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ABSTRACT. We study the problem of authentication based on a weak key in the information-theoretic setting.
A key is weak if its min-entropy is an arbitrary small fraction of its bit length. This problem has recently
received considerable attention, with different solutions optimizing different parameters. We study the problem
in an extended setting, where the weak key is as a one-time session key that is derived from a public source
of randomness with the help of a (potentially also weak) long-term key. Our goal now is to authenticate a
message by means of the weak session key in such a way that (nearly) no information on the long-term key
is leaked. Ensuring privacy of the long-term key is vital for the long-term key to be re-usable. Previous work
has not considered such a privacy issue, and previous solutions do not seem to satisfy this requirement.

We show the existence of a practical four-round protocol that provides message authentication from a
weak session key and that avoids non-negligible leakage on the long-term key. The security of our scheme also
holds in the quantum setting where the adversary may have limited quantum side information on the weak
session key. As an application of our scheme, we show the existence of an identification scheme in the bounded
quantum storage model that is secure against a man-in-the-middle attack and that is truly password-based:
it does not need any high entropy key, in contrast to the scheme proposed by Damgard et al..

1. Introduction

1.1. The Problem. We consider the problem of achieving authentic communication over a public
channel that might be under the control of an active adversary. We study this problem in the information-
theoretic setting, i.e. we assume the adversary to be computationally unbounded.

Specifically, we consider the following scenario. Alice and Bob share a long-term key W. When needed,
Alice and Bob can extract a weak session key Xy from an auxiliary source of randomness with the help
of W. It should be guaranteed by the property of the auxiliary source that a potential adversary Eve who
does not know W has limited information on the weak session key Xyy. This is formalized by requiring that
Hpin(Xw|WE) > k for some parameter k, where E denotes Eve’s side information. Examples of where this
scenario occurs naturally are the bounded storage model, where W determines which part of the huge string
to read, or the quantum setting, where W determines in which basis to measure some quantum state.

The goal now is to authenticate a message p from Alice to Bob with the help of the weak session key
Xw, in such a way that (1) Eve cannot tamper with p without being detected, and (2) Eve learns (nearly)
no information on the long-term key W. We stress that property (2) is vital for Alice and Bob to be able
to re-use W. Note that once Alice and Bob can do message authentication with a weak key, then they can
also do key agreement, simply by doing standard randomness extraction where the seed for the extractor is
communicated in an authentic way.

We want to emphasize that, by assumption, every new session key Xy for the same long-term key W
contains fresh randomness, provided by the auxiliary source. Therefore, the goal above does not contradict
the well-known impossibility result of re-using an authentication key without refreshing. Also note that
we do not specify how exactly the auxiliary source of randomness produces Xy from W; on the contrary,
we want security no matter how Xy is obtained, as long as Xy contains enough min-entropy (given the
adversary’s information and W).
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1.2. Related Work. Let n be the bitsize of the key (in our case, the session key) and k its min-entropy
(in bits). It was proved by Dodis and Wichs [DW09] that non-interactive authentication is impossible when
k < n/2, even when the parties have access to local non-shared randomness, which we will assume. For a
good overview of earlier work on the case where k > n/2, we refer to [DW09].

The first protocol for interactive authentication from arbitrarily weak keys is due to Renner and Wolf
[RWO03]. It requires O(¢) rounds of interaction to authenticate an ¢-bit message. In [DW09], an authenti-
cation protocol from arbitrarily weak keys is described that only needs two rounds of interaction, which is
optimal (in terms of the number of rounds). Chandran et al. [CKOR10] focus on minimizing entropy loss
and describe a privacy amplification protocol that is optimal with respect to entropy loss (up to constant
factors). Their construction needs a linear number of rounds (linear in the security parameter).

The case where Alice and Bob share highly-correlated, but possibly unequal keys — the “fuzzy” case —
is addressed in [RW04] and improved upon by Kanukurthi and Reyzin [KR09], but also covered by [DW09]
and [CKOR10].

We stress that none of these works address the case where the weak key is obtained from a long-term
key and where security of the long-term key needs to be guaranteed.

1.3. Our Contributions. We propose a new four-round protocol for message authentication with a
weak session key Xyy. We prove that our protocol satisfies security and long-term key privacy, meaning
that the adversary Eve cannot tamper with the authenticated message without being detected, nor does
she learn any (non-negligible amount of) information on the long-term key W. Our proofs also apply in the
quantum setting, where Eve’s bounded knowledge on Xy may be in the form of a quantum state.

We also discuss how our techniques can be applied in the fuzzy case, where there are some errors
between Alice and Bob’s weak session keys. Finally, we outline how our scheme can be used to improve an
existing password-based identification scheme in the bounded-quantum-storage model (more details on this
application are given below).

1.4. Application. Our main application is to password-based identification in the bounded-quantum-
storage model, as proposed by Damgard et al. [DFSS07]. Two identification schemes were proposed in
[DFSS07], Q-ID, which is only secure against dishonest Alice or Bob, and Q-ID*, which is also secure
against against a man-in-the-middle (MITM) attack. However, only Q-ID is truly password-based; in Q-
IDT, Alice and Bob, in addition to the password, also need to share a high-entropy key. By incorporating
our new techniques into Q-/DT, we show the existence of a truly password-based identification scheme in
the bounded-quantum-storage model with security against MITM attacks.

Based on Q-/DT, Damgard et al. also propose an authenticated quantum key distribution scheme in
the bounded quantum storage model, which, in contrast to standard quantum key distribution schemes,
does not require authenticated communication but has the authentication “built in”.! Our relaxation on
the required key material in Q-/ID™ also affects their authenticated quantum key distribution scheme and
circumvents the need for a high entropy key. As a result, we obtain a truly password-based authenticated
quantum key distribution scheme in the bounded-quantum-storage model.

1.5. Organization of the Paper. The paper is structured as follows. In Section 2 we introduce no-
tation, give some standard definitions and introduce the security definition that our authentication protocol
should fulfill. Then, in Section 3, we describe an existing authentication protocol that we use as a basis for
our protocol. We also explain there why this existing protocol does not fulfill our security definition, and
we discuss some steps how we extend that protocol. This ultimately leads to our own protocol AUTH, which
is introduced in Section 4. In the same section, we present an important lemma that is used in the security
proof to deal with a certain circularity issue. Section 5 consists of the proofs for security and privacy. In
Section 6 we argue that our authentication protocol can also be used in the fuzzy case and finally Section 7
discusses our application. Results related to instantiating our protocol can be found in Appendix A.

1Furthermore, in contrast to using standard quantum key distribution in combination with standard authentication, in the
authenticated quantum key distribution scheme the authentication keys can be re-used.
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2. Notation and Preliminaries

We prove security of our scheme in the presence of a quantum adversary with quantum side information,
and below we introduce some suitable notations. However, we stress that most of the notation and the
proofs can also be understood from a purely classical information-theoretical point of view.

The state of a quantum system X is given by a density matrix px, i.e., a positive-semidefinite trace-1
matrix acting on some Hilbert space Hx. We denote the set of all such matrices, acting on Hx, by P(Hx).
In the special case where px is diagonal, X is called classical, and in this case we can understand X as a
random variable, where its distribution Px is given by the diagonal entries of px. In this case, we tend to
slightly abuse notation and write X € X to indicate that the range of the random variable X is X.

If X is part of a bi-partite system X FE, then X is called classical if the density matrix pxg of XFE
is of the form pxp = ), Px(z)|x)z| ® pg|x=s, Where Px is a probability distribution, {|z)}, forms an
orthonormal basis of Hx, and pgx—, € P(Hg). In this case, X can be understood as random variable,
and system F is in state pg|x—, exactly if X takes on the value 2. We therefore sometimes also speak of a
random variable X and a quantum system £. To simplify notation, we often write pf instead of pg|x—;-
Readers that are unfamiliar with quantum information can safely think of E as being classical as well, in
which case the pg x_,’s are all diagonal, with the probabilities of the conditional distributions Pg x(-[z) as
diagonal entries.

The distance between two states px,ox € P(Hx) is measured by their trace distance 1||px — ox|1,
where || - ||1 is the Ly norm.? In case of classical states, i.e., px and ox correspond to distributions Py and
Qx, the trace distance coincides with the statistical distance 3 >°_ |Px(z) — Qx(z)|.

In the following definitions, we consider a bi-partite system X E with classical X. X is said to be random
and independent of E if pxp = pu ® pg, where py is the fully mixed state on Hx (i.e., U is classical and
- as random variable - uniformly distributed). In case of classical F, this is equivalent to Pxyp = Py - Pg
(in the sense that Pxg(x,e) = Py(z) - Pe(e) Vx,e). The following definition measures how far away X F is
from such an ideal situation.

DEFINITION 1 (Distance to Uniform). The distance to uniform of X given E is defined as
d(X|E) := gllpxe — v @ pelh-
If also E is classical, then d(X|FE) simplifies to

d(X|E) = 2ZUDXEM Py(z)Pgp(e)l =Y Pu(e) 3 |Pyp(ale) — Pu(x)].

It is not too hard to show that for a tri-partite system XY F with classical X and Y

dX|[YE)=> Py(y)dX|E,Y =y).
yey

From this, the following lemma follows immediately.
LEMMA 2. For any y: d(X|E,Y =y) < d(X|YE)/PrlY =y].
DEFINITION 3 (Guessing Probability). The guessing probability of X given E is defined as
Guess(X|F) := sup ZPX M, p%),

J:'Q:Z'

where the supremum is over all POVMs {My}s on Hg.
In case also F is classical, Guess(X|FE) simplifies to the standard average guessing probability

Guess(X|E) = ZPE e) max Px|g(zle).
x

DEFINITION 4 (Min-Entropy). The min-entropy of X given E is defined as
Hpin(X|E) := —log Guess(X |E).

2Defined by [|A|): := trace(v AT A), where A" denotes the Hermitian transpose.
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This definition coincides with the definition introduced by Renner [Ren05], as shown by [KRS09]; in case
of a classical E, it coincides with the classical definition of conditional min-entropy (see e.g. [DORS08]).

DEFINITION 5. A function Ext : {0,1}*x{0,1}¢ — {0,1}™ is a (k,€)-strong extractor, if for any bipartite
quantum system X E with classical X and with Hyin (X |E) > k, and for a uniform and independent seed Y,
we have

d(Ext(X,Y)|YE) <e.

Note that we find “extractor against quantum adversaries” a too cumbersome terminology; thus we just
call Ext a (strong) extractor, even though it is a stronger notion than the standard notion of a (strong)
extractor. When necessary, we distinguish between the two notions by saying that an extractor is or is not
secure against quantum side information.

A well-known example of a strong extractor (that is secure against quantum side information) is a two-
universal hash function h : {0,1}" x {0,1}¢ — {0,1}4. Indeed, for any X E with classical X, and for Y an
independent seed, uniformly distributed on {0, 1}¢ privacy amplification [RK05] guarantees that

1
d(h(X,Y)|YE) < % 20-Hun(XIVE) = _ /91 Guess( X[V B).

2.1. Security Definition. In the scope of this paper, an authentication protocol is understood as a
classical protocol between two parties Alice and Bob. Alice inputs a message 4 and a weak session key Xy,
and Bob inputs a message i/ and the same session key Xyp. At the end of the protocol, Bob announces
a Boolean decision whether to “accept” or “reject”. The weak session key Xy may depend arbitrarily
on a long-term key W. During the execution of the protocol, an adversary Eve has full control over the
communication between Alice and Bob.

We require the protocol to fulfill the following formal definition.

DEFINITION 6. Let E,, E denote Eve’s respective a priori and a posteriori quantum systems, where the
latter includes Bob’s decision on whether to accept or reject. A (n,k,m,d,e) message authentication protocol
with long-term-key privacy is defined to satisfy the following properties:

CORRECTNESS: If there is no adversary Eve present, then for any message € {0,1}™ and p/ = p, and for
any (distribution of the) key Xy € {0,1}"™, Bob accepts with certainty.

SECURITY: If Hpin(Xw|WE,) > k, then for any p,u' € {0,1}™ with u # u', the probability that Bob
accepts is at most 9.

LoNG-TERM-KEY PRIVACY: If pwg, = pw ® pr, and Huyin(Xw|WEs) > k, then

1
§HPWE —pw ®@pel <e.

3. Authentication from Weak Keys — The Dodis-Wichs Scheme

Here, we describe a slightly modified version of the two-round message authentication protocol due to
Dodis and Wichs [DW09]. Our construction will be based on this protocol. We start by giving a few
definitions that are crucial for the understanding of the protocol by Dodis and Wichs.

DEFINITION 7 (Epsilon Look-Aheadness). Let t,{ be positive integers. Let A := (A1,...,A:) and B =
(B, ...,By) be random variables over ({0,1}°), and let E be a quantum system. For alli € {0,...,t — 1}
let g; be defined as

g 1= d(Ai—H oo At‘Bl N BzE) .

The ordered pair (A, B) is e-look-ahead conditioned on E if ¢ > max;¢;.

DEFINITION 8 (Look-Ahead Extractor). laExt : {0,1}" x {0, 1} — ({0, 1}*)? is called a (k,<)-look-ahead
extractor if for any random variable X € {0,1}" and quantum system E with Huyin(X|E) > k the following
holds. Let S € {0,1}¢ be a independent and uniformly distributed seed, and let S € {0,1}¢ be adversarially
chosen given S and E; this may involve a (partial) measurement of E, resulting in the new state E'. Then,
the ordered pair (R, R) where R = (Ry,...,R;) = laExt(X;S) and R = (Ry,...,R;) := laExt(X;S) is
e-look-ahead conditioned on S, S and E'.
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Informally, a look-ahead extractor has the property that even if the adversary is allowed to modify the
seed, when given the first ¢ blocks of the key that is extracted using the modified seed, the remaining blocks
of the key that is extracted using the correct seed still look random.

DEFINITION 9 (Look-ahead security). A family of functions {MAC : {0,1}" — {0,1}*} indexed by keys
k€ ({0,1}9)¢ is an (e,0) look-ahead secure MAC if for any pair of fived and distinct messages pa, up €
{0,1}Y™, ua # pB, and any ordered pair of random variables (K, K') € ({0,1}%)?* satisfying the look-ahead
property with parameter € conditioned on quantum system FE,

Guess(MACk (1) | MACk/ (ua)E) < 6.

We are now ready to present the Dodis and Wichs message authentication protocol DW-MAC. The protocol
we present here is slightly modified in that we assume that Alice has already sent her message pa to Bob,
who has received it as pup (possibly # pa). This modification is for simplicity, and because we do not aim
at minimizing the number of rounds. Xy is the weak key, known to both Alice and Bob. The function
laExt: {0,1}" x {0,1}¢ — ({0,1}%)* is a (k,e)-look-ahead extractor and MACy : {0,1}™ — {0,1}* is a (¢, §)
look-ahead secure MAC.

Protocol DW-MAC

A]ice(XW, MA) BOb(Xw, /LB)
R er {0, l}d
- R’
K = lakExt(Xw; R) K := lakExt(Xw; R)
Ta := MACk (ua) Tg := MACk (uB)
Ta

accept if: Ta = Tp
else: abort

Security of DW-MAC follows immediately from the definitions of the underlying building blocks: laExt
ensures that Alice and Bob’s versions of the key K satisfy the look-ahead property, and in this case it is
guaranteed that MAC acts as a secure MAC, even when Alice’s key was modified.

However, in our setting where we additionally want to maintain privacy of the long-term key W, which
may arbitrarily depend on Xy, DW-MAC does not seem to be good enough — unless Eve remains pas-
sive. Indeed, if Eve does not manipulate the communicated seed R, then by the assumed lower bound on
Hpin(Xw|WE), it follows that the extracted K on Bob’s side is close to random and independent of W
(and F), and thus T' leaks no information on W. However, if Eve manipulates the seed R (for instance
replaces it by a value of her choice), then there is no guarantee anymore that K, and thus 7', does no leak
information on W.

Another and more subtle way for Eve to (potentially) learn information on W is by not manipulating the
message, i.e., have yp = pp, but manipulate the seed R and try to obtain information on W by observing
if Bob accepts or not.

3.1. Towards Achieving Key-Privacy. We give here some intuition on how we overcome the above
privacy issues of DW-MAC with respect to the long-term key W. Similarly to our notation T4 and T3 to
distinguish between the tag computed by Alice and by Bob, respectively, we write Rpo and Rp etc. to
distinguish between Alice and Bob’s values of R etc., which may be different if Eve actively manipulates
communicated messages.



6 NIEK J. BOUMAN AND SERGE FEHR

A first approach to prevent leakage through T4 is to one-time-pad encrypt Ta. The key for the one-
time-pad is extracted by means of a strong extractor Ext from Xy, where Alice chooses the seed:

Alice Bob
— R
S er {0, 1}k
Z = Ext(Xw; S)
Q:=TrdZ _5Q .

Z = Ext(Xw; S)
accept if: Q=T Z

In the above protocol (and also below), we understand T and Tg to be computed as in DW-MAC. Note that
since it is Alice who chooses the seed S and since Hyi, (Xw|W E) is lower bounded, Zy is guaranteed to be
(close to) random and independent of W (and F), and thus hides all information that T might leak on W.
However, this modification renders the security of the scheme invalid. For instance, we cannot exclude that
by modifying the seed S appropriately, Eve can enforce Zp = Tp, so that she only needs to send Q = 0 to
have Bob convinced.

In order to re-gain security while still preventing information to leak through T, we let Bob choose a
random non-zero “multiplier” for the one-time pad key Z:

Alice Bob

- B
S er {0, 1} C er {0,1}F\ {0}*
Z = Ext(Xw;S)

-

C

abort if C =0
Q=ToC -Z Q

Z = Ext(Xw;S)
accept if: Q=T C-Z

The multiplication C - Z is to be understood in the corresponding binary field. Leakage through T} is still
prevented since a non-zero multiple of a good one-time-pad key is still a good one-time-pad key. Furthermore,
for security, we can intuitively argue as follows. Consider a snapshot of an execution of the protocol after
S has been communicated. We now give Eve the value T for free; this only makes her stronger. By the
security of the underlying DW-MAC scheme, we know that it is hard for Eve to guess 1. Now, assuming that
there exist two distinct values for C' for which Eve can predict the corresponding value Qp =1 ® C - Z,
it follows immediately that Eve can actually predict Tg; a contradiction. Hence, there can be at most one
value for Bob’s choice of C' for which Eve can guess QJp reasonably well.

We point out that the above intuitive reasoning involves rewinding; this is fine in the classical but fails in
the quantum setting (see e.g. [VDG98]). Thus, in our formal security proof where we allow Eve to maintain
a quantum state, we have to reason in a different way. As a consequence, in the actual protocol, @ is
computed in a slightly different way.

One issue that is still unsolved is that Bob’s decision to accept or reject may also leak information on
W when pa = pp and Eve modifies one (or both) of the seeds R and S. Note that this is not an issue if
pua # pp because then, by the security, Bob rejects with (near) certainty. For instance it might be that
changing the first bit of S changes Z or not, depending on what the first bit of Xy is. Thus, by changing
the first bit of S and observing Bob’s decision, Eve can learn the first bit of Xy, which may give one bit
of information on W. The solution to overcome this problem is intuitively very simple: we use MAC not
only to authenticate the actual message, but also to authenticate the two seeds R and S. Then, like in the
case up # up, if Eve changes one of the seeds then Bob’s decision is determined to be reject. Note that
this modification introduces a circularity: the key K, which is used to authenticate the seed R (amongst
the message and S) is extracted from Xy by means of the seed R. However, it turns out that we can deal
with this.
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4. Main Construction

We now turn to our construction for the message authentication protocol with long-term-key privacy
(Definition 6). In the construction, we will use DW-MAC as a building block. Informally speaking, the basic
idea is to encrypt the authentication tag from DW-MAC using a one-time pad, which prevents key leakage.
The key for this one-time pad is established in a challenge-response sequence, from a mix of local and shared
randomness. Additionally, we use the DW-MAC protocol to authenticate some of the extractor seeds that
appear in the construction, to prevent key-leakage from Bob’s accept/reject decision.

Let laExt : {0,1}" x {0,1} — ({0,1}*)! be a (kg, ex ) look-ahead extractor. Let Ext : {0, 1} x {0,1}" —
{0,1}9 be a (kz,ez)-strong extractor. Let MAC : ({0,1})t x ({0,1}™ x {0,1}¢ x {0,1}?) — {0,1}* be a
(e, A + €) look-ahead secure MAC, for any € > 0. Let Xy be the session key, shared among Alice and
Bob, and satisfy Hpin(Xw|W Es) > max(ki + ¢, kz). The “@” symbol represents bit-wise addition modulo
2. Multiplication, denoted by “”, should be understood as multiplication in the corresponding finite field:
GF(2°%) or GF(29). We write [b], for the ¢ most significant bits of the bit-string b. Protocol AUTH is shown
below.

Protocol AUTH (X, ua; Xw, uB)

Alice Bob
R eg {0,1}¢
R
K = laExt(Xw; R) K = laExt(Xw; R)
S er {O, 1}v
5
Z = Ext(Xw; S) 7 = Ext(Xw; S)
TA = MACK<(,uA,R, S)) TB = MACK((MB,R, S))
Uer{0,1}%,V egr {0,1}2\ {0}¢
UV
if U,V = 0: abort
Q:=[U -Talq®V-Z
Q

accept if: Q =[U-Tp|, &V -Z
else: abort

In Appendix A, we show how to instantiate the building blocks to obtain a scheme with reasonable
parameters. In doing so, we use similar techniques as [DW09], except that we replace the strong extractors
that are part of the look-ahead extractor construction by extractors that are proven secure against quantum
side information (by [DPVRO09)).

Depending on the parameters of an instantiation of AUTH and on the bitsize of u 4, it might be beneficial,
or could even be necessary, to authenticate a hash of the tuple (ua, R,S), instead of authenticating the
tuple itself. In this case, we let Alice choose a small seed for an almost universal hash function and apply
MACk to this seed and the hash of the the tuple (ua, R,S) (with respect to this seed). We will actually
make use of this suggested modification in Appendix A.

Before going into the security proof for protocol AUTH, we resolve here the circularity issue obtained by
authenticating the seed R that was used to extract the authentication key K.

LEMMA 10. Consider a MAC that is (&, \ + £)-look-ahead-secure for any . Let K, K' My, My be
arbitrary random variables and E a quantum state, and let the ordered pair (K, K') € ({0,1}%)% satisfy the
look-ahead property with parameter € conditioned on My, My, E and the event M # Mg. Then,

Guess(MACk (Mg) | MAC g (MA)MaAMgE, Ma # Mg) < A+ te.

PROOF. We condition on My = ma and Mp = mp and assume throughout the proof that ma # mg.
Because (K, K') may depend on (M, Mg), conditioning on fixed values for the latter implies that (K, K') is
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not necessarily e-look-ahead anymore. Let &y, my be the maximum over ¢ € [t] of the following expression,
Empmpi = A(Kip1... K| K] ... K{E, Mx=ma, Mp=mg).

Hence, by Definition 7, (K, K') is Ema,mp-look-ahead conditioned on F and the events My = ma and
Mg = mp. Note that averaging e,,, mgy,: over ma and mp (conditioned on them being distinct) results in

gi =d(Kip1... K| K1 ... K{MAMgE, My #Mg) < ¢.

Furthermore, note that by conditioning on fixed and distinct values for Ma and Mg, we fulfill the require-
ments for MAC look-ahead security from Definition 9. I.e. we can conclude that

GUGSS(MACK(MB) | MACK/(MA>E, Mp = ma, Mg = mB) <A+ Ema,mp -
It now follows that
Guess(MACk (Mg) | MAC g+ (Ma)MaMgE, Ma # Mg)

= Y Pupyargmazass (ma, mB)
ma,mp

- Guess(MACk (Mp) | MAC (Ma)E, M = ma, Mp = mp)

< Y Pumgimasns (ma, ms) (/\+Iir£>]<5mA,mB,z‘)

ma,mp
< A+ g PMAMB\MA#MB(mA’mB) E :5mA,mB,i
ma,mp i€lt]

=A+ Z Z PMAMB|MA¢MB (MmA, MB) Emyg mp.i

iclt] ma,ms

=\t eig)\+25:)\+t5.
1€[t] 1€[t]

This concludes the proof. O

5. Proofs of Security and Privacy

In this section we show that protocol AUTH fulfills the properties listed in Definition 6. First of all, note
that it is easy to see from the protocol description that the correctness property is satisfied, we do not
elaborate further on this here.

Throughout the proofs, let E, be Eve’s quantum side information before executing AUTH. E;, where
i €{1,...,4}, represents Eve’s (quantum) side information after the ith round of communication, and hence
includes the communicated random variables up to this ¢th round. E represents Eve’s side information after
executing AUTH, including Bob’s decision to accept or reject (E4 does not include this decision). Furthermore,
like in Section 3.1, we write Ry and Rp etc. for Alice and Bob’s respective values for R etc.

THEOREM 11 (Security). Assuming that Hpin(Xw|W Es) > ki + q, Protocol AUTH fulfills the security
property defined in Definition 6 with

1
6<3-270 4 SV/20(A +tex).

In fact, we will prove a slightly stronger statement than the security statement, which will be of use also
in the proof of the key privacy statement. Let Ma := (ua, Ra,Sa) and Mp := (up, Rp, Sg). We will prove
that in protocol AUTH, if Hy,in(Xw|WEs) > kx + ¢, and conditioned on the event Ma # Mp, Bob rejects
except with probability

1
5 <3279+ 5\/2‘1()\+t5K/Pr[MA + Mg)).

Note that this expression reduces to the simpler expression of Theorem 11 when proving security, because
in that case ua # pp (by Definition 6) which implies that Pr[My # Mp] = 1.
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PRrROOF. Consider the phase in protocol AUTH after the second round of communication. Assume that
Zx and Ty are given to the adversary (this will only make her stronger). Let K := laExt(Xw; Ra) and
Kg = |aEXt(Xw;RB).

From the chain rule, and by subsequently using that Rp and Sa are sampled independently, it follows
that

Hupin(Xw | ZAW E2) > Hpin(Xw W E2) — ¢ > Huyin(Xw|W Es) — q.

By assumption on the parameters, i.e. Hpin(Xw|WE,) > kg + q, it follows that (Kp, Ka) is ex-look-
ahead conditioned on Z5,W and Es. In order to apply Lemma 10, we additionally condition on the event
Ma # Mp. By Lemma 2, it is guaranteed that ex grows at most by a factor 1/ Pr[Ma # Mg] as a result
of this conditioning. We now apply Lemma 10 and conclude that

Guess(TB|TAZAW Eo, My # Mp) < A+ teg/Pr[Mp # Mg].

The next step is to view @ = [Up - IB|q; © VB - Z as the output of a strong extractor, with seed
(U, VB). Indeed, it is straightforward to verify that A : {0,1}* x {0,1}% x {0,1}* x {0,1}9 — {0,1}7, which
maps (t, z,u,v) to [u-t]; @ v- 2, is a universal hash function (with random seed (u,v)). Thus, we can apply
privacy amplification. One subtlety is that in protocol AUTH, Vg is random in {0,1}7 \ {0}%, rather than
in {0,1}9. However, this affects the overall state by at most an additive term 279, and thus, by triangle
inequality, the distance-to-uniform by at most 2 - 27%:

d(QB|UBVBTAZAW Ez, M # Mp)
11/29Guess(Ts Zp|Ta ZAW Eo, Ma # Mp) +2-271
11/29Guess(Tg|TaZAW Eo, My # Mp) +2-274
V20N + tex/Pr[Ma # Mg]) +2- 277

IN

IN

IN

Finally, we have that
&' = Guess(Qp|QAW E3, Mp # Mg)
< Guess(Qp|UsVBTAZAW Ea, My # Mg)
<279+ d(QB|UsVBTAZAW E2, MA # Mg)
<3-279+1\/20(\ + tex/Pr[Ma # Mp)).

O

THEOREM 12 (Long-Term-Key Privacy). Assuming that Hupin(Xw|W Es) > max(q + kg, kz), Protocol
AUTH fulfills the long-term-key privacy property defined in Definition 6 with

£€<6-2774/20(A\+tek) +ex +2¢z.

PROOF. We first prove that none of the messages exchanged during the protocol leaks information
about W. Then, we show that in our protocol Bob’s decision on whether to accept or reject neither leaks
information about W.

Because Rp is sampled independently of Xy, and by the chain rule, it follows that

Hmin(XW‘WEl [UA . TA]q) > Hmin(XW’WEO) —q.

By assumption on the parameters in the statement of the proposition, i.e. Hpin(Xw|W Es) > q + kz, and
by the properties of Ext it follows that d(Za|W E3[Un - Talq) < d(ZA|SAW E [Ua - Talq) < €z. By the fact
that Ug and Vg are sampled independently, the following also holds

d(ZA|W Es[Uy - TA]q) <eg.

Then, by security of the one-time pad, by the fact that Eve cannot gain information on W by computing
@B, and by assumption that pw g, = pw ® Fo,

Hlowe, — pw @ peyllt < 2llowEsoa — pw @ pEs0alll < ez
This completes the first part of the proof.
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It remains to show that Bob’s decision to accept or reject cannot leak (a substantial amount of) infor-
mation about W. To show this, we make the following case distinction. In case ua # up, the security proof
applies and Bob rejects except with probability § < 3-277 4 %\/2‘1 (A +tek). It now immediately follows
that

slowe, — pwelli <6, and  3lpw ® pE, — pw ® pel1 < 6.
Hence, in case pa # pp (by the triangle inequality),
sllowe — pw @ pelli < ez + 26.

We now turn to the case uay = up and we analyze for two disjoint events. Conditioned on Ma # Mp, the
strengthened version of the security statement applies, i.e.

§ <3270+ §\/20(A+ tex/ Pr{Ma # Mg)),
and again by applying the triangle inequality, we obtain

slow BiMazms — PW @ pEMy 2l < €2+ 26,

Secondly, we analyze for the event Ma = Mp. Nevertheless, we start this analysis without conditioning
on My = Mp. (We'll condition on this event later in the proof.) Since Sa is sampled at random and
independently of Xy, and since Hyin (Xw|W Es) > kz, it follows that

d(ZA‘SAWEO) <E&g.
By the chain rule (and the independent choice of Sa),
Hmin(XW‘ZAWEé) > Hmin(XW|WEo) —q > kK:
and thus
d(KB|RBZASAWEO) <EK.
From the above, and the independent choices of Rg and Sy, it follows that
S PKsZa ReSAW Es — PU @ pur @ PRy @ psy @ pw @ pr,|l1 < ek + €7

where py; is the fully mixed state on Hgy, and py is the fully mixed state on ‘Hz,, and therefore that

I pKszaWES — PU @ pur ® pw @ pEy |1 < ek + 2.

We now condition on My = Mpg. Note that conditioned on this event, Ky = Ky and Z, = Zp, and
therefore, from here on, we omit the subscripts for these random variables and simply write K and Z. From
Lemma 2 (noting that whether the event My = Mp holds is determined by FEs), we get

1 < EK + €z
§||PKZWE2|MA:MB —PU Q@ pur Q pw & PE,y|Ma=Mp 1 < m

Up and Vg are chosen uniformly at random and independent of the rest (and also independently of the event
My = Mp). Furthermore, since F is computed from (K ZFEy) alone, it follows that

Lip oW ®p Hl<ﬂ
2 WE|MA=MB E|MA=MB — PI‘[MA — MB] .

We now combine the analyses for the two disjoint events, and conclude that in case up = up,
slowe — pw @ pelh
< Pr[Ma # M| 5|low Bipy£0is — PW @ pEiay£g |1

+ Pr[Ma = Mg] %HPWE\MA:MB — pw @ pPE|MsA=MzlI1
= Pr[MA 75 MB] (EZ + 25/) +eg +ez

< Pr[MA #MB] |:Sz+6-2_q+ \/Qq()\+t6K/Pr[MA #MBD +eg +tez

<6274 /201 A +teg) +ex + 26z,
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Note that we have computed two upper bounds on %H pwE — pw ® pell1, for two distinct cases: pa # pp
and pa = pp. Obviously, the weaker (larger) upper bound holds in both cases, and we finally conclude that

%HPWE —pw R pE|1 <6279+ 2‘1()\—|—t5K) 4+ e +2eg.

6. The Fuzzy Case

Up to here, we assumed a scenario where Alice and Bob share identical copies of the session key Xyy.
Let us now consider the “fuzzy” case, where Alice and Bob hold keys that are only close in some sense, but
not necessarily equal. This kind of scenario naturally arises when Alice and Bob obtain their session keys
in the presence of noise. For simplicity and with our application (Section 7) in mind, we use the Hamming
distance to measure closeness between keys.

Consider the following simple approach. Let Bob’s key be called Xyy. Before executing the authentica-
tion scheme, Bob sends some error correcting information (like the syndrome of Xy with respect to some
error correcting code) to Alice, so that she can correct the errors in her key, X, or vice versa. Unfortu-
nately, Eve may of course also modify this error-correcting information, so that Alice might not correct X7;,
correctly, in which case our scheme is not guaranteed to work. However, as proved in [DWO09], this approach
does work if one uses alternating-extraction-based instantiations of look-ahead extractors. For this solution
to work it is important that both Xy and Xj;, have sufficient min-entropy, and that Bob sends the error
correcting information to Alice (i.e. the error-correction information must be sent in the same direction as
the seed for the look-ahead extractor). The same holds in our setting where Eve is allowed to have quantum
side information.

One subtlety is that the error correcting information must not leak information about W, to preserve
the privacy property. Exactly this problem is addressed in [DS05], and is generalized to the quantum setting
in [FSO8]. Note that it is straightforward to upper bound the min-entropy loss in Xy (and Xj;,) due to
error correction: by the chain rule this is at most the bitsize of the error-correction information.

7. Application: Password-Based Identification in the Bounded Quantum Storage Model

Our main application is to password-based identification in the bounded quantum storage model.
Damgard et al. proposed in [DFSS07] two password-based identification schemes, Q-ID andQ-IDt. The
former is truly password based but does not protect against a man-in-the-middle attack, whereas the latter
is secure against a man-in-the-middle attack but is not truly password-based, because the “User” U and
“Server” S need to additionally share a secret high-entropy key.> We sketch here how our authentication
scheme leads to a truly password-based identification scheme in the bounded quantum storage model with
security against man-in-the-middle attacks.

The idea of Q-ID and Q-ID* is as follows. U sends n BB84 qubits H’|z) = H|z)) ® - -- @ H|x,) to
S, who measures them in basis ¢(w) € {0,1}", where w is the common password and c is some appropriate
code with large minimal distance d. Then, U announces the basis § € {0,1}" used for the BB84 qubits.
This allows U and S to compute the string z,, consisting of all the positions of = with 6; = ¢(w);, i.e., where
U and S used the same basis. Then, U needs to convince S that he indeed knows (the same) string x,.
Damgard et al. show a way to do this which is guaranteed to not leak any information on w to a potentially
dishonest U or S. Security against a dishonest U holds unconditionally, whereas security against a dishonest
S holds in the bounded quantum storage model (where S is assumed to have limited quantum storage). At
the core of the latter proof is a lower bound on the min-entropy of x,, from the dishonest server’s point of
view, which follows from the uncertainty relation from [DFR*07].

To make the protocol secure against man-in-the-middle attacks, some way is needed to protect the (clas-
sical and quantum) communication against tampering. In order to detect tampering with the communicated
qubits, U and S choose a random sample of the qubits and verify that on those no tampering took place.
In order to detect tampering with the classical communication, Damgard et al. propose to use a so-called
extractor MAC. Such a MAC is similar to a standard information-theoretic MAC, and as such requires a

3The high entropy key is only needed to protect against a man-in-the-middle attack, security against dishonest U and S
only relies on the password and holds even if the dishonest party knows the high entropy key.
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high-entropy key, but is also an extractor. The way in which this extractor MAC is used in Q-ID* allows
to re-use the high-entropy key.

7.1. Our Approach. Our approach of obtaining security against man-in-the-middle attacks without a
high-entropy key is now simply to do the authentication of the classical communication by applying protocol
AUTH of Section 4, using z,, as weak session key. Our privacy property guarantees that the authentication
does not leak information on the password w. We stress that previous schemes for authentication based on
weak keys would (potentially) leak here information on w.

There are a couple of subtleties to be taken care of with our approach. If the quantum communication
is noisy (which it is in realistic scenarios) or if the man-in-the-middle attacker modifies some of the qubits
(but few enough so that he is not detected) or €, then U and S’s versions of z,, are not identical. Thus,
we are in the fuzzy case. As discussed in Section 6, this is not a problem as long as the error-correcting
information is sent from Bob to Alice, which means from S to U in the identification setting, and as long
as we have lower bounds on both U and S’s versions of z,, (from the attacker’s point of view). The first
requirement is easily taken care of, we just perform the error correction in the required direction; from S to
U. In order to guarantee that both versions of x,, have sufficient min-entropy (the analysis of Damgard et
al. only guarantees min-entropy in U’s version), we modify the scheme as follows. Instead of measuring the
BB84 qubits in basis ¢(w), S measures them in a random basis 0 and announces the difference r = c(w) ® 0.
Then, U and S update the code ¢ by shifting every code word by r, so that with respect to the updated
code ¢, S has actually measured the BB84 qubits in basis ¢(w). This trick has also been used in [DFL*09],
though for a different reason, and has no real effect on the analysis of the scheme. However, as we show
below, it enables us to argue that also S’s version of x,, has lower-bounded min-entropy, and therefore the
authentication of the classical messages is guaranteed to work, which implies security of our password-based
identification scheme.

Recall that security against a dishonest U or a dishonest S requires that the dishonest party can exclude
at most one possibility for the password w (in one execution of the attack); indeed, this is the best we can
hope for, because the dishonest party can always try to guess w. For password-based man-in-the-middle
security, we require that the attacker can exclude at most two possibilities for the password. Again, this is the
best we can hope for, because in a man-in-the-middle attack, the attacker can (but of course does not have
to) individually attack U and S, and in both attacks he can try to guess w. This is the man-in-the-middle
security that we achieve with our scheme.

We first outline our scheme below and then argue (informally) why it is secure. From here, we use upper

(1) U picks x,60 €r {0,1}" and sends the n-qubit state H%|z) to S.

(2) S picks 6 € {0,1}" and measures H?|z) in basis 6. Let 2’ be the outcome. S computes and sends
r:=0&® c(w) to U. We define ¢ (w) := c(w) ®r and I, := {i : 0;=¢/(w);}.

(3) Usends # and f €gr F to S.

(4) S picks g € G, j €r J and a random subset 7' C {1,...,n} of size ¢, computes s := syn;(z’|r, )
and test’ := 2’|, and sends g, j, s and T to U.

(5) U sets test := x|, recovers a'|1,, from x|7, with the help of s, and sends test and z := f(2'|1,)®g(w)
to S.

(6) Using weak key a'|,, U authenticates all communicated classical messages, i.e.
r,0,f,q,7,s,T,test, z, using AUTH, towards S.

(7) S accepts if and only if (1) AUTH accepts, (2) test coincides with test’ wherever the bases coincide
(up to some allowed noise level), and (3) z = f(2'|1,) ® g(w).

case letters for the random variables that describe the values x,6,w, etc. in a (purified) execution of the
protocol. It follows from the analysis of Q-IDT in [DFSS07] (which still applies under the shifted-codeword
modification outlined above) that there exists a W’ (independent of W) such that unless W’ = W, there is
min-entropy in X restricted to Iy from Eve’s point of view.

On S’s side, we reason as follows. Consider two possibilities for W; say w; and wy. We focus on the
positions where ¢(w1) # ¢(ws) (which will be the same positions when replacing ¢ by ¢). The following will
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hold for any choice of 6 (chosen by U), and therefore we can safely condition on ©. From the uncertainty
relation of [DFR107] it follows that, approximately,

Hyin (X1,|00) > d/2,

where X7, is the restriction of X’ to the positions where c¢(w1) # ¢(wz), and remember that d represents
the minimum distance of ¢. Because S has obtained X’ independently of W, and, in turn, R is determined
by © and W, we have that Hp,(X!,|0OWR) > d/2. Now, because of the conditioning on OOW R, we
can replace X1, by the pair X{ X7 in the latter bound, where X/ consists of the positions where © = ¢/(wy)
and similarly X}. (The entropy cannot decrease by not restricting to the positions c¢(wq) # ¢(ws) anymore.)
Thus,

Homin(X] X5|©OWR) > d/2,
and therefore in particular

Huin (X1 X5OR) > d/2.

This holds for any wy and ws, so that the entropy splitting lemma [DFSS07] implies the existence of W”
(independent of W), so that unless W” = W, there is lower-bounded min-entropy in X’ restricted to Iy
from Eve’s point of view. Note that Eve can modify ©, but that does not affect the above reasoning, and
the above holds accordingly if we additionally condition on the modified version of ©.

We have argued that both X|;,, and X'|,,, or, respectively X{;, and Xy in the terminology of Section 6,
have lower-bounded min-entropy from Eve’s point of view. Furthermore, in our proposed identification
scheme above, S sends the error-correcting information to U. Together, this guarantees the security of AUTH
when applied in the fuzzy case. Although in the original protocol (Q-ID™) the error-correction information is
sent in the other direction, reversing this direction is allowed because the authentication makes sure that no
message is modified. Now, security follows from the analysis of Q-ID* [DFSS07] (as well as from [DFL*09]
regarding the shifted-codeword modification).

Acknowledgment

We would like to thank Krzysztof Pietrzak for enlightening discussions and valuable comments.

References

[CKOR10] Nishanth Chandran, Bhavana Kanukurthi, Rafail Ostrovsky, and Leonid Reyzin. Privacy amplification with asymp-
totically optimal entropy loss. In STOC ’10: Proceedings of the 42nd ACM symposium on Theory of computing,
pages 785-794. ACM, 2010.

[DFLT09] Ivan Damgérd, Serge Fehr, Carolin Lunemann, Louis Salvail, and Christian Schaffner. Improving the security of
quantum protocols via commit-and-open. In Advances in Cryptology - CRYPTO 09, Lecture Notes in Computer
Science, pages 408—427. Springer, 2009.

[DFR*07] Ivan B. Damgérd, Serge Fehr, Renato Renner, Louis Salvail, and Christian Schaffner. A tight high-order entropic
quantum uncertainty relation with applications. In Advances in Cryptology - CRYPTO 07, Lecture Notes in Com-
puter Science, pages 360—378. Springer, 2007.

[DFSS07] Ivan Damgard, Serge Fehr, Louis Salvail, and Christian Schaffner. Secure identification and gkd in the bounded-
quantum-storage model. In Advances in Cryptology - CRYPTO 07, volume 4622 of Lecture Notes in Computer
Science, pages 342—-359. Springer, 2007.

[DORSO08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors: How to generate strong keys
from biometrics and other noisy data. SIAM J. Comput., 38(1):97-139, 2008.

[DP07] Stefan Dziembowski and Krzysztof Pietrzak. Intrusion-resilient secret sharing. In FOCS ’07: Proceedings of the 48th
Annual IEEE Symposium on Foundations of Computer Science, pages 227-237. IEEE Computer Society, 2007.

[DPVRO09] Anindya De, Christopher Portmann, Thomas Vidick, and Renato Renner. Trevisan’s extractor in the presence of
quantum side information. arXiv, 2009. http://arxiv.org/abs/0912.5514.

[DS05] Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial information. In STOC ’05: Proceedings
of the 37th annual ACM symposium on Theory of computing, pages 654—663. ACM, 2005.

[DW09] Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and symmetric key cryptography from weak secrets. In
STOC ’09: Proceedings of the 41st annual ACM symposium on Theory of computing, pages 601-610, 2009.

[FS08] Serge Fehr and Christian Schaffner. Randomness extraction via delta-biased masking in the presence of a quantum
attacker. In Theory of Cryptography - TCC ’08, Lecture Notes in Computer Science, pages 465—481, 2008.

[GUV07] Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and randomness extractors
from parvaresh-vardy codes. In CCC ’07: Proceedings of the Twenty-Second Annual IEEE Conference on Compu-
tational Complexity, pages 96-108. IEEE Computer Society, 2007.



14 NIEK J. BOUMAN AND SERGE FEHR

[KRO9] Bhavana Kanukurthi and Leonid Reyzin. Key agreement from close secrets over unsecured channels. In Antoine
Joux, editor, Advances in Cryptology - EUROCRYPT 09, volume 5479 of Lecture Notes in Computer Science,
pages 206—223. Springer, 2009.

[KRS09] Robert Konig, Renato Renner, and Christian Schaffner. The operational meaning of min- and max-entropy. IEEE
Transactions on Information Theory, 55(9):4337-4347, 2009.

[Ren05] Renato Renner. Security of Quantum Key Distribution. PhD thesis, ETH Ziirich (Switzerland), September 2005.

[RKO05] Renato Renner and Robert Konig. Universally composable privacy amplification against quantum adversaries. In
Joe Kilian, editor, Theory of Cryptography - TCC ’05, volume 3378 of Lecture Notes in Computer Science, pages
407-425. Springer, 2005.

[RWO03] Renato Renner and Stefan Wolf. Unconditional authenticity and privacy from an arbitrarily weak secret. In Dan
Boneh, editor, Advances in Cryptology - CRYPTO 03, volume 2729 of Lecture Notes in Computer Science, pages
78-95. Springer, August 2003.

[RW04] Renato Renner and Stefan Wolf. The exact price for unconditionally secure asymmetric cryptography. In Christian
Cachin and Jan Camenisch, editors, Advances in Cryptology - EUROCRYPT 04, volume 3027 of Lecture Notes in
Computer Science, pages 109-125. Springer, 2004.

[TSSR10] M. Tomamichel, C. Schaffner, A. Smith, and R. Renner. Leftover Hashing Against Quantum Side Information.
ArXiv e-prints, February 2010.

[VDG98] Jeroen Van De Graaf. Towards a formal definition of security for quantum protocols. PhD thesis, Univ. de Montreal
(Quebec, Canada), 1998.

Appendix A. Instantiating the Building Blocks

A.1. (Quantum-Secure) Look-Ahead Extractors. Dodis and Wichs [DW09] propose a construc-
tion for look-ahead extractors based on alternating extraction, due to [DP07]. We do not explain this
construction in detail here, it suffices to know that it uses two strong extractors as building blocks. The fol-
lowing theorem tells us how the parameters of these two extractors lead to the parameters of the constructed
look-ahead extractor.

LEMMA 13 ([DW09]). Given an (ky, — (20)t,ey)-extractor Ext, : {0,1}" x {0,1}* — {0,1}* and an
(ng— (20)t,&,)-extractor Exty : {0, 1} x {0, 1} — {0, 1}, the construction in [DW09] yields an (ky, t? (e, +
gq))-look-ahead extractor

laExt : {0,1}™ x {0,1}"F — ({0,1}%)!

Although stated and proven in the classical setting, this lemma also holds in the quantum setting (if the
underlying extractors are secure against quantum side information), with exactly the same proof.

[DWO09] suggests to use the explicit strong extractor from [GUV07] for the extractor in the above lemma,
resulting in a (k, ¢)-look-ahead extractor Ext : {0,1}" x {0,1}¢ — ({0, 1}*) with

k > 2(t + 2) max(¢, O(log(n) + log(t) + log(1/¢))) > O(t(£ + log(n) + log(t) + log(1/¢<)))
and d > O(t(¢ + log(n) + log(t) + log(1/e))) . IL.e., when neglecting logarithmic terms, k and d are both of
order t¢, the bit-size of the range of the extractor.

In order to obtain security against quantum side information, we need to replace the strong extractors
used in the construction of look-ahead extractor e.g. by Trevisan’s extractor, which was proven secure by
De et al. [DPVRO09] against quantum side information. In [DPVRO09], an explicit extractor (secure against
quantum side-information) is constructed with the following parameters.

LEMMA 14 (Short-seed extractor against quantum adversaries, [DPVRO09]). For all integers n > k and
any € > 0 there exists a (k,€)-strong extractor against quantum adversaries

Ext: {0,1}" x {0,1}¢ — {0,1}™
with k = m + 8logm + 8log(1/e) + O(1) and d = O(log®(n/e)logm).

The following corollary shows that also in the quantum setting, when neglecting logarithmic terms, &
and d are both linear in ¢¢ (the bit-size of the range of the look-ahead extractor).

COROLLARY 15. For all integers n > k and any ¢ > 0 there exist (k,e)-look-ahead extractors laExt :
{0, 13" x {0,1}¢ — ({0, 1}9), secure against quantum side information, as long as

k> 02t + 1)+ 8log ¢+ 8log(1/e) 4+ 16logt + O(1),
d>20(t+1)+8logl+8log(l/e) + 16logt + O(1)
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and
¢ > O(log?(nt/e) log £)

PROOF. Lemma 13 tells us that ¢ = t?(¢,, +¢&,). For simplicity, we set e, = g, =: ¢’. Then, ¢’ = £/(2t2),
as in [DW09]. The lemma requires a (k — 2/, ¢’) strong extractor Ext, : {0,1}" x {0,1}% — {0,1}¢ and a
(n' — 20t,€') strong extractor Ext, : {0,1}" x {0,1}¢ — {0,1}¢, where d’ = O(log?(nt /<) log ) < ¢ holds by
assumption in the statement of the corollary. We first instantiate Ext,,: by plugging the required parameters
from above into Lemma 14, we obtain the following bound on k = k,,

2
k—20t > £+8log€+810g2% +O(1) = ¢+ 8log ¢+ 8log(1l/e) + 16log(t) + O(1).

And thus,
k> €2t + 1)+ 8logl + 8log(1/e) + 161og(t) + O(1).
To obtain the bound on d, note that d = n’ + ¢, where n’ follows from another application of Lemma 14,
n' — 20t > { + 8log ¢ + 8log(1/e) + 16log(t) + O(1).
Hence, the seed length d = n’ + ¢ becomes
d>20(t+1)+8logl+8log(l/e) + 16logt + O(1).
O

A.2. Security and Instantiation of MAC. To construct a MAC with look-ahead security, we adopt
the construction given in [DW09]. Because our look-ahead security definition, Definition 9, is slightly weaker
than the one given in [DWO09] (in that both pa and up are fixed), we obtain a better security parameter, as
argued below.

With respect to a different aspect, the requirement on the MAC for our construction is somewhat
stronger, because we need a “universal” MAC which is (e, A 4 €)-look-ahead secure for any e > 0 (and some
A). (This requirement stems from the proof of Lemma 10.) It turns out that the construction from [DW09]
in the light of our weaker security definition does satisfy this property.

PROPOSITION 16. For any positive integers m and £, there exists a family of functions {MACy, : {0,1}"™ —
{0,1}°}, indexed by keys k € ({0,1}°)!, that is (¢,27° + ) look-ahead secure for any € > 0, where t = 4m
and s = 2m/l.

The proof of the statement that MAC, is (¢, 27¢4-¢) look-ahead secure for some ¢ largely follows the proof
of Lemma 15 Appendix E.3 of [DWO09] (and still applies in the quantum setting). However, our modification
(of fixing both ua and up before executing DW-MAC) overcomes the need for a union bound over all possible
messages pp in that original proof, and hence saves us a factor of 2.

For completeness, we very briefly describe the idea of the construction here. MACg(u) outputs some of
the blocks k; of the key k = (ki,..., k); where the choice of this subset is determined by u. Furthermore,
the construction guarantees that for any two distinct messages p and 1/, there exists an index i, < t such
that MACg (1) outputs more blocks k; with ¢ > i, than MACy(x) does. From the look ahead property,
it follows that given kf,...,k; , the remaining blocks k;_y1,...,k; are (close to) random. Then, from the
choice of i, and from the chain rule we conclude that when given MAC/ (1), the tag MACy () still contains
at least (nearly) ¢ bits of min-entropy.

A.3. Instantiating AUTH. Before we can instantiate protocol AUTH, we first need to slightly modify
it. Because the alternating-extraction construction that we use to instantiate laExt requires a relatively
large seed (as Corollary 15 shows, the seed length d even exceeds k), we cannot let Alice authenticate
the tuple (ua, R,S) directly. Instead, Alice will sample a seed and for an almost universal hash function,
and authenticates the seed and the hash of (ua,R,S). We will make use of the well-known polynomial
construction for an almost universal hash function (see e.g. [TSSR10]); for some field F and b a positive
integer, let

h: F° x F — F

(T1,...,zp;0) Z?:1 z;ab
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For «, the seed, randomly chosen from F, the probability that two distinct inputs z,2’ € F® collide is
Pcol ‘= (b - 1)/’15“

This hashing-modification to AUTH will affect its security and privacy. We take care of this simply by
adding peo1 to the security and 2 peo to the privacy upper bound. The latter factor of two comes from the
triangle inequality, which appears because privacy (as defined in Definition 6) is a distance between two
states.

We now combine Theorem 11, Theorem 12, Lemma 14, Corollary 15, Proposition 16 and make use of the
hashing modification explained above in order to obtain a lower bound on k, the min-entropy required by
AUTH, in terms of desired security and privacy parameters and the bitsize of the message to be authenticated.

COROLLARY 17. We construct an efficient four-round (n, k,m,d, ) message authentication protocol with
long-term key privacy for any integers n > k, m and any ¢ > 0 and any 0 < § < /8 and as long as
(asymptotically)

k= O(log?(1/6) + log(m') log(1/6) + log(1/¢)),
where
m’ =m + O(log?(n/e) loglog(1/3) + log?(1/8) + log(m’) log(1/4)).

PROOF. We start by computing suitable parameters for the almost universal hash function. Let F :=
GF(2¢) for a positive integer ¢, and let m’ be the bitsize of the tuple (i, R, S), i.e. m’ = m + d + v. Hence,
b=m'/c,* and peo) = 27¢(m/Jc — 1) < 27°m/,

As required by the security and privacy proofs, k > max(q + kg, kz). We first analyze k. Let ¢’ :=
3.-2794 %\/2‘1(2*5 +teg) +27¢m’ (this expression originates from combining Theorem 11, Proposition 16
and peo1). To simplify matters, we choose ¢ = £/2, ¢ = £/2 + logm’ and ex = 27¢/t and we obtain

1 /
§=3.27% 4 B 20/2(2 . 2-t) 4 2= (&/2Hlogm’) yt — 3 9=t/2 9-3—4 4 970/ < 27%%  (for large enough /)

Because ¢’ is an upper bound for the security of AUTH, a sufficient condition to achieve the desired security
level § is when ¢’ < §. Hence, we choose
¢ > 4log(1/9).

The actual message to be authenticated consists of the seed and the hash value and therefore has bit-length
2¢. Then, by Proposition 16 we have that ¢ = 4(2¢) = 4¢ 4+ 8logm’ > 161og(1/d) + 8logm’. We substitute
this into the expression for eg:

e < 6%/(161og(1/0) + 8logm’).
Next, we plug this into the bound for k from Corollary 15, and we assume throughout the proof that
¢ > O(log?(nt /e ) logf). This yields

kr > 8tlog(1/0) + 36log(1/0) + 8loglog(1/0) + 24logt + O(1)
> 1281log?(1/6) + 64logm/ log(1/8) 4 361log 1/6 + 8loglog 1/8 + 241loglogm’ /5% + O(1).

We now analyze kz. We use Trevisan’s construct to instantiate Ext. Let

e i=6-2714/2012 +teg) teg + 267+ 27T Im =28 + 5/t + 265 + 27T/

be the upper bound on the privacy of AUTH (the expression follows from combining Theorem 12, Proposi-
tion 16 and po1). To achieve the desired privacy ¢, it suffices that ¢’ < e. By substituting ¢’ = ¢ and solving
for €7, we obtain €5 < %5 —0— %54 —27t2 < %5 -0 — %54 — 02, From the latter expression, we see why
we cannot choose ¢ arbitrarily large, compared to e, because an upper bound for £z should of course not
be negative. Note that this parameter-dependency is not surprising; it stems from the fact that the privacy

proof makes use of the security proof. Therefore, we choose 0 < § < ¢/8, such that ez < § — ¢ — 251—; — g—z.
Lower bounding the RHS yields the simpler expression
ez <e/4

Substituting this into Lemma 14 gives
kz > 2log(1/d) + 8loglog(1/d) + 8log(1/e) + O(1).

4Here7 we assume that m' is an integer multiple of c¢. Note that this can always be achieved by zero-padding m’.
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We upper-bound max(q + kg, kz) by the sum ¢ + kx + kz:
k>2logl/d+kyx +kz
> 1281og?(1/6) + 64log(m') log(1/8) + 401og(1/8) + 16 loglog(1/8) + 24 loglog(m’/6%) + 8log(1/e) + O(1)
> O(log?(1/6) + log(m’) log(1/6) + log(1/¢))
Remember that m’ = (m + d + v), where v = O(log?(n/cz)log(¢)) = O(log?®(n/e)loglog(1/§)) and
d > 8log(1/8)(t+ 1) + 8loglog(1/d) + 8log(1/ek) 4+ 161ogt + O(1)
= 8tlog(1/9) + 8loglog(1/d) + 401og(1/0) + 24logt + O(1)
= 1281og?(1/6) 4 64log(m’)log(1/5) + 8loglog(1/8) + 40log(1/8) + 24loglog(m’/§?) + O(1)
= O(log?(1/6) + log(m') log(1/9)).



