h∑

s=j

qes(k) =

h∑

s=j

qes(k−1) ≥
h∑

s=j

ne
s(k−1)+1 ≥

h∑

s=j

ne
s(k).

(iii) Finally, if nj−1(k − 1) > 0, Xj(k − 1) = 1 and
qj−1(k − 1) > 0 then

h∑

s=j

qes(k) =

h∑

s=j

qes(k − 1) + 1

≥
h∑

s=j

ne
s(k − 1) + 1 ≥

h∑

s=j

ne
s(k).

Sincej was arbitrary, it follows thatqe(k) � ne(k).
2. {i < h : qei (k − 1) =

∑i

j=1mi} 6= ∅: Then, let I =

max{i < h : qei (k− 1) =
∑i

j=1mi}. In this case, nodes
vI+1, . . . , vh are not saturated and can accept packets.
The argument for

∑h

s=j q
e
s(k) ≥

∑h

s=j n
e
s(k) follows for

j = I + 1, . . . , h is similar to the previous case. Notice
that since the occupancy of nodesvi, i > I are not full,

∑

s≥I

qes(k) ≥
∑

s>I

qes(k − 1) +
∑

1≤ι≤I

mι. (47)

Now, for j = I, two cases may occur.
(i) If j = I > 1, then by (47),

∑

s≥I

qes(k) ≥
∑

s>I

qes(k − 1) +
∑

1≤ι≤I

mι

≥
∑

s>I

qes(k − 1) +mI + 1

≥
∑

s≥I

ne
s(k − 1) + 1 ≥

∑

s≥I

ne
s(k). (48)

(i) If j = I = 1, andX1(k − 1) = 0 then
∑

s≥1

qes(k) =
∑

s≥1

qes(k − 1) ≥
∑

s≥1

ne
s(k − 1) =

∑

s≥1

qes(k).

However, if j = I = 1 andX1(k − 1) = 1, then
∑

s≥1

qes(k) ≥
∑

s>1

qes(k − 1) +m1 +X2(k)

≥
∑

s>1

ne
s(k − 1) + ne

1(k) +X2(k − 1)

≥
∑

s>1

ne
s(k)−Y2(k−1) + ne

j(k) +X2(k−1)

≥
∑

s≥1

ne
s(k). (49)

xiv



Thus, the claim holds forj = I, I + 1, . . . , h. The claim
is then complete ifI = 1. Therefore, in what follows, we
may assumeI > 1.
Finally, for 1 < j < I, one of the following cases must
hold.
(i) If X1(k − 1) = 0, then

h∑

s=j

qes(k) ≥
h∑

s=I

qes(k)
47
≥

h∑

s=I+1

qes(k − 1) +

I∑

ι=1

mι

≥
h∑

s=I+1

ne
s(k − 1) +

I∑

s=1

ne
s(k − 1)

=

h∑

s=1

ne
s(k − 1) =

h∑

s=1

ne
s(k) ≥

h∑

s=j

ne
s(k)

(ii) If X1(k − 1) = 1 thenqe1(k) ≥ 1 and
∑

s≥j

qes(k) =
∑

s≥I

qes(k) + σ[2 − j]qe1(k)

≥
∑

s>I

qes(k − 1) +

I∑

ι=1

mι + σ[2 − j]

≥
∑

s>I

ne
s(k − 1) +

I∑

s=j

ne
s(k − 1) + 1

=
∑

s≥j

ne
s(k − 1) + 1 ≥

∑

s≥j

ne
s(k). (50)

Thus, the claim is true for all indicesj = 1, . . . , h and
qe(k) � ne(k). Here, it must be noted that if the buffer
sizes for the nodes of AMC are not modified as in the
hypothesis, (47) will not hold.

Finally, the upper bound follows since

C
PF

(E ,M) = lim
l→∞

qeh(l)

l
≥ lim

l→∞

ne
h(l)

l
= CPF (E ,M).

APPENDIX E
PROOF OFTHEOREM 3

Consider two rate-approximate solutions(ra,pb
a) and

(rb,pb
b) such thatrah = rbh = δ with 0 < δ < 1. Notice

thatϕ(0|rh−1, εh, 0) is a strictly decreasing function ofrh−1

whenεh is kept fixed. This follows from the fact that

1

εh

∂rh
∂rh−1

=
∂ϕ(0|rh−1, εh, 0)

∂rh−1

∝
−
(

1
1−rh−1

)2

[

1 + α0

β

(∑mh−1−1
l=0

αl

βl

)]2
< 0. (51)

An easy way to understand this behavior is to notice thatα, α0

increase withrh−1, while β decreases withrh−1. Therefore,
from (15), it follows that

rah = rbh ⇒ ϕ(0|rah−1, εi+1, 0) = ϕ(0|rbh−1, εi+1, 0)

⇒ rah−1 = rbh−1. (52)

Now, from (52) and (14) guaranteepbah−1 = pb
b
h−1. We then

use the monotonicity ofϕ(0|rh−2, εh−1, pbh−1) in conjunction
with already shown results to show thatrah−2 = rbh−2 and

pb
a
h−2 = pb

b
h−2. Extending this inductively, we havera = rb

andpb
a = pb

b. Therefore, for eachδ > 0, there is at most
one solution satisfyingrh = δ.

Now, consider two rate-approximate solutions(ra,pb
a) and

(rb,pb
b) such that0 < δa = rah < rbh = δb < 1. By

monotonicity ofϕ(0|rh−1, εh, 0), we haverah−1 < rbh−1. From
(14), we notice thatpbi is also a strictly increasing function
in both its variablesri andpbi+1. Therefore,pbah−1 < pb

b
h−1.

Again, proceeding inductively from the last node to the first
each time noticing the monotonic growth of(14) and (15),
we conclude that

rai < rbi
pb

a
i < pb

b
i

, i = 1, . . . , h. (53)

However, since (ra,pb
a) and (rb,pb

b) are both rate-
approximate solutions, we havera1 = rb1 = ε1, which
contradicts (53). Therefore, there is at most one solution to
the system of equations.

To identify the unique solution, we construct a sequence
of tuples{(r[l],pb[l])}l∈N as described in Algorithm 2. Note
that Step 2 of the algorithm can be replaced by a convergence-
type step that halts if‖r[l]−r[l−1]‖1 is smaller than a chosen
threshold.

Algorithm 2 Rate-based Iterative Estimate
1: Count = 1 andpbi[Count] = 0, i = 1, . . . , h− 1.
2: while Count≤Max_Iter do
3: pbh[Count] = 0, r1[Count] = 1− ε1, andj = 1.
4: while j < h do
5: Computerj+1[Count], pbj [Count + 1] employing

(15) and (14) (that userj [Count], pbj+1[Count])
6: j ← j + 1.
7: end while
8: Count← Count+ 1.
9: end while

By the monotonic property of the non-linear system of
equations, the following results can be established.

ri[l] < ri[l + 1]
pbi[l] < pbi[l + 1]

, l ∈ N. (54)

However, each component ofr andpb is individually bounded
by unity. Therefore, the sequence of numbers for each compo-
nent of these vectors must converge. Denote the component-
wise limit asW∗ = (r∗,pb

∗). DenoteΞ : [0, 1]h×[0, 1]h −→
[0, 1]h × [0, 1]h to be the following map. For eachr,pb ∈
[0, 1]h, denoteΞ(r,pb) to be the pair, whose first component
is the vector of rates computed from (15) and the second
component is the vector of blocking probabilities computed
from (14). Then,Ξ is a continuous map andΞ((r[l],pb[l])) =
(r[l+1],pb[l+1]) for eachl ∈ N. Also, for this sequence of
rates and blocking probabilities, we note that

‖Ξ(W∗)−W∗‖∞ ≤ ‖(r[l],pb[l])−W∗‖∞

+ ‖Ξ((r[l],pb[l]))− (r[l],pb[l])‖∞ (55)

+ ‖Ξ(W∗)− Ξ((r[l],pb[l]))‖∞.

However, the right-hand side of (55) is true for anyl ∈ N.
By allowing l → ∞, the three limits vanish and hence we see
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that W∗ = (r∗,pb
∗) is a fixed point of the map and hence

the unique solution to the system of non-linear equations.
Finally, to see the conservation of flow, notice that the Rate-

based Iterative Estimate models the system using a discrete-
time M/M/1/k system by the introduction of additional as-
sumptions and parameters. In the model, the number of
innovative packets that are successfully stored byvi as the
system progresses froml = 0 to l = N is given by

Nr∗i
(
1− Pr[ni = mi] + εi+1pb

∗
i+1 Pr[ni = mi]

)
+ o(N)

= Nr∗i
(
1− ϕ(mi|r

∗
i , εi+1, pb

∗
i+1)

(
1− ε∗i+1pb

∗
i+1

))
+ o(N)

(14)
= Nr∗i pb

∗
i + o(N). (56)

Similarly, the number of packets successfully output byvi is
given by

Nε∗i+1

(
1− Pr[ni = 0]

)
pb

∗
i+1 + o(N)

= Nε∗i+1

(
1− ϕ(0|r∗i , εi+1, pb

∗
i+1)

)
pb

∗
i+1 + o(N)

(15)
= Nr∗i+1pb

∗
i+1 + o(N) (57)

Since the M/M/1/k system is lossless, all stored packets
eventually leave the system. Thus, the average rate of packet
storage at a node must match the average rate of packets output
from that node. Comparing (56) with (57), the conservation
of packet flow for the rate-approximate solution follows.

APPENDIX F
PROOF OFTHEOREM 4

The proof elaborates the behavior of a tandem system via a
formal setup for the discrete-time equivalent of theG/M/1/k
queue [25]. To illustrate the complications in the setup, Fig. 14
presents a section of an inter-arrival period for the first node.
The number of customers in the queue of the node just
before an arrival or a departure is presented on the axis. The
arrival and departure of customers is marked by incoming and
outgoing arrows, respectively. In Scenario A, we see that the
queue is never starved and as a result all the inter-departure
times are instances of the service process.

4

4

5

5

4

4

3

3

22

2 11

0

X

Scenario A

Scenario B

1

Fig. 14. A section of inter-arrival periods at the first server (assuming it
possesses five customer slots).

However, in Scenario B, we notice that all the five customers
that are in the queue after the arrival are serviced much ahead
of the next arrival and hence there is a period of time during
which the queue is starved. If the queue were not starved,

it could have possibly serviced a customer at the instance
marked by the outgoing dotted arrow. Hence, this duration
of time denoted byX in the figure, adds a delay to the inter-
departure time. Thus, if we are able to extract the distribution
{fX(i)}i∈N of this duration, we can identify the inter-arrival
distributiongout as seen by the second node to be a weighted
sum offX ⊗G(ζN ) andG(ζN ).

In order to identify the distributionfX , we need to identify
the probability distributionπ of the number of customers
in the first node’s buffer just after an arrival. The first step
in identifying π from the imbedded Markov chain for the
occupancy of the first node is to construct the distribution
{Dj}j∈Z≥0

of the number of packets that could be potentially
transmitted during an inter-arrival durationTA provided the
queue were infinite. This distribution can be computed from
the arrival and departure processes in the following manner.

Dj =
∞∑

k=1

Pr[TA = k]

(
k

j

)

ζ̃k−j
N ζ̃

j

N

=

∞∑

k=1

(
N−1∑

l=1

plζ lζ
k−1
l

)
(
k

j

)

ζ̃k−j
N ζ̃

j

N

=

N−1∑

l=1

pl
ζl
ζl

[ ζ̃N

ζ̃N

]j(
∞∑

k=1

(
k

j

)

(ζlζ̃N )k
)

(a)
=
[ ζ̃N

ζ̃N

]j
N−1∑

l=1

plζ l
ζl

( (ζlζ̃N )j

(1− ζlζ̃N )j+1
− σ[1− j]

)

, (58)

where in the above, we usẽζN , ζN+ζN (1−q) to incorporate
the actual parameter of the memoryless service time, and in
(a), we use 1

(1−x)n+1 =
∑

r≥0

(
r
n

)
xr−n, 0 < |x| < 1. For

each i, j ∈ {1, . . . ,m}, the (i, j)th entry of the probability
transition matrixPπ for the imbedded Markov chain that tracks
the number of customers just after an arrival can be computed
by

(Pπ)i,j = σ[2− j]
( ∞∑

k=i

Dk

)

+ σ[j − 1]Di+1−j

+ σ[j −m+ 1]Di−j. (59)

Note that in (59), we setDk = 0 whenk < 0. The distribution
π can then be solved from the eigenvector relationπ(I−Pπ) =
0. Note that a packet arriving at the first node will not be
accepted if the node is in full buffer and no packet had left
in the preceding inter-arrival duration. The probability of this
blocking event at the first node is given by

P(gin,mi, ζN , q) , πmD0. (60)

Finally, we can identify the distribution ofX by condi-
tioning on the number of customersM just after a customer
arrival. It is seen that fori, k > 0,

Pr[X = i|M = k] =

∞∑

j=1

[
Pr[the queue is emptied at timej]
×Pr[TA = i+ j]

]

=

∞∑

j=1

(
j − 1

k − 1

)

ζ̃
k

N ζ̃
j−k
N

[N−1∑

l=1

piζlζ
i+j−1
l

]
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=

N−1∑

l=1

plζlζ
i−1
l

[ ζ̃
k

N

ζ̃kN

∞∑

j=1

(
j − 1

k − 1

)

(ζlζ̃N )j
]

=

N−1∑

l=1

(

pl
(ζlζ̃N )k

(1− ζlζ̃N )k

)

(ζ lζ
i−1
l ). (61)

From (61), we notice that the distribution ofX conditioned
onM = k is a weighted sum of geometric distributions. The
distribution ofX can then be computed as follows.

fX
i =

∑m
k=0 πk Pr[X = i|M = k]

∑m
k=0 πk Pr[X ≥ 1|M = k]

=

l∑

l=1

βlζ lζ
i−1
l ,

βl = pl

[
∑

k∈{0,...,m}

l={1,...,N−1}

pl
πk(ζl ζ̃N )k

(1− ζlζ̃N )k

]−1 ∑

0≤k≤m

πk(ζlζ̃N )k

(1− ζlζ̃N )k

Also, we notice that the distribution of inter-arrival times gout

as seen by the second node is either an instance offX⊗G(ζN )
or that ofG(ζN ), and hence can be written as

gout ,
(
αfX + (1− α)I)
︸ ︷︷ ︸

,Υ(gin,m,ζN ,q)

⊗G(ζN ) (62)

for someα ∈ [0, 1]. The last step in constructing the inter-
departure distribution is to identifyα. This is done by noticing
the mean duration between departures. Over a large duration
N , the number of packets that are accepted at the first node
is given by N

〈gin〉 (1 − P(gin,mi, ζN , q)) + o(N). The number
of packets that are accepted by the second node is given by

N

α〈fX〉+ α
1−ζN

(1−q)+o(N). Since the system has finite buffer

size and no loss, the rates must match. Therefore, one can
identify α using the following.

1

α〈fX〉+ α
1−ζN

(1− q) =
1

〈gin〉
(1−P(gin,mi, ζN , q)). (63)

Finally, notice that ifµ 6= λ, we haveG(λ)⊗G(µ) =
1− λ

µ− λ
G(µ) +

1− µ

λ− µ
G(λ). (64)

Using the above we can see that

gout =

N−1∑

l=1

αβlζN
ζl − ζN

G(ζl) +
(

α+

N−1∑

l=1

αβlζl
ζN − ζl

)G(ζN ), (65)

which is also a weighted sum of geometric distributions.

APPENDIX G
PROOF OFTHEOREM 5

We present below a fundamental result that will be used in
various stages of the proof.

Lemma 2:LetX be a vector space over a finite fieldFq and
let S (A) , span(A) for anyA ⊆ X . Let U = {u1, . . . , uk}
and V = {v1, . . . , vk′} be two subsets such thatS (V ) (

S (U ∪V ). Then, leta be selected uniformly at random fromFk
q and setV ′ = V ∪ {

∑k

j=1 aiui}. Then,

Pr
[

dim
(
S (V )

)
≮dim

(
S (V ′)

)]

<
qdim(S (U)∩S (V ))

qdim(S (U))
. (66)

Proof: Let G0 be the set of all vectorsb ∈ Fk such that
∑k

j=1 biui = 0. ThenG0 forms a commutative group under
componentwise addition. Similarly, let for eachu ∈ S (U),
let Gu be the set of vectorsb ∈ Fk such that

∑k
j=1 biui = u.

It is follows that{Gu : u ∈ S (U)} ∼= Fk/G0, i.e., they are
the coset translates of the subgroupG0. Therefore, uniform
selection of the coefficients to perform a linear combination
results in the selection of a vector inS (U) uniformly at
random. Notice thatdim(S (V ′)) = dim(S (V )) if and only
if
∑k

j=1 aiui ∈ S (U) ∩ S (V ). Note that the occurrence of
this event is improbable for large fields, since

Pr
[
dim(S (V ′)) = dim(S (V ))+1

]
= 1−

qdim(S (U)∩S (V ))

qdim(S (U))
.

Corollary 1: Let A be ak×n matrix with entries fromFq

such that rank(A) = r. Let b ∈ Fn
q be selected uniformly at

random. Then,

Pr[AbT = 0] = q−r. (67)

The basic idea of the proof is to construct a chain for the
setting without feedback that is similar to the EMC. Once the
chain is identified, the proof will be completed by showing that
the transition probabilities of each transition approaches that
of the EMC as the field size is made large. To this end, allow
Mi(l) to be the packet received by the nodevi at thelth epoch.
SetMi(l) = 0 if the (vi−1, vi) channel erases the transmitted
packet at thelth epoch. For the sake of proof, each epoch is
divided into h sub-epochs. Since the network is assumed to
work in a transmit-first mode, the network updates the buffers
in a reverse-hop fashion, i.e., at thej th sub-epoch, the message
generated byvh−j is used to update that ofvh−j+1. Define
Bi(l, j) = {Pi,k(l, j) : k = 1, . . . ,mi} to be the set of packets
in the buffer of vi after thej th sub-epoch of thelth epoch.
For notational ease, letWi(l, j) , span

(
⋃

h≥i′≥i

Bi′(l, j)
)

for

i ∈ {1, . . . , h} and j ∈ {1, . . . , h}. Note that the system is
uniquely described by the dynamics of the nested vector spaces
{
Wi(l, h)

}h

i=1
. Define occupancy for this coded setting as

ηi(l, j) = dim(Wi(l, j))−dim(Wi+1(l, j)),
1 ≤ i < h
1 ≤ j ≤ h

. (68)

Notice that this notion of occupancy denotes the number of
additional innovativepackets that is housed byvi at the lth

epoch that has not been conveyed to downstream nodes. Also
note that at thej th sub-epoch of thelth epoch, the only buffer
that changes is that ofvh−j+1 due to the receipt ofMh−j(l).
Thus,

Wi(l, j) = Wi(l, j − 1),
ηi(l, j) = ηi(l, j − 1),

1 ≤ i ≤ h, i 6= h− j + 1
1 ≤ i < h, i 6= h− j, h− j + 1

To investigate the change of occupancy9 after the j th sub-
epoch of thelth epoch for nodesvh−j and vh−j+1, we have
to consider the following cases.

9In accordance with the notation of (2) and (7), occupanciesni(l+1) and
ñi(l + 1) correspond toηi(l, h) in this setup.
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1. j = 1: If ηh−1(l − 1, h) > 0, then by Lemma 2, we see
that

dim(Wh(l, 1)) = dim(span(Wh(l − 1, h) ∪ {Mh(l)}))

= dim(Wh(l − 1, h)) + 1

with probability at least1− 1
q
. Therefore, it follows that

ηh−1(l, 1) = ηh−1(l−1, h)−1 with high probability10. If
on the other handηh−1(l−1, h) = 0, thenηh−1(l, 1) = 0
anddim(Wh(l, 1)) = dim(Wh(l − 1, h)).

2. j > 1, Xh−j+1(l) = 0: In this case,Mh−j+1(l− 1) = 0
and there is no update at the buffers of the nodevh−j+1.
Therefore,

Wh−j+1(l, j) = Wh−j+1(l, j − 1)
ηh−j(l, j) = ηh−j(l, j − 1)
ηh−j+1(l, j) = ηh−j+1(l, j − 1)

. (69)

3. j > 1, Xh−j+1(l) = 1, ηh−j+1(l, j − 1) < mh−j+1 and
ηh−j(l, j − 1) ≥ 0: Notice that in this case, since the
occupancy ofvh−j+1 before the update is not full, there
existsa ∈ Fmh−j+1

q \ {0} such that
mh−j+1∑

k=1

akPh−j+1,k(l, j−1) ∈ Wh−j+2(l, j − 1)
︸ ︷︷ ︸

(=Wh−j+2(l,j))

. (70)

Suppose thatb ∈ Fmh−j+1
q is used to update

Bh−j+1(l, j − 1) with the messageMh−j+1(l). Then,
mh−j+1∑

k=1

akPh−j+1,k(l, j) ∈ Wh−j+1(l, j)
︸ ︷︷ ︸

(⊇Wh−j+2(l,j))

⇔

[

Σkakbk)Mh−j+1(l)

+ ΣkakPh−j+1,k(l, j − 1)
︸ ︷︷ ︸

∈Wh−j+2(l,j)⊆Wh−j+1(l,j)

]

∈ Wh−j+1(l, j)

⇔ (Σkakbk)Mh−j+1(l) ∈ Wh−j+1(l, j)

Now, note that the vectora is not unique and that the
set of all vectors that relate the contents ofvh−j+1

form a vector space overFq of dimensionmh−j+1 −
ηh−j+1(l, j − 1). Let A be the matrix generated by
enlisting all the vectors in this space as rows. Then
rank(A) = mh−j+1 − ηh−j+1(l, j − 1) and by Cor. 1,
Pr[AbT = 0] = 1

q
mh−j+1−ηh−j+1(l,j−1) . Therefore, by

choosing a large field size, the probability of the event
Mh−j+1(l) ∈ Wh−j+1(l, j) can be made arbitrarily
close to unity. Finally from Lemma 2, we see that
if ηh−j(l, j − 1) > 0, then Mh−j+1(l) is innovative
w.h.p. It is straightforward to see that in this setting, if
ηh−j(l, j − 1) > 0, an innovative packet is conveyed
w.h.p. fromvh−j to vh−j+1 and

ηh−j+1(l, j) = ηh−j+1(l, j − 1) + 1
ηh−j(l, j) = ηh−j(l, j − 1)− 1

(71)

Finally, if ηh−j(l, j − 1) = 0, we notice that both
occupancies remain unaltered w.h.p.

10Throughout this section, by ‘with high probability’ we meanthat we can
guarantee any probability close to unity by choosing a largefield sizeq.

4. j > 1, Xh−j+1(l) = 1, ηh−j+1(l, j − 1) = mh−j+1 and
ηh−j(l, j − 1) > 0: Suppose that by updating the buffers
of vh−j+1 with Mh−j+1(l) (using a randomly selected
b), we introduce a linear dependency in the newly formed
buffer entries. That is,∃a ∈ Fmh−j+1

q \ {0} such that

ΣkakPh−j+1,k(l, j) ∈ Wh−j+2(l, j)
︸ ︷︷ ︸

(=Wh−j+2(l,j−1))

⇔

[

(Σkakbk)Mh−j+1(l)

+ΣkakPh−j+1,k(l, j − 1)
︸ ︷︷ ︸

∈Wh−j+1(l,j−1)

]

∈ Wh−j+2(l, j − 1)
︸ ︷︷ ︸

⊆Wh−j+1(l,j−1)

⇔ (Σkakbk)Mh−j+1(l) ∈ Wh−j+1(l, j − 1)

⇔ (Σkakbk = 0) ∨
(
Mh−j+1(l) ∈ Wh−j+1(l, j − 1)

)

However, from Lemma 2 and Cor. 1,Pr[Mh−j+1(l) ∈
Wh−j+1(l, j − 1)] < O(1

q
) andPr[

∑

k akbk = 0] = 1
q
.

Therefore, w.h.p. there is no linear dependency introduced
after update and the occupancy is unaltered in this case.

5. j > 1, Xh−j+1(l) = 1, ηh−j+1(l, j − 1) = mh−j+1 and
ηh−j(l, j − 1) = 0: Just like before, the aim here is to
show that there will be no change in occupancy. Since
in this case,vh−j has no innovative packets, the message
it generates will be a linear combination of packets in
vk, k > h − j. Therefore, we can writeMh−j+1(l) =
∑

k ekPh−j+1,k(l, j−1)+W , whereW ∈ Wh−j+2(l, j−
1) ande ∈ Fmh−j+1

q . Letb ∈ Fmh−j+1
q be used to update

the buffer ofvh−j+1 and leta ∈ Fmh−j+1
q , then,

ΣkakPh−j+1,k(l, j) ∈ Wh−j+2(l, j)

⇔

[

ΣkakPh−j+1,k(l, j − 1)

+(Σkakbk)Mh−j+1(l)
] ∈ Wh−j+2(l, j)

⇔ Σk,l

[
ak + ekalbl

]
Ph−j+1,k(l, j − 1) ∈Wh−j+2(l, j)

Note that the above is true if only ifak+ek(
∑

l albl) = 0
for 1 ≤ k ≤ mh−j+1, since ηh−j+1(l, j − 1) =
mh−j+1. Therefore, a linear dependency of stored pack-
ets arises if and only if there is a non-trivial solution
for (1 + eTb)x = 0, wheree = [e1, . . . , emh−j+1

], and
b = [b1, . . . , bmh−j+1

]. However, this occurs if and only
if det

(
I + eTb

)
6= 0. Finally, note that this determinant

is zero if and only ifbeT = −1. However, this event
occurs with probabilityO(1

q
), since the vectorb is chosen

uniformly at random fromFmh−j+1
q . Therefore, w.h.p.

there is no linear dependency induced in the contents of
vh−j+1 and the occupancy ofvh−j+1 remainsmh−j+1.

To summarize,

a. Although the dynamics of the system are driven by the
spaces{Wi(l, j)}i,l,j , the transitions and their probabil-
ities depend only on{ηi(l, j)}l≥0, i = 1, . . . , h − 1,
j = 1, . . . , h, and not the spaces as such. Therefore,
the system can be equivalently modeled using just these
occupancy vectors as states.

b. The transition probabilities for the chain given by occu-
pancies{ηi(l, h)}l≥0, i = 1, . . . , h − 1 approach that of
the EMC as the field size is made large.
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Finally, since the steady-state probability is a continuous
function of the probability transition matrix, the steady-state
probabilities of the chain for networks without feedback
approaches that of the EMC, thereby guaranteeing that the
throughput achieved by the random coding scheme over a line
network without feedback is asymptotically the same as thatof
a line network with identical parameters and perfect feedback.
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