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Uniqueness of normalized homeomorphic

solutions to nonlinear Beltrami equations

Kari Astala, Albert Clop, Daniel Faraco,

Jarmo Jääskeläinen, and László Székelyhidi Jr.

Abstract

We settle the problem of the uniqueness of normalized homeomorphic

solutions to nonlinear Beltrami equations ∂f(z) = H(z, ∂f(z)). It turns

out that the uniqueness holds under definite and explicit bounds on the

ellipticity at infinity, but not in general.

1 Introduction

Homeomorphic solutions f ∈W 1,1
loc (Ω) to the classical Beltrami equation

∂f(z) = µ(z)∂f(z), ‖µ‖∞ ≤ k < 1, (1.1)

are well-known to be unique up to composing with a conformal mapping. Such
solutions coincide with the class of the two-dimensional quasiconformal map-
pings, and hence the equation arises naturally in a great variety of topics. For
a modern exposition of the equation and the quasiconformal mappings in the
plane, see the recent monograph [1]. We consider global solutions, solutions in
the entire plane Ω = C. In this case the uniqueness of homeomorphic solutions
to (1.1) is obtained simply by requiring that f(0) = 0 and f(1) = 1. We call
such homeomorphic solutions f as normalized solutions to (1.1).

Enquiring the fundamental properties of the nonlinear Beltrami equation
∂f(z) = H(z, f(z), ∂f(z)), the existence of homeomorphic solutions can be es-
tablished in great generality. One merely asks of H a Lusin type measurability
in the first two variables and the k-Lipschitz condition (k < 1) in the third; for
details, see Theorem 8.2.1 in [1]. The notion of nonlinear Beltrami equations
(with more restriction on H than above) was introduced in [3] and [5].

However, the uniqueness remains more subtle, even for the system

∂f(z) = H
(
z, ∂f(z)

)
, for almost every z ∈ C. (1.2)

In the monograph [1] the uniqueness of normalized homeomorphic solutions to
(1.2) was established in the special cases where H(z, w) has a compact support
in z or when it is homogeneous of degree one in w; in particular, we have the
uniqueness when H(z, w) is R-linear in w. For the general equation (1.2) the
question remained open.
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In this note we show that the uniqueness of normalized homeomorphic so-
lutions holds if we have small enough bounds on the ellipticity at infinity,
but fails in the case of large ellipticity constants. To be more specific, assume
H : C× C → C satisfies

(H1) For every w ∈ C, the mapping z 7→ H(z, w) is measurable on C.

(H2) For w1, w2 ∈ C,

|H(z, w1)−H(z, w2)| ≤ k(z)|w1 − w2|, 0 ≤ k(z) ≤ k < 1,

for almost every z ∈ C.

(H3) H(z, 0) ≡ 0.

Our main result is the following.

Theorem 1.1. Suppose H : C×C → C satisfies (H1)–(H3) for some k < 1. If

lim sup
|z|→∞

k(z) < 3− 2
√
2 = 0.17157..., (1.3)

then the nonlinear Beltrami equation

∂f(z) = H
(
z, ∂f(z)

)
, for almost every z ∈ C, (1.4)

admits a unique homeomorphic solution f ∈ W 1,2
loc (C) normalized by f(0) = 0

and f(1) = 1.

Furthermore, the bound on k is sharp: for each k > 3 − 2
√
2, there are

functions H : C×C → C for which (H1)–(H3) hold, such that (1.4) admits two
normalized homeomorphic solutions.

Note that in terms of the quasiconformal distortion the bound (1.3) reads as

lim sup
|z|→∞

K(z) <
√
2, K(z) :=

1 + k(z)

1− k(z)
.

Under extra symmetries in H the equation (1.4) has a unique normalized
solution. This holds for instance if H(z, tw) ≡ tH(z, w), no matter how large
are the ellipticity constants. For another interesting example, note that the
above requirement (H3) asks constant functions to be solutions to the nonlinear
Beltrami equation in question. If we assume, in addition, that also the identity
function satisfies (1.4) or equivalently

(H4) H(z, 1) ≡ 0,

then ellipticity bounds slightly weaker than (1.3) will suffice:

Theorem 1.2. Suppose H : C×C → C satisfies conditions (H1)–(H4) for some
k < 1. If

lim sup
|z|→∞

k(z) <
1

3
, (1.5)

then the function f(z) = z is the unique homeomorphic solution f ∈ W 1,2
loc (C)

to the nonlinear Beltrami equation

∂f(z) = H
(
z, ∂f(z)

)
, for almost every z ∈ C, (1.6)
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normalized by the conditions f(0) = 0 and f(1) = 1.

This is complemented with counterexamples: for any k > 1/3 there exists
H : C × C → C satisfying (H1)–(H4) such that (1.6) admits a normalized
solution f 6≡ z.

As it turns out, the knowledge of the existence of enough solutions gives the
uniqueness of normalized solutions. We formulate this as an abstract theorem
and then deduce some corollaries from it.

Theorem 1.3. Assume H : C × C → C satisfies (H1)–(H3) for some k < 1.
Let f ∈W 1,2

loc (C) be a normalized homeomorphic solution to the equation

∂f(z) = H
(
z, ∂f(z)

)
, for almost every z ∈ C. (1.7)

Then f is the unique normalized solution, if there exists a continous flow of
solutions {ψt : 0 ≤ t ≤ 1} ⊂W 1,2

loc (C) of (1.7) such that

(F1) ψ0 ≡ 0, ψ1 = f ,

(F2) f − ψt is quasiconformal, 0 ≤ t < 1,

(F3) for fixed ǫ > 0, there exist R and δ such that
∣∣∣ψt(z)−ψs(z)
ψt(z)−f(z)

∣∣∣ < ǫ, when

|z| ≥ R and |t− s| < δ,

(F4) ψt(0) = 0.

Theorem 1.3 yields new proofs of the uniqueness of normalized solutions in
some important particular cases; for instance, when H is compactly supported in
z, the case of the R-linear Beltrami equation or even when H is 1-homogeneous in
w, as discussed above. We point out a couple of further interesting applications.
Without the z-dependence in H(z, w), every homeomorphic solution is affine.

Theorem 1.4. Suppose H : C → C is k-Lipschitz, k < 1, and H(0) = 0. Then
homeomorphic solutions f ∈W 1,2

loc (C) to the nonlinear Beltrami equation

∂f(z) = H
(
∂f(z)

)
, for almost every z ∈ C, (1.8)

are affine; that is, f(z) = az +H(a)z̄ + f(0), for some constant a ∈ C.

In the case that the identity is a solution, we have the following theorem.

Theorem 1.5. Suppose that H : C×C → C satisfies (H1)–(H4) for some k < 1.
If there is a continuous path γ(t) : [0, 1] → C such that γ(0) = 0, γ(1) = 1, and
uniformly in t ∈ [0, 1]

H
(
z, γ(t)

)
∈ Lp0(C), for some p0 < 2,

then f(z) = z is the unique normalized W 1,2
loc -solution to the nonlinear Beltrami

equation
∂f(z) = H

(
z, ∂f(z)

)
, for almost every z ∈ C.
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In particular, if there exists a continuous path of linear solutions connecting
0 and the identity, then Theorem 1.5 applies. Nonlinear equations with a rich set
of exact solutions enjoy further properties which will be studied in a forthcoming
paper.

Finally, we point out an interesting open problem regarding what happens
in the borderline case of Theorems 1.1 and 1.2. We expect that in this case (i.e.,
when lim sup|z|→∞ k(z) = 3− 2

√
2 or 1/3, respectively) there is a unique home-

omorphic solution f ∈ W 1,2
loc (C) to the nonlinear Beltrami equation normalized

by the conditions f(0) = 0 and f(1) = 1.

2 General case, Theorems 1.1 and 1.2

Proof of Theorem 1.1. Let us assume there exist two normalized and homeo-
morphic solutions f, g ∈ W 1,2

loc (C) to the nonlinear Beltrami equation (1.4).
Then conditions (H2) and (H3) imply |∂f(z)| ≤ k(z)|∂f(z)| and similarly for g.
Thus f , g are quasiconformal. Let

K∞ := lim sup
|z|→∞

K(z) <
√
2, K(z) :=

1 + k(z)

1− k(z)
. (2.1)

Then, for any K > K∞,

|f(z)|, |g(z)| ≤ C(1 + |z|)K. (2.2)

Indeed, we can decompose f = H ◦F , where H and F are normalized quasicon-
formal homeomorphisms with the Beltrami coefficient of F given by χC\D(0,R) µf ;

above µf = ∂f/∂f is the Beltrami coefficient of f . Moreover, we may choose R
so large that F is K-quasiconformal in C. Then

1

CK
|z|1/K ≤ |F (z)| ≤ CK |z|K, |z| ≥ 1.

Since H is conformal near ∞, H(z) = cz+O(1/z), and the bounds (2.2) follow.
Next, as f , g both satisfy (1.4), we have

|∂f(z)− ∂g(z)| = |H
(
z, ∂f(z)

)
−H

(
z, ∂g(z)

)
| ≤ k(z)|∂f(z)− ∂g(z)|, (2.3)

for almost every z ∈ C. Thus the difference is quasiregular, but of course not
necessarily injective. By the Stoïlow factorization theorem, f − g = P ◦ h,
where P is a holomorphic mapping and h is a normalized K(z)-quasiconformal
homeomorphism. By (2.2) and ‖K‖-quasiconformality of h−1, where ‖K‖ =
‖K‖∞, for |z| ≥ 1,

|P (h(z))| = |f(z)− g(z)| ≤ C|z|K = C|h−1(h(z))|K ≤ C|h(z)|K‖K‖.

Hence P is a polynomial. Since it has at least two zeroes, points 0 and 1,
deg(P ) ≥ 2.

As above, we can decompose h = H1 ◦ F1. Similarly as before: H1 is a
normalized quasiconformal mapping and conformal near ∞. The mapping F1

is normalized and K-quasiconformal in C. This gives us a lower bound for h.
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Combining upper and lower bounds with the fact that deg(P ) ≥ 2, we achieve,
for |z| large enough,

1

C
|z|2/K ≤ |P (h(z))| = |f(z)− g(z)| ≤ C|z|K.

This implies K ≥
√
2 leading to a contradiction with (2.1) when K > K∞ are

sufficiently close.
Our section ”Counterexamples” below will prove the sharpness of (1.3).

Proof of Theorem 1.2. We recall the following topological fact without proof.

Lemma 2.1. Let γ be a Jordan curve and f : C → C a homeomorphism.
Suppose that one of the curves γ or f(γ) lies inside the other (that is, is separated
from ∞). Then the increment of the argument

∆
0≤t≤2π

arg [f(ξ(t)) − ξ(t)] = ±2π

with the sign depending on the orientation of f . Above ξ is any parametrization
of γ.

One way to prove the above lemma is to deform the inner curve to a point via
a homotopy within the component bounded by the outer curve.

Assume now that there exists a normalized solution Φ 6= id. Conditions
(H2) and (H3), and a similar calculation as in (2.3) imply that Φ and Φ − id

are K(z)-quasiregular, K(z) = 1+k(z)
1−k(z) .

We have that Φ − id is K(z)-quasiregular with at least two zeros, points 0
and 1. By the Stoïlow factorization, Φ− id = P ◦ h, where P is a holomorphic
mapping and h is a normalized K(z)-quasiconformal homeomorphism. Thus, by
the argument principle, for all sufficiently large R > 0, the increment of the
argument

∆
|z|=R

arg [Φ(z)− z] ≥ 2 · 2π.

On the other hand, by Lemma 2.1, if the curve ∂D(0, R) does not intersect the
image Φ(∂D(0, R)), the increment can be at most 2π. Therefore, for every R
large enough, there is a point zR such that

|Φ(zR)| = |zR| = R. (2.4)

The mapping Φ is a K(z)-quasiconformal homeomorphism of the plane and
thus (2.4) forces linear growth at ∞. That is, by quasisymmetry,

1

λ(‖K‖) |z| ≤ |Φ(z)| ≤ λ(‖K‖)|z|, for |z| large enough,

where ‖K‖ = ‖K‖∞. Hence,

|Φ(z)− z| ≤ C‖K‖|z|, for |z| large enough. (2.5)

Similarly as in the proof of Theorem 1.1, by (2.5) and ‖K‖-quasiconformality
of h−1, P is a polynomial. Since it has at least two zeroes, points 0 and 1,
deg(P ) ≥ 2.
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As before, we can decompose h = H1 ◦F1, where H1 and F1 are normalized
quasiconformal homeomorphisms. Further, H1 is conformal near ∞ and F1 is
K-quasiconformal in C with K < 2. The choice ofK can be made by assumption
(1.5). We get a lower bound for h. Combining the lower bound with the fact
that deg(P ) ≥ 2 and the upper bound (2.5), we achieve, for |z| large enough,

c|z|2/K ≤ |P (h(z))| = |Φ(z)− z| ≤ C‖K‖|z|.

This is a contradiction, since K < 2.
The sharpness is obtained in the next section.

3 Counterexamples

We show that for every 3 − 2
√
2 < k < 1 there is a function H : C × C → C,

measurable in the first variable and satisfying

|H(z, w1)−H(z, w2)| ≤ k|w1 − w2| and H(z, 0) ≡ 0

in the second variable, such that the nonlinear Beltrami equation

∂f(z) = H
(
z, ∂f(z)

)
, for almost every z ∈ C, (3.1)

has at least two different homeomorphic solutions f ∈ W 1,2
loc (C), normalized by

f(0) = 0 and f(1) = 1.

We start the construction by setting, for any 0 < t < 1,

Ft(z) =

{
(1 + t) z|z| − tz2, for |z| > 1,

(1 + t) z − tz2, for |z| ≤ 1,

Gt(z) =

{
(1 + t) z|z| − tz, for |z| > 1,

z, for |z| ≤ 1.

Both functions are normalized at 0 and 1, and they should be considered as
modifications of the radial stretching ψ(z) = z|z|K−1, such that their difference
is a polynomial vanishing at 0 and 1. Hence one may look for a field H(z, w)
so that Ft, Gt satisfy (3.1). However, composing with an extra quasiconformal
factor we will be able to further reduce the distortion constants. For this purpose
take

ϕ(z) = z|z|
√
2−1, |z| > 1 with ϕ(z) = z, |z| ≤ 1.

and consider the maps ft = Ft ◦ ϕ−1 and gt = Gt ◦ ϕ−1, or explicitly

ft(z) =

{
(1 + t) z|z|

√
2−1 − t(z|z|1/

√
2−1)2, for |z| > 1,

(1 + t) z − tz2, for |z| ≤ 1,

gt(z) =

{
(1 + t) z|z|

√
2−1 − tz|z|1/

√
2−1, for |z| > 1,

z, for |z| ≤ 1.

Both mappings f = ft and g = gt are injective by direct argumentation, and

normalized. It is immediate that f − g is K-quasiregular with 0 < k =
√
2−1√
2+1

=
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3− 2
√
2, K = 1+k

1−k . Directly estimating |∂f(z)|, |∂g(z)| from above and |∂f(z)|,
|∂g(z)| from below gives that f is Kf -quasiregular and g is Kg-quasiregular,
where

0 < kf =

√
2− 1 + t√
2 + 1− t

< 1 and 0 < kg =
2−

√
2 + t

2 +
√
2 + t

< 1.

Next, define for each fixed z 6∈ ∂D the mapping w 7→ H(z, w) as follows. First,
fix

H(z, 0) = 0, H
(
z, ∂f(z)

)
= ∂f(z), H

(
z, ∂g(z)

)
= ∂g(z). (3.2)

The computations above show that the map H(z, ·) : {0, ∂f(z), ∂g(z)} → C

is k0-Lipschitz, where k0 = max{k, kf , kg}. Using the Kirszbraun extension
theorem (for example, Theorem 2.10.43 in [4]) the mapping can be extended to
a k0-Lipschitz map H(z, ·) : C → C. From an abstract use of the Kirszbraun
extension theorem, however, it is not entirely clear that the map H obtained is
measurable in z, i.e., that (H1) is satisfied. To show this, one can proceed as
follows.

Fix a countable dense set D ⊂ C, enumerated as D = {w4, w5, w6, . . . }, set
w1 = 0, w2 = ∂f(z), w3 = ∂g(z), and define H(z, wk) recursively, starting with
(3.2). Assuming H(z, wk) is defined for k ≤ N with N ≥ 3, following [4], we set

Ys(z) =

N⋂

j=1

D
(
aj(z), s rj

)
,

where
aj(z) = H(z, wj), rj = k0|wj − wN+1|.

Let
s0(z) := inf{s > 0 : Ys(z) 6= ∅}.

It is shown in [4, Lemma 2.10.40] that Ys0(z) consists of a single point, say
b(z), and in the proof of [4, Theorem 2.10.43] that s0(z) ≤ 1. Furthermore, an
additional elementary argument shows that

(a1, . . . , aN ) 7→ b

is a continuous map. Therefore, we set

H(z, wN+1) = b(z).

Since a1(z), a2(z), a3(z) defined in (3.2) are measurable, it follows recursively
that each ai(z) is measurable in z. We obtain a k0-Lipschitz map H(z, ·) : D → C

such that for each fixed w ∈ D the mapping z 7→ H(z, w) is measurable. Since
D is dense, for each fixed z we can (uniquely) extend H(z, w) to a k0-Lipschitz
map C → C, which is then measurable in z.

We have now found H(z, w), satisfying (H1)–(H3) with k = k0, such that
(3.1) has two different normalized solutions. Letting t→ 0 makes k0 → 3−2

√
2.

The proof of Theorem 1.1 is thus complete.

To prove the sharpness of Theorem 1.2 one may modify the counterexample
above. However, a more convenient approach is to simply note that given the
functions ft and gt, one may change the variables so that both the identity and
the composition Φ = gt ◦ f−1

t satisfy the same nonlinear Beltrami equation. We
may thus use the following general factorization result to conclude Theorem 1.2.
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Lemma 3.1. Let H : Ω × C → C be measurable in the first variable, k(z)-
Lipschitz in the second, 0 ≤ k(z) ≤ k < 1, and H(z, 0) = 0. If f : Ω → Ω′,
f ∈W 1,2

loc (Ω), is a homeomorphic solution to the nonlinear Beltrami equation

∂f(z) = H
(
z, ∂f(z)

)
, for almost every z ∈ Ω, (3.3)

then any other solution g ∈W 1,2
loc (Ω) takes the form g = Φ ◦ f , where Φ solves

∂Φ(u) = H̃
(
u, ∂Φ(u)

)
(3.4)

with H̃ : f(Ω) × C → C measurable in the first variable, k̃(u)-Lipschitz in the

second, where k̃(u) = 2k(z)
1+k(z)2 , u = f(z), and H̃(u, 0) = 0 = H̃(u, 1). Further-

more, the function H̃ depends only on H and the coordinate change f , but is
independent of Φ.

Proof. We use the chain rule and substitute g(z) = Φ(f(z)) to the equation
(3.3). We get the nonlinear relation between Φu and Φū

fz̄Φu + fzΦū = H
(
z, fzΦu + fz̄Φū

)
, (3.5)

where z = f−1(u) and fz̄ = H(z, fz). Solving this for Φū in terms of Φu using the
contraction mapping principle, see Chapter 9.1 in [1], gives the equation (3.4),
where H̃ : f(Ω)× C → C is measurable in the first variable and k̃(u)-Lipschitz
in the second.

We are left to check H̃(u, 0) = 0 = H̃(u, 1). For this we let Φu = 0 and
Φu = 1 in (3.5) and solve it for Φū = H̃(u, 0) and Φū = H̃(u, 1), respectively.
This is equivalent to the equations

fzΦū = H
(
z, fz̄Φū

)
,

fz̄ + fzΦū = H
(
z, fz + fz̄Φū

)
.

In both cases we find that

|fz||Φū| ≤ k2|fz||Φū|,

and thus Φū = 0 almost everywhere as wanted. Above we use the k-Lipschitz
property of H and K-quasiconformality of f , K = 1+k

1−k , which is a straightfor-
ward calculation as in the beginning of the proof of Theorem 1.1.

Note that

k = 3− 2
√
2 ⇔ 2k

1 + k2
=

1

3
,

thus examples proving sharpness of the bound (1.3) yield, via factorization and
Lemma 3.1, also examples showing the sharpness of Theorem 1.2. A similar
reasoning shows that the uniqueness part of Theorem 1.1 could be deduced
from Theorem 1.2.

4 Flow of solutions, Theorems 1.3, 1.4, and 1.5

Proof of Theorem 1.3. We use similar methods as in the proof of Theorem 6.2.2
in [1]. Let f be as in the statement of the theorem and g be another normalized

8



solution. We construct two different flows of maps. The flow Lt = f − ψt is
a family of quasiconformal mappings joining f and 0. The flow gt = g − ψt
is a family of quasiregular mappings joining the homeomorphism g with the
noninjective map g − f .

Let T ⊂ [0, 1) denote the set of parameters t for which gt is a homeomor-
phism. One such parameter is t = 0. By the Hurwitz-type theorem, Theorem
3.9.4 in [1], we find that T is a relatively closed subset of [0, 1). Thus we need
to show that T is open.

Now, fix a parameter t ∈ T . The mapping

g − f = gt − Lt

is, by assumption, a nonconstant K-quasiregular mapping with at least two
zeros, points 0 and 1. Therefore, the composition

(g − f) ◦ L−1
t = gt ◦ L−1

t − id

is K2-quasiregular and has also two zeros.
We use the same ideas as in the proof of Theorem 1.2. First, applying the

argument principle and Lemma 2.1 to the difference gt ◦ L−1
t − id, we get that

for every R large enough there is a point zR such that

|gt ◦ L−1
t (zR)| = |zR| = R.

As t ∈ T, gt ◦ L−1
t is quasisymmetric, and since by (F4) it fixes the origin, we

obtain
1

λ(K)
|z| ≤ |gt ◦ L−1

t (z)| ≤ λ(K)|z| whenever |z| ≥ R, (4.1)

if R > 0 is large enough.
Secondly, the continuity assumption (F3) and the equation (4.1) allow us to

compare gt ◦ L−1
t with gs ◦ L−1

t when |t − s| is small enough. Indeed, there is
δ > 0 and R0 > 0 such that if |t− s| < δ, one has

|gs(w) − gt(w)| = |ψt(w) − ψs(w)| ≤
1

2λ(K)
|Lt(w)|,

for |w| ≥ R0. Writing Lt(w) = z, we obtain that

|gs ◦ L−1
t (z)− gt ◦ L−1

t (z)| ≤ 1

2λ(K)
|z|, (4.2)

for every z outside the set Lt(D(0, R0)) .
We now fix w0 ∈ C. Since gt ◦ L−1

t is a homeomorphism by assumption,
the winding number of (gt ◦L−1

t )(∂D(0, R)) around w0 is 1, for R large enough.
Therefore conditions (4.1) and (4.2) show that for |t−s| < δ the winding number
of gs ◦ L−1

t is 1 as soon as R ≥ 2λ(K)|w0|. It follows that the mappings gs for
|t− s| < δ are homeomorphisms and s ∈ T . Thus T is open.

We have proven that, for all t ∈ [0, 1), the mappings gt are quasiconformal
homeomorphisms of the plane. Hence by Hurwitz-type arguments, e.g., Theorem
3.9.4 in [1], their locally uniform limit g − f is either a homeomorphism or a
constant. Having at least two zeroes, it must be the constant map 0.
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Proof of Theorem 1.4. First we find a homeomorphic, linear, and normalized
solution to the nonlinear Beltrami equation (1.8): By the Banach fixed point
theorem, the contraction w 7→ 1 −H(w) has a unique fixed point a ∈ C. Then
the linear mapping f(z) = az +H(a)z̄ is solution to (1.8), fixes 0 and 1, and is
injective by the inequality |H(a)| ≤ k|a|.

Now, we can apply Theorem 1.3 with the linear maps ψt(z) = taz +H(ta)z
for t ∈ [0, 1] to see that f is the only normalized solution.

To show that any homeomorphic solution g to (1.8) is affine, we may assume
g(0) = 0. Given g(1) = b, then h(z) = g(z)/b is the normalized solution to ∂h =

H̃
(
∂h), where H̃(w) = H(b w)/b. By the above h, and hence g, is linear.

Proof of Theorem 1.5. Since H(z, 1) = 0, we already know that f(z) = z is a
normalized solution. We will get the uniqueness by applying Theorem 1.3. We
can assume γ(t) 6∈ {0, 1}, when t ∈ (0, 1).

We will construct a concrete flow of solutions. The crucial point is to solve
the following nonlinear and inhomogeneous Beltrami equation

∂ηt(z) = H
(
z, ∂ηt(z) + γ(t)

)
for almost every z ∈ C. (4.3)

By [2], there exists exactly one solution ηt to the above equation (4.3) such
that Dηt ∈ Lp(C). Namely, this can be established via the invertibility of the
nonlinear Beltrami operator Bt = I−Ht(z,S) := I−[H(z,S+γ(t))−H(z, γ(t))].
Here S stands for the Beurling transform. With this notation, (4.3) gets the
form ∂ηt = Ht(z, ∂ηt) +H(z, γ(t)). The Lp-invertibility, 1 + k < p < 1 + 1/k,
of the above operator Bt = I−Ht(z,S) is proven in [2]. We have assumed that
H(z, γ(t)) ∈ Lp0(C) for some p0 < 2. The ellipticity of H gives an L∞-bound,
|H(z, γ(t))| ≤ k|γ(t)|. Thus have the solution ηt with

‖∂ηt‖Lp(C) ≤ Cp, max{p0, 1 + k} < p < 1 +
1

k
.

In particular, by the mapping properties of the Cauchy transform, see, for in-
stance, Theorem 4.3.11 in [1], we obtain a uniform L∞-estimate

‖ηt‖L∞(C) ≤ C∞ with ηt ∈ C0(Ĉ).

We now claim that ψt(z) := γ(t)z + ηt(z)− ηt(0) defines a flow with all the
properties required in Theorem 1.3. By definition, ψt solves the original equation

∂ψt(z) = H
(
z, ∂ψt(z)

)
for almost every z ∈ C.

The condition H(z, 1) = 0 implies η1(z) ≡ 0, and similarly η0(z) ≡ 0. Thus
ψ0(z) = 0, ψ1(z) = z = f(z). Hence we have (F1) and (F4) in Theorem 1.3.

The quasiconformality of f−ψt for 0 ≤ t < 1, condition (F2), follows because

f − ψt =
(
1− γ(t)

)
z − ηt(z) + ηt(0).

Indeed, since ηt(z) ∈ C0(Ĉ), the map h := f−ψt can be shown to be homotopic
to the homeomorphism (1 − γ(t))z + ηt(0) in ∂D(0, R) with respect to 0, for
R large enough. Thus, for example, by Theorem 2.8.1 in [1] (for the proof,

cf. Theorem 2.2.4 in [6]), it follows that deg(h, 0) = 1. Since h : Ĉ → Ĉ, the
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degree is constant and hence equal to 1 for each w ∈ Ĉ. By quasiregularity of
h, this forces h to be a homeomorphism.

It remains to address the continuity assumption (F3) in Theorem 1.3. Notice
that

∂(ηt − ηs) = H
(
z, ∂ηt − γ(t)

)
−H

(
z, ∂ηs − γ(s)

)
.

By applying the Lipschitz condition on H, we get the pointwise inequality

|∂(ηt − ηs)| ≤ k(|∂ηt − ∂ηs|+ |γ(t)− γ(s)|). (4.4)

For a compactly supported H the continuity estimate follows directly from the
invertibility of the Beltrami operators [2], but in the general case an additional
argument is required.

Let ϕ ∈ C∞
0 (D(0, 2R)) with ϕ(z) = 1, if |z| ≤ R, and |∇ϕ(z)| ≤ 1

R . Then
multiply (4.4) by ϕ and apply the Caccioppoli type estimate, Theorem 5.4.3 in
[1], with the exponent 2 < r < 1 + 1

k to get

(∫

D(0,R)

|D(ηt − ηs)|r
) 1

r

≤
(∫

D(0,2R)

|ϕD(ηt − ηs)|r
) 1

r

≤ CR
2

r
−1(R|γ(t)− γ(s)|+ ‖ηt − ηs‖∞).

Next, we combine this estimate with the Hölder estimates for Sobolev functions.
More precisely, since by construction ηt− ηs ∈W 1,r

loc (C) for every r ∈ [2, 1+ 1
k ),

at points z with |z| = R one has

|ηt(z)− ηs(z)− ηt(0)− ηs(0)| ≤ C

(∫

D(0,R)

|D(ηt − ηs)|r
) 1

r

R1− 2

r

≤ C (|γ(t)− γ(s)| |z|+ C∞) .

(4.5)

Furthermore, the definition of ψt and (4.5) yield that there exists a constant C
such that if |z| = R, then

|ψt(z)− ψs(z)| ≤ C(|γ(t)− γ(s)||z|+ 1). (4.6)

On the other hand, clearly |f(z) − ψt(z)| ≥ |1 − γ(t)||z| − 2C∞, which for
|z| ≥ 4C∞

|1−γ(t)| implies that

|f(z)− ψt(z)| ≥
|1− γ(t)|

2
|z|. (4.7)

Combining (4.6) and (4.7) we obtain

∣∣∣∣
ψt(z)− ψs(z)

f(z)− ψt(z)

∣∣∣∣ ≤
C

|1− γ(t)|

(
|γ(t)− γ(s)|+ 1

|z|

)

and the continuity estimate (F3) follows by letting s→ t and R → ∞.

Acknowledgements Part of the research took place in Madrid where the
authors were taken part of the program "Calculus of Variations, Singular Inte-
grals and Incompressible fluids". We would like to thank the warm hospitality of
UAM and ICMAT. K.A. was supported by the Academy of Finland, project no.
1134757, the Finnish Centre of Excellence in Analysis and Dynamics Research,

11



and project MRTN-CT-2006-035651, Acronym CODY, of the European Com-
mission. A.C. was supported by projects MTM2010-15657 (Spanish Ministry of
Science), NF-129254 (Programa Ramón y Cajal) and 2009-SGR-420 (General-
itat de Catalunya). D.F was suported by the spanish grant MTM2008-02568.
J.J. was supported by the Academy of Finland, project no. 1134757, and the
Vilho, Yrjö and Kalle Väisälä Foundation. L.Sz. was supported by the Hausdorff
Center for Mathematics in Bonn.

References

[1] K. Astala, T. Iwaniec, and G. Martin: Elliptic Partial Differential
Equations and Quasiconformal Mappings in the Plane, Princeton Mathe-
matical Series 48, Princeton University Press, Princeton, NJ, 2009.

[2] K. Astala, T. Iwaniec, and E. Saksman: Beltrami operators, Duke
Math. J. 107 (2001), 27–56.

[3] B. Bojarski and T. Iwaniec: Quasiconformal mappings and non-linear
elliptic equations in two variables. I, II, Bull. Acad. Polon. Sci. Sér. Sci.
Math. Astronom. Phys. 22 (1974), 473–478.

[4] H. Federer: Geometric Measure Theory, Die Grundlehren der mathema-
tischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New
York, 1969.

[5] T. Iwaniec: Quasiconformal mapping problem for general nonlinear sys-
tems of partial differential equations, Symposia Mathematica, Vol. XVIII,
pp. 501–517, Academic Press, London, 1976.

[6] N. G. Lloyd: Degree theory, Cambridge University Press, New York,
1978.

12


	1 Introduction
	2 General case, Theorems ?? and ??
	3 Counterexamples
	4 Flow of solutions, Theorems ??, ??, and ??

