December 14, 2010

COUNTING ESSENTIAL SURFACES IN A CLOSED HYPERBOLIC THREE MANIFOLD

JEREMY KAHN AND VLADIMIR MARKOVIC

Abstract

Let \mathbf{M}^{3} be a closed hyperbolic three manifold. We show that the number of genus g surface subgroups of $\pi_{1}\left(\mathbf{M}^{3}\right)$ grows like $g^{2 g}$.

1. Introduction

Let \mathbf{M}^{3} be a closed hyperbolic 3-manifold and let S_{g} denote a closed surface of genus g. Given a continuous mapping $f: S_{g} \rightarrow \mathbf{M}^{3}$ we let $f_{*}: \pi_{1}\left(S_{g}\right) \rightarrow \pi_{1}\left(\mathbf{M}^{3}\right)$ denote the induced homomorphism.

Definition 1.1. We say that $G<\pi_{1}\left(\mathbf{M}^{3}\right)$ is a surface subgroup of genus $g \geq 2$ is there exists a continuous map $f: S_{g} \rightarrow \mathbf{M}^{3}$ such that the induced homomorphism f_{*} is injective and $f_{*}\left(\pi_{1}\left(S_{g}\right)\right)=G$. Moreover, the subsurface $f\left(S_{g}\right) \subset \mathbf{M}^{3}$ is said to be an essential subsurface.

Recently, we showed [4] that every closed hyperbolic 3-manifold $\mathbf{M ~}^{3}$ contains an essential subsurface and consequently $\pi_{1}\left(\mathbf{M}^{3}\right)$ contains a surface subgroup. It is therefore natural to consider the question: How many conjugacy classes of surface subgroups of genus g there are in $\pi_{1}\left(\mathbf{M}^{3}\right)$? This has already been considered by Masters [5] and our approach to this question builds on our previous work and improves on the work by Masters.

Let $s_{2}\left(\mathbf{M}^{3}, g\right)$ denote the number of conjugacy classes of surface subgroups of genus at most g. We say that two surface subgroups G_{1} and G_{2} of $\pi_{1}\left(\mathbf{M}^{3}\right)$ are commensurable if $G_{1} \cap G_{2}$ has a finite index in both G_{1} and G_{2}. Let $s_{1}\left(\mathbf{M}^{3}, g\right)$ denote the number surface subgroups of genus at most g, modulo the equivalence relation of commensurability. Then clearly $s_{1}\left(\mathbf{M}^{3}, g\right) \leq$ $s_{2}\left(\mathbf{M}^{3}, g\right)$. The main result of this paper is the following theorem.

Theorem 1.1. Let \mathbf{M}^{3} be a closed hyperbolic 3-manifold. There exist two constants $c_{1}, c_{2}>0$ such that

$$
\left(c_{1} g\right)^{2 g} \leq s_{1}\left(\mathbf{M}^{3}, g\right) \leq s_{2}\left(\mathbf{M}^{3}, g\right) \leq\left(c_{2} g\right)^{2 g}
$$

for g large enough. The constant c_{2} depends only on the injectivity radius of \mathbf{M}^{3}.

In fact, Masters shows that

$$
s_{2}\left(g, \mathbf{M}^{3}\right)<g^{c_{2} g}
$$

[^0]for some $c_{2} \equiv c_{2}\left(\mathbf{M}^{3}\right)$, and likewise for some $c_{1} \equiv c_{1}\left(\mathbf{M}^{3}\right)$
$$
g^{c_{1} g}<s_{1}\left(g, \mathbf{M}^{3}\right)
$$
when \mathbf{M}^{3} has a self-transverse totally geodesic subsurface. We follow Masters' approach to the upper bound, improving it from $g^{c_{2} g}$ to $\left(c_{2} g\right)^{2 g}$ by more carefully counting the number of suitable triangulations of a genus g surface. Using our previous work [4] we replace Masters' conditional lower bound with an unconditional one, and we improve it from $g^{c g}$ to $\left(c_{1} g\right)^{2 g}$ with the work of Muller and Puchta [6] counting number of maximal surface subgroups of a given surface group. We then make new subgroup from old in the spirit of Masters' construction, but taking the nearly geodesic subgroup from [4] as our starting point.

The above theorem enables us to determine the order of the number of surface subgroups up to genus g. We have the following corollary.
Corollary 1.1. We have

$$
\lim _{g \rightarrow \infty} \frac{\log s_{1}\left(\mathbf{M}^{3}, g\right)}{2 g \log g}=\lim _{g \rightarrow \infty} \frac{\log s_{2}\left(\mathbf{M}^{3}, g\right)}{2 g \log g}=1
$$

We make the following conjecture.
Conjecture 1.1. For a given closed hyperbolic 3-manifold \mathbf{M}^{3}, there exists a constant $c(M)>0$ such that

$$
\lim _{g \rightarrow \infty} \frac{1}{g} \sqrt[2 g]{s_{i}\left(\mathbf{M}^{3}, g\right)}=c(M), i=1,2 .
$$

2. The upper bound

Fix a closed hyperbolic 3-manifold \mathbf{M}^{3}. In this section we prove the upper bound in Theorem [1.1, that is we show

$$
\begin{equation*}
s_{2}\left(\mathbf{M}^{3}, g\right) \leq\left(c_{2} g\right)^{2 g} \tag{1}
\end{equation*}
$$

for some constant $c_{2}>0$.
2.1. Genus g triangulations. We have the following definition.

Definition 2.1. Let S_{g} denote a closed surface of genus g. We say that a connected graph τ is a triangulation of genus g if it can be embedded into the surface S_{g} such that every component of the set $S_{g} \backslash \tau$ is a triangle. The set of genus g triangulations is denoted by $\mathcal{T}(g)$. We say that $\tau \in \mathcal{T}(k, g) \subset \mathcal{T}(g)$ $i f:$

- each vertex of τ has the degree at most k,
- the graph τ has at most kg vertices and edges.

We observe that any given genus g triangulation τ, can be in a unique way (up to a homeomorphism of S_{g}) be embedded in S_{g}.

We say that Riemann surface is s-thick is its injectivity radius is bounded below by $s>0$. Every thick Riemann surface has a good triangulation.

Lemma 2.1. Let S be an s-thick Riemann surface of genus $g \geq 2$. Then there exists $k=k(s)>0$ and a triangulation $\tau \in \mathcal{T}(k, g)$ that embeds in S, such that
(1) Every edge of τ is a geodesic arc of length at most s,
(2) The triangulation τ has at most kg vertices and edges,
(3) The degree of each vertex is at most k.

Proof. Choose a a maximal collection of disjoint open balls in S of radius $\frac{s}{4}$. Let V denote the set of centers of the balls from the collection. We may assume that no four points from V lie on a round circle (we always reduce the radius of the balls by a small amount and move them into a general position). We construct the Delaunay triangulation associated to the set V as follows. We connect two points from V with the shortest geodesic arc between them, providing they belong to the boundary of a closed ball in S that does not contain any other point from S. This gives an embedded graph τ. Since no four points from V lie on the same circle the graph τ is a triangulation. It is elementary to check that τ has the stated properties, and we leave it to the reader.

Given any injective immersion of $g: S_{g} \rightarrow \mathbf{M}^{3}$, we can find a genus g hyperbolic surface S, and a map $f: S \rightarrow \mathbf{M}^{3}$ homotopic to g, such that $f(S)$ is a pleated surface. Then f does not increase the hyperbolic distance. Let s denote the injectivity radius of \mathbf{M}^{3}. It follows that the injectivity radius of S is bounded below by s. We choose a triangulation $\tau(S)$ of S that satisfies the conditions in Lemma 2.1.

Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ be a finite collection of balls of radius $\frac{s}{4}$ that covers \mathbf{M}^{3}. We may assume that \mathcal{C} is a minimal collection, that is, if we remove a ball from \mathcal{C}, the new collection of balls does not cover \mathbf{M}^{3}. Let $f_{i}: S_{i} \rightarrow$ $\mathbf{M}^{3}, i=1,2$, be two pleated maps, and denote by $\tau\left(S_{1}\right)$ and $\tau\left(S_{2}\right)$ the corresponding triangulations of genus g surfaces S_{1} and S_{2}. If the genus g triangulations $\tau\left(S_{1}\right)$ and $\tau\left(S_{2}\right)$ are identical, there exists a homeomorphism $h: S_{1} \rightarrow S_{2}$ such that $h\left(\tau\left(S_{1}\right)\right)=\tau\left(S_{2}\right)$. Assume in addition that for every vertex v of $\tau\left(S_{1}\right)$, the points $f_{1}(v)$ and $f_{2}(h(v))$ belong to the same ball $C_{i} \in \mathcal{C}$. Then by Lemma 2.4 in [5], the maps f_{1} and f_{2} are homotopic.

Since the set \mathcal{C} has m elements, there are at most m ways of mapping a given vertex of τ to the set \mathcal{C}. Choose a vertex v_{1} of τ and choose an image of v_{1} in \mathcal{C}, say v_{1} is mapped to C_{1}. Let v_{1} be a vertex of τ, such that v_{0} and v_{1} are the endpoints of the same edge. Since each edge of τ has the length at most s, and the balls from \mathcal{C} have the radius $\frac{s}{4}$. Since f does not increase the distance, and \mathcal{C} is a minimal cover of \mathbf{M}^{3}, it follows that v_{1} can be mapped to at most K elements of \mathcal{C}, where K is a constant that depends only on s. Repeating this analysis yields the following estimate:

$$
\begin{equation*}
\widetilde{s}_{2}\left(\mathbf{M}^{3}, g\right) \leq m K^{k g-1}|\mathcal{T}(k, g)|, \tag{2}
\end{equation*}
$$

where $\widetilde{s}_{2}\left(\mathbf{M}^{3}, g\right)$ denotes the number of conjugacy classes of surface subgroups of genus equal to g.

Let $\nu(k, n)$ denote the set of all graphs on n vertices so that each vertex has the degree at most k. Then $|\mathcal{T}(k, g)| \leq|\nu(k, k g)|$.

Remark. Observing the estimate

$$
|\nu(k, n)| \leq n^{k n},
$$

Masters showed

$$
\widetilde{s}_{2}\left(\mathbf{M}^{3}, g\right) \leq g^{D g},
$$

for some constant $D>0$. However, the set $\nu(k, k g)$ has many more elements than the set $\mathcal{T}(k, g)$.

The following lemma will be proved in the next subsection.
Lemma 2.2. There exists a constant $C>0$ that depends only on k, such that for g large we have

$$
|\mathcal{T}(k, g)| \leq(C g)^{2 g} .
$$

Given this lemma we now prove estimate (11). It follows from the Lemma 2.2 that for every g large we have

$$
|\mathcal{T}(k, g)| \leq(C g)^{2 g} .
$$

Combining this with (2) we get

$$
\widetilde{s}_{2}\left(\mathbf{M}^{3}, g\right) \leq m K^{k g-1}(C g)^{2 g} \leq\left(C_{1} g\right)^{2 g},
$$

holds for every $g \geq 2$, for some constant C_{1}. Then

$$
\begin{aligned}
s_{2}\left(\mathbf{M}^{3}, g\right) & =\sum_{r=2}^{g} \widetilde{s}_{2}\left(\mathbf{M}^{3}, r\right) \\
& =\sum_{r=2}^{g}\left(C_{1} r\right)^{2 r} \\
& \leq\left(c_{2} g\right)^{2 g},
\end{aligned}
$$

for some constant c_{2}. This proves the estimate (1).
2.2. The proof of Lemma 2.2. Fix a triangulation $\tau \in \mathcal{T}(k, g)$ and denote the set of oriented edges by $E(\tau)$. Let $\mathbb{Q} E(\tau)$ denote the vector space of all formal sums (with rational coefficients) of edges from $E(\tau)$.

Choose a spanning tree T (a spanning tree of a connected graph is a connected tree that contains all of its vertices) for τ. Let $H_{1}\left(S_{g}\right)$ denote the first homology with rational coefficients of the surface S_{g}. We define the linear map $\phi: \mathbb{Q} E(\tau) \rightarrow H_{1}\left(S_{g}\right)$ as follows. Let $e \in(E(\tau) \backslash T)$. Then the union $e \cup T$ is homotopic (on S_{g}) to a unique (up to homotopy) simple closed curve $\gamma_{e} \subset S_{g}$. We let $\phi(e)$ denote the homology class of the curve γ_{e} in $H_{1}\left(S_{g}\right)$. We extend the map ϕ to $\mathbb{Q} E(\tau)$ by linearity.

Denote the kernel of ϕ by $K(\phi)$ and set

$$
H_{1}(\tau, T)=\frac{\mathbb{Q} E(\tau)}{K(\phi)} .
$$

Then the quotient map (also denoted by) $\phi: H_{1}(\tau, T) \rightarrow H_{1}\left(S_{g}\right)$ is injective, and in fact it an isomorphism. Since τ is a genus g triangulation, the embedding of the triangulation τ to S_{g} induces the surjective map of the fundamental group of τ to the fundamental group of S_{g}. Then the induced map ϕ between the corresponding homology groups is injective.

Let $e_{1}, \ldots, e_{2 g} \in E(\tau)$ denote a set of $2 g$ edges whose equivalence classes generate $H_{1}(\tau, T)$.

Lemma 2.3. Let $X=T \cup\left\{e_{1}, \ldots, e_{2 g}\right\}$. Then every component of the set $S_{g} \backslash X$ is simply connected.

Proof. The set X is connected (since it contains the spanning tree T, and the tree T contains all the vertices). Suppose that there exists a component of the set $S_{g} \backslash X$ that is not simply connected. Then there exists a simple closed curve $\gamma \subset S_{g}$ that is not homotopic to a point, and such that

$$
\gamma \cap X=\emptyset .
$$

If γ is a non-separating curve then the homology class of γ is non-trivial in $H_{1}\left(S_{g}\right)$. Therefore, there exists a non-separating simple closed $\alpha \subset S_{g}$ that intersects the curve γ exactly once. Let $q_{1}, \ldots, q_{2 g} \in \mathbb{Q}$ be such that

$$
\phi\left(q_{1} e_{1}+\ldots+q_{2 g} e_{2 g}\right)=[\alpha],
$$

where $[\alpha] \in H_{1}\left(S_{g}\right)$ denotes the homology class of α. Since the intersection pairing between $[\alpha]$ and $[\gamma]$ is non-zero, and $\phi\left(e_{1}\right), \ldots, \phi\left(e_{2 g}\right)$ is a basis for $H_{1}\left(S_{g}\right)$, we conclude that for some $i \in\{1, \ldots, 2 g\}$, the curve γ intersects $e_{i} \cup T$, which is a contradiction.

Suppose that γ is a separating curve and denote by A_{1} and A_{2} the two components of the set $S_{g} \backslash \gamma$. The set X is connected, and by the assumption it does not intersect γ. This implies that X is contained in one of the two sub-surfaces A_{i}, say $X \subset A_{1}$. Then $X \cap A_{2}=\emptyset$.

Since γ is not homotopic to a point, each A_{i} is a non-planar surface with one boundary component. Therefore, the subsurface A_{2} contains a non-separating simple closed curve γ_{2}. Then γ_{2} is a non-separating simple closed curve in S_{g} by the above argument we have that γ_{2} intersects the set X. This is a contradiction since $X \cap A_{2}=\emptyset$.

Let P_{1}, \ldots, P_{l} denote the components of the set $S_{g} \backslash X$. Each P_{i} is a polygon and we let m_{i} denote the number of sides of the polygon P_{i}. Since each edge in X can appear as a side in at most two such polygons, we have the inequality

$$
\begin{equation*}
\sum_{i=1}^{l} m_{i} \leq 2 k g, \tag{3}
\end{equation*}
$$

since by definition the triangulation τ has at most kg edges.
We proceed to prove Lemma [2.2. We can obtain every triangulation $\tau \in \mathcal{T}(k, g)$ as follows. We first choose a spanning tree T, which is a tree that has at most $k g$ vertices. Then to the tree T we add $2 g$ edges $e_{1}, \ldots, e_{2 g}$ in an arbitrary way. After adding the edges, at each vertex of the graph $T \cup\left\{e_{1}, \ldots, e_{2 g}\right\}$ we choose a cyclic ordering. We thicken the edges of the graph $T \cup\left\{e_{1}, \ldots, e_{2 g}\right\}$ to obtain the ribbon graph and the corresponding surface R with boundary (if this surface does not have genus g we discard this graph). The boundary components of the surface R are polygonal curves $P_{i}, i=1, . ., l$, made out of the edges from $T \cup\left\{e_{1}, \ldots, e_{2 g}\right\}$. We then choose a triangulation of each polygon P_{i}.

It follows from this description that we can bound the number of triangulations from $\mathcal{T}(k, g)$ by $|\mathcal{T}(k, g)| \leq a b c d$, where

$$
a=\{\text { number of unlabelled trees } T \text { with } n \leq k g \text { vertices }\},
$$

$b=\left\{\right.$ number of ways of adding $2 g$ unlabelled edges $e_{1}, \ldots e_{2 g}$ to $\left.T\right\}$,
$c=\left\{\right.$ number of cyclic orderings of edges of $\left.T \cup\left\{e_{1}, \ldots, e_{2 g}\right\}\right\}$,
$d=\left\{\right.$ number of triangulations of the polygons $\left.P_{i}\right\}$.
Let $t(n)$ denote the number of different unlabelled trees on n vertices. By [1] we have $t(n) \leq C 12^{n}$, for some universal constant $C>0$. It follows that $a \leq 2 C 12^{k g}$. The tree T has at most $k g$ edges, so there are at most $(k g)^{2}$ ways of adding a labelled edge to T. All together there are at most $(\mathrm{kg})^{4 g}$ ways of adding a labelled collection of $2 g$ edges to T. To obtain the number of ways of adding unlabelled collection of $2 g$ edges we need to divide this number by $(2 g)$!. This yields the estimate

$$
b \leq \frac{(k g)^{4 g}}{(2 g)!}<\left(k^{2} g\right)^{2 g}
$$

for g large.
Since each vertex of τ has the degree at most k, and τ has at most $k g$ edges, we obtain the estimate

$$
c \leq(k!)^{k g} .
$$

Let $p(m)$ denote the number of triangulations of a polygon with m sides. Then $p(m)$ is the $(m-2)$-th Catalan number and we have $p(m)<2^{2 m}$. As
above, let P_{1}, \ldots, P_{l} denote the polygons that we need to triangulate and let m_{i} denote the number of sides of the polygon P_{i}. Then

$$
d \leq \max \Pi_{i=1}^{l} p\left(m_{i}\right) \leq \max \leq 4^{m_{1}+\ldots+m_{l}}
$$

where the maximum is taken over all possible vectors $\left(m_{1}, \ldots, m_{l}\right), 1 \leq l \leq$ $2 k g$, such that $m_{1}+\ldots+m_{l} \leq 2 k g$ (see estimate (3) above). But since $m_{1}+\ldots+m_{l} \leq 2 k g$ we have $d \leq 4^{2 k g}$.

Putting the estimates for a, b, c, d together we prove the lemma.
Remark. If we are given a tree on a surface S, along with $2 g$ edges connecting the vertices of the tree (and satisfying the hypothesis of Lemma 2.3) and a map of the resulting graph into \mathbf{M}^{3}, the we can determine the map of S into \mathbf{M}^{3}, up to homotopy. Thus we need only bound $\left|\mathcal{T}^{\prime}(k, g)\right|$, where $\mathcal{T}^{\prime}(k, g)$ is the set of trees of size at most $k g$, with $2 g$ more edges added; we observe that $\left|\mathcal{T}^{\prime}(k, g)\right|<a b$.

3. Quasifuchsian representations of surface groups

3.1. Generalized pants decomposition and the Complex Fenchel-

 Nielsen coordinates. For background on complex Fenchel-Nielsen coordinates see [8, [3] , 7], [4]. The exposition and notation we use here is in line with Section 2 in [4].Let X a compact topological surface (possibly with boundary) and let $\rho: \pi_{1}(X) \rightarrow \operatorname{PSL}(2, \mathbb{C})$ be a representation (a homomorphism). We say that ρ is a K-quasifuchsian representation if the group $\rho\left(\pi_{1}(X)\right)$ is K quasifuchsian, in which case we can equip X with a complex structure $X=\mathbb{H}^{2} / F$, for some Fuchsian group F, such that $f_{*}=\rho \circ \iota$. Here $\iota: F \rightarrow \pi_{1}(X)$ is an isomorphism, and $f_{*}: F \rightarrow f F f^{-1}$ is the conjugation homomorphism, induced by an equivariant K-quasiconformal map $f: \partial \mathbb{H}^{3} \rightarrow \partial \mathbb{H}^{3}$.

We will also say that a quasisymmetric map $f: \partial \mathbb{H}^{2} \rightarrow \partial \mathbb{H}^{3}$ is K quasiconformal if it has a K-quasiconformal extension to $\partial \mathbb{H}^{3}$.

By Π we denote a topological pair of pants with cuffs $C_{i}, i=1,2,3$. Recall that that to every representation $\rho: \pi_{1}(\Pi) \rightarrow \mathbf{P S L}(2, \mathbb{C})$, we associate the three half lengths $\operatorname{hl}\left(C_{i}\right) \in \mathbb{C}_{+} / 2 i \pi \mathbb{Z}$, where $\mathbb{C}_{+}=\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$. If ρ is quasifuchsian then it is uniquely determined by the half lengths. The conjugacy class $[\rho]$ of a quasifuchsian representation ρ is called a skew pair of pants.

We let Π and Π^{\prime} denote two pairs of pants and let $\rho: \pi_{1}(\Pi) \rightarrow \mathbf{P S L}(2, \mathbb{C})$ and $\rho^{\prime}: \pi_{1}\left(\Pi^{\prime}\right) \rightarrow \mathbf{P S L}(2, \mathbb{C})$ denote two representations. Suppose that for some $c_{1} \in \pi_{1}(\Pi)$ and $c_{1}^{\prime} \in \pi_{1}\left(\Pi^{\prime}\right)$, that belong to the conjugacy classes of C_{1} and C_{1}^{\prime} respectively, we have $\rho\left(c_{1}\right)=\rho^{\prime}\left(c_{1}^{\prime}\right)$, and $\mathbf{h l}\left(C_{1}\right)=\mathbf{h l}\left(C_{1}^{\prime}\right)$. By $s(C) \in \mathbb{C} /(\mathbf{h l}(C) \mathbb{Z}+2 \pi i \mathbb{Z})$ we denote the reduced twist-bend parameter, which measures how the two skew pairs of pants $[\rho]$ and $\left[\rho^{\prime}\right]$ align together along the axis of the loxodromic transformation $\rho\left(c_{1}\right)=\rho^{\prime}\left(c_{1}^{\prime}\right)$.

A pair $(\widetilde{\Pi}, \chi)$ is a generalized pair of pants if $\widetilde{\Pi}$ is a compact surface with boundary and χ is a finite degree covering map $\chi: \widetilde{\Pi} \rightarrow \Pi$, where Π is a pair of pants. (We will also call $\widetilde{\Pi}$ a generalized pair of pants if χ is understood.) By $\chi_{*}: \pi_{1}(\widetilde{\Pi}) \rightarrow \pi_{1}(\Pi)$ we denote an induced homomorphism.

Definition 3.1. Let $(\widetilde{\Pi}, \chi)$ be a generalized pair of pants and

$$
\widetilde{\rho}: \pi_{1}(\widetilde{\Pi}) \rightarrow \mathbf{P S L}(2, \mathbb{C}),
$$

be a representation. We say that $\widetilde{\rho}$ is admissible with respect to χ if it factors through χ_{*}, that is there exists $\rho: \pi_{1}(\Pi) \rightarrow \mathbf{P S L}(2, \mathbb{C})$ such that $\widetilde{\rho}=\rho \circ \chi_{*}$.

Let $\widetilde{C}_{j}, j=1, \ldots, k$, denote the cuffs (the boundary curves) of the surface $\widetilde{\Pi}$, and let C_{1}, C_{2}, C_{3} continue to denote the cuffs of Π. Then χ maps each \widetilde{C}_{j} onto some C_{i} with some degree $m_{j} \in \mathbb{N}$. We say that such a curve \widetilde{C}_{j} is a degree m_{j} curve. For every admissible $\widetilde{\rho}$ we define the half length $\mathbf{h l}\left(\widetilde{C}_{j}\right)$ as $\mathbf{h l}\left(\widetilde{C}_{j}\right)=\mathbf{h l}\left(C_{i}\right)$. Let $\widetilde{c_{j}} \in \pi_{1}\left(\widetilde{\Pi}^{0}\right)$ be in the conjugacy class that corresponds to the cuff \widetilde{C}_{j}. Then

$$
\mathbf{l}\left(\widetilde{\rho}\left(c_{i}\right)\right)=2 m_{j} \mathbf{h l}\left(C_{i}\right)(\bmod (2 \pi i \mathbb{Z})) .
$$

Let S be an oriented closed topological surface with a generalized pants decomposition. By this we mean that we are given a collection \mathcal{C} of disjoint simple closed curves on S, such that for every component $\widetilde{\Pi}$ of $S \backslash \mathcal{C}$ there is an associated finite cover $\chi: \widetilde{\Pi} \rightarrow \Pi$. Let

$$
\widetilde{\rho}: \pi_{1}(S) \rightarrow \mathbf{P S L}(2, \mathbb{C})
$$

be a representation. We make the following assumptions on ρ :

- Given a curve $C \in \mathcal{C}$ there exists two (not necessarily different) generalized pairs of pants $\widetilde{\Pi}_{1}$ and $\widetilde{\Pi}_{2}$ that both contain C as a cuff, and that lie on different sides of C. Let $\chi_{1}: \widetilde{\Pi}_{1} \rightarrow \Pi_{1}$ and χ_{2} : $\widetilde{\Pi}_{2} \rightarrow \Pi_{2}$ be the corresponding finite covers, where Π_{1} and Π_{2} are two pairs of pants. We assume that the restrictions of χ_{1} and χ_{2} on the curve C are of the same degree.
- For every generalized pair of pants $\widetilde{\Pi}$ from the above decomposition of S, the restriction $\rho: \pi_{1}(\widetilde{\Pi}) \rightarrow \mathbf{P S L}(2, \mathbb{C})$ is admissible with respect to the covering map $\chi: \widetilde{\Pi} \rightarrow \Pi$ (in the sense of Definition 3.1).
- For every $C \in \mathcal{C}$, the half lengths of C coming from the representations $\rho: \pi_{1}\left(\widetilde{\Pi}_{1}\right) \rightarrow \mathbf{P S L}(2, \mathbb{C})$ and $\rho: \pi_{1}\left(\widetilde{\Pi}_{2}\right) \rightarrow \mathbf{P S L}(2, \mathbb{C})$ are one and the same.
Continuing with the above notation, let $C_{i} \subset \Pi_{i}$ denote the cuff such that $\chi_{i}(C)=C_{i}$. Let $\rho_{i}: \pi_{1}\left(\Pi_{i}\right) \rightarrow \operatorname{PSL}(2, \mathbb{C}), i=1,2$, be the representations such that the restriction of ρ to $\pi_{1}\left(\widetilde{\Pi}_{i}\right)$ is equal to $\rho_{i} \circ\left(\chi_{i}\right)_{*}$. We define the reduced twist bend parameter $s(C)$ associated to ρ to be equal to the reduced twist-bend parameter for the representations ρ_{1} and ρ_{2}.

So given a closed surface S with a generalized pants decomposition \mathcal{C}, and a representation $\rho: \pi_{1}(S) \rightarrow \mathbf{P S L}(2, \mathbb{C})$, we have defined the parameters $\mathbf{h l}(C) \in \mathbb{C}_{+} / 2 k \pi \mathbb{Z}$ and $s(C) \in \mathbb{C} /(\mathbf{h l}(C) \mathbb{Z}+2 \pi i \mathbb{Z})$. The collection of pairs $(\mathrm{hl}(C), s(C)), C \in \mathcal{C}$, is called the reduced Fenchel-Nielsen coordinates. We observe that a representation $\rho: \pi_{1}(S) \rightarrow \mathbf{P S L}(2, \mathbb{C})$ is Fuchsian if and only if all the coordinates $(\mathbf{h l}(C), s(C))$ are real.

The following elementary proposition (see [4) states that although a representation $\rho: \pi_{1}(S) \rightarrow \mathbf{P S L}(2, \mathbb{C})$ is not uniquely determined by its reduced Fenchel-Nielsen coordinates, it can be in a unique way embedded in a holomorphic family of representations.

Proposition 3.1. Fix a closed topological surface S with a generalized pants decomposition \mathcal{C}. Let $z \in \mathbb{C}_{+}^{\mathcal{C}}$ and $w \in \mathbb{C}^{\mathcal{C}}$ denote complex parameters. Then there exists a holomorphic (in (z, w)) family of representations

$$
\rho_{z, w}: \pi_{1}(S) \rightarrow \mathbf{P S L}(2, \mathbb{C}),
$$

such that $\mathbf{h l}(C)=z(C),(\bmod (2 \pi i \mathbb{Z}))$ and $s(C)=w(C),(\bmod (\mathbf{h l}(C) \mathbb{Z}+$ $2 \pi i \mathbb{Z})$). Moreover, for any $\left(z_{0}, w_{0}\right) \in \mathbb{C}_{+}^{\mathcal{C}} \times \mathbb{C}^{\mathcal{C}}$, the family of representations $\rho_{z, w}$ is uniquely determined by the representation $\rho_{z_{0}, w_{0}}$.

The representation $\rho_{z, w}$ is Fuchsian if and only if both z and w are real, that is $z \in \mathbb{R}_{+}^{\mathcal{C}}$ and $w \in \mathbb{R}^{\mathcal{C}}$. In this case the group $\rho_{z, w}\left(\pi_{1}(S)\right)$ is of course discrete. Moreover, in [3] it has been proved that all quasifuchsian representations (up to conjugation in $\operatorname{PSL}(2, \mathbb{C})$) of $\pi_{1}(S)$ correspond to some neighborhood of the set $\mathbb{R}_{+}^{\mathcal{C}}$ and $\mathbb{R}^{\mathcal{C}}$ But in general, little is known for which choice of parameters z, w the group $\rho_{z, w}\left(\pi_{1}(S)\right)$ will be discrete. In the next subsection we prove the following result in this direction. Start with a nearly Fuchsian group $G<\operatorname{PSL}(2, \mathbb{C})$. We obtain a new group $G_{1}<\operatorname{PSL}(2, \mathbb{C})$ from G by bending (by some definite angles) along some sparse equivariant collection of geodesics whose endpoints are in the limit set of G. Then the new group G_{1} is also quasifuchsian (although it is not nearly Fuchsian anymore).
3.2. Small deformations of a sparsely bent pleated surface. We let S continue to denote a closed surface with a generalized pants decomposition \mathcal{C}, and we fix a holomorphic family of representations $\rho_{z, w}$ as in Proposition 3.1. We set $G(z, w)=\rho_{z, w}\left(\pi_{1}(S)\right)$.

Let $\mathcal{C}_{0} \subset \mathcal{C}$ denote a sub-collection of curves. For $z \in \mathbb{R}_{+}^{\mathcal{C}}$ and $w \in \mathbb{R}^{\mathcal{C}}$, we let $S_{z, w}$ denote the Riemann surface isomorphic to $\mathbb{H}^{2} / G(z, w)$, and on $S_{z, w}$ we identify the curves from \mathcal{C} with the corresponding geodesics representatives. By $\mathcal{K}\left(S_{z, w}\right)$ we denote the largest number so that the collection of collars (of width $\mathcal{K}\left(S_{z, w}\right)$) around the curves from \mathcal{C}_{0} is disjoint on $S_{z, w}$. For each $C \in \mathcal{C}_{0}$, we choose a number $-\frac{3}{4} \pi<\theta_{C}<\frac{3}{4} \pi$ (for each curve $C \in\left(\mathcal{C} \backslash \mathcal{C}_{0}\right)$ we set $\left.\theta_{C}=0\right)$.

The purpose of this subsection is to prove the following theorem.

Theorem 3.1. There exist constants $K>1$ and $C>0$ such that the following holds. Let $z_{0} \in \mathbb{R}_{+}^{\mathcal{C}}$ and $w_{0} \in \mathbb{R}^{\mathcal{C}}$, and $z_{1} \in \mathbb{C}_{+}^{\mathcal{C}}$ and $w_{1} \in \mathbb{C}^{\mathcal{C}}$ be such that the representation $\rho=\rho_{z_{1}, w_{1}} \circ \rho_{z_{0}, w_{0}}^{-1}: G\left(z_{0}, w_{0}\right) \rightarrow G\left(z_{1}, w_{1}\right)$, is K-quasifuchsian. Set $z_{2}=z_{1}$ and $w_{2}=w_{1}+i \theta_{C}$. If $\mathcal{K}\left(S_{z_{0}, w_{0}}\right) \geq C$, then the representation $\rho_{z_{2}, w_{2}}: \pi_{1}(S) \rightarrow \mathbf{P S L}(2, \mathbb{C})$ is K_{1}-quasifuchsian, where K_{1} depends only on K and C.

The following lemma is elementary.
Lemma 3.1. Let $0 \leq \theta_{0}<\pi$ and $B_{0} \geq 1$. There exist constants $L\left(\theta_{0}, B_{0}\right)>$ 0 and $C\left(\theta_{0}, B_{0}\right)>0$ such that the following holds. Let $I \subset \mathbb{R}$ be an interval that is partitioned into intervals $I_{j}, j=1, \ldots, k$. Let $\psi: I \rightarrow \mathbb{H}^{3}$ be a continuous map, such that ψ maps each I_{j} onto a geodesic segment and the restriction of ψ on I_{j} is B_{0}-bilipschitz. Assume in addition that the bending angle between two consecutive geodesic intervals $\psi\left(I_{j}\right)$ and $\psi\left(I_{j+1}\right)$ is at most θ_{0}. If the length of every I_{j} is at least $C\left(\theta_{0}, B_{0}\right)$ then ψ is $L\left(\theta_{0}, B_{0}\right)$ bilipschitz.

Let $\psi: I \rightarrow \mathbb{H}^{3}$ be a C^{1} map, where $I \subset \mathbb{R}$ is a closed interval. For $x \in I$ let $v(x) \in T^{1} I$ denote the unit vector that points toward $+\infty$. Let $\delta>0$. We say that the map ψ is δ-nearly geodesic if for every $x, y \in I$ such that $x<y \leq x+1$, we have that the angle between the vector $\psi_{*}(v(x))$ and the oriented geodesic segment from $\psi(x)$ to $\psi(y)$ is at most δ.

Clearly, every 0-nearly geodesic map is an isometry, and a sequence of δ_{n}-nearly geodesic maps converges (uniformly on compact sets) in the C^{1} sense to an isometry, when $\delta_{n} \rightarrow 0$. The following lemma is a generalization of the previous one.

Lemma 3.2. There exist universal constants $L, C, \delta>0$, such that the following holds. Suppose that I is partitioned into intervals $I_{j}, j=1, \ldots, k$, and let $\psi: I \rightarrow \mathbb{H}^{3}$ be a continuous map, whose restriction on every closed sub-interval I_{j} is C^{1} and δ-nearly geodesic. Assume that the bending angle between two consecutive curves $\psi\left(I_{j}\right)$ and $\psi\left(I_{j+1}\right)$ is at most $\frac{3}{4}$ (by the bending angle between two C^{1} curves we mean the appropriate angle determined by the two tangent vectors at the point where the two curves meet). If the length of every I_{j} is at least C then ψ is L-bilipschitz.
Proof. Choose any two numbers $\frac{3}{4}<\theta_{0}<\pi$ and $B_{0}>1$. Assuming that $C>C\left(\theta_{0}, B_{0}\right)$ we can partition each I_{j} into sub-intervals of length between $C\left(\theta_{0}, B_{0}\right)$ and $2 C\left(\theta_{0}, B_{0}\right)$. Replacing each I_{j} with these new intervals we obtain the new partition of I into intervals J_{i}, where each J_{i} has the length between $C\left(\theta_{0}, B_{0}\right)$ and $2 C\left(\theta_{0}, B_{0}\right)$. Let $\psi: I \rightarrow \mathbb{H}^{3}$ be the continuous map that agrees with ψ at the endpoints of all intervals J_{i}, and such that the restriction of ψ to each J_{i} maps J_{i} onto a geodesic segment in \mathbb{H}^{3}, and is affine (the map ψ either stretches or contracts distances by a constant factor on a given J_{i}).

Next, since we have the upper bound $2 C\left(\theta_{0}, B_{0}\right)$ on the length of each interval J_{i}, we can choose $\delta>0$ small enough such that the bending angle
between two consecutive geodesic segments $\phi\left(J_{i}\right)$ and $\phi\left(J_{i+1}\right)$ is at most θ_{0}. Also, by choosing δ small we can arrange that the map $\phi \circ \psi^{-1}$ is 2-bilipschitz (the same statement holds if we replace 2 by any other number greater than 1). By the previous lemma the map ϕ is $L\left(\theta_{0}, B_{0}\right)$-bilipschitz. Then the map ψ is $2 L\left(\theta_{0}, B_{0}\right)$-bilipschitz. We take $L=2 L\left(\theta_{0}, B_{0}\right)$, and $C=C\left(\theta_{0}, B_{0}\right)$, and the lemma is proved.

We are now ready to prove Theorem 3.1.
Proof. Recall that $f: \partial \mathbb{H}^{2} \rightarrow \partial \mathbb{H}^{3}$ is a K-quasiconformal map that conjugates $G\left(z_{0}, w_{0}\right)$ to $G\left(z_{1}, w_{1}\right)$. Let $\widetilde{f}: \mathbb{H}^{2} \rightarrow \mathbb{H}^{3}$ denote the Douady-Earle extension of f. Then \tilde{f} is δ-nearly geodesic (this means that the restriction of \tilde{f} to every geodesic segment is δ-nearly geodesic in the sense of the above definition) for some $\delta=\delta(K)$, and $\delta(K) \rightarrow 0$, when $K \rightarrow 1$.

If we assume that $\mathcal{K}\left(S_{z_{0}, w_{0}}\right)$ is large enough, by adjusting \tilde{f}, we can arrange that \widetilde{f} is then C^{∞} mapping that maps the geodesics in \mathbb{H}^{2} that are lifts of the geodesics from \mathcal{C}_{0} onto the corresponding geodesics in \mathbb{H}^{3}, and ensure that \tilde{f} is 2δ-nearly geodesic. Moreover, we can arrange that \tilde{f} is conformal at every point of every geodesic γ that is a lift of a curve from \mathcal{C}_{0}.

We construct the map $\widetilde{g}: \mathbb{H}^{2} \rightarrow \mathbb{H}^{3}$ that conjugates $G\left(z_{0}, w_{0}\right)$ to $G\left(z_{1}, w_{1}\right)$ as follows. Let M be a component of the set $S_{z_{0}, w_{0}} \backslash \mathcal{C}_{0}$, and let $\widetilde{M} \subset \mathbb{H}^{2}$ denote its universal cover, that is \widetilde{M} is an ideal polygon with infinitely many sides in \mathbb{H}^{2}, whose sides are lifts of the geodesics from \mathcal{C}_{0} that bound M. We set $\widetilde{g}=\widetilde{f}$ on \widetilde{M}.

Let $\widetilde{M}_{1} \subset \mathbb{H}^{2}$ be the universal cover of some other component M_{1} of the set $S_{z_{0}, w_{0}} \backslash \mathcal{C}_{0}$. Let γ denote a lift of a geodesic $C \in \mathcal{C}_{0}$, and assume that the polygons \widetilde{M} and \widetilde{M}_{1} are glued to each other along γ (that is, C is in the boundary of both M and $\left.M_{1}\right)$. Let $R\left(\theta_{C}\right) \in \mathbf{P S L}(2, \mathbb{C})$, denote the rotation about $\widetilde{g}(\gamma)$ for the angle θ_{C}. We define \widetilde{g} on \widetilde{M}_{1} by letting $\widetilde{g}=R\left(\theta_{C}\right) \circ \widetilde{f}$. We then define \widetilde{g} inductively on the rest of \mathbb{H}^{2}.

Clearly \widetilde{g} conjugates $G\left(z_{0}, w_{0}\right)$ to $G(z, w)$. Let $x \in \gamma$, and $v(x)$ a non-zero vector that is orthogonal to γ. Since $\left|\theta_{C}\right| \leq \frac{3}{4} \pi$, and since \widetilde{f} is differentiable at x, it follows that the bending angle between the vectors $\widetilde{g}_{*}(v(x))$ and $\widetilde{g}_{*}(-v(x))$ is at most $\frac{3}{4} \pi$. If $u(x)$ is any other vector at x, since \widetilde{f} is conformal at x, it follows that the bending angle between the vectors $\widetilde{g}_{*}(u(x))$ and $\widetilde{g}_{*}(-u(x))$ is at most as big as the bending angle between the vectors $\widetilde{g}_{*}(v(x))$ and $\widetilde{g}_{*}(-v(x))$. Therefore, the restriction of the map \widetilde{g} on every geodesic segment satisfies the assumptions of Lemma 3.2, It follows that \widehat{g} is L bilipschitz, where L depends only on K and C. Therefore the representation $\rho_{z_{2}, w_{2}}: \pi_{1}(S) \rightarrow \mathbf{P S L}(2, \mathbb{C})$ is K_{1}-quasifuchsian, where K_{1} depends only on K and C.
3.3. Convex hulls and pleated surfaces. In this subsection we digress from the notions of generalized pants decompositions and Fenchel-Nielsen
coordinates, to prove a preliminary lemma about hyperbolic convex hulls of quasicircles.

Let λ be a discrete geodesic lamination in \mathbb{H}^{2}, and let $\mathcal{K}(\lambda)$ denote the largest number such that for every small $\epsilon>0$, the collection of collars (crescent in \mathbb{H}^{2}) of width $\mathcal{K}(\lambda)-\epsilon$ around the leafs of λ is disjoint in \mathbb{H}^{2}. Let μ denote a real valued measure on λ. By $\iota_{\lambda, \mu}=\iota: \mathbb{H}^{2} \rightarrow \mathbb{H}^{3}$, we denote the corresponding pleating map. As usual, by $\iota(\lambda)$ we denote the collection of geodesics in \mathbb{H}^{3} that are images of geodesics from λ under ι. If the map ι is L-bilipschitz then ι extends continuously to a K-quasiconformal map $f: \partial \mathbb{H}^{2} \rightarrow \partial \mathbb{H}^{3}$, for some $K=K(L)$. In this case, let $W \subset \mathbb{H}^{3}$ denote the convex hull of the quasicircle $\iota\left(\partial \mathbb{H}^{2}\right)$. The convex hull W has two boundary components which we denote by $\partial_{1} W$ and $\partial_{2} W$. We prove the following lemma.

Lemma 3.3. There exist universal constants $C_{1}, \delta_{1}>0$, with the following properties. Assume that $\mathcal{K}(\lambda)>C_{1}$, and that $\frac{\pi}{4} \leq|\mu(l)| \leq \frac{3 \pi}{4}$, for every $l \in \lambda$. Then for every geodesic $\gamma \subset W$ the following holds:
(1) If $\gamma \in \iota(\lambda)$, then for every point $p \in \gamma$, the inequality

$$
\max _{i=1,2} d\left(p, \partial_{i} W\right)>\delta_{1}
$$

holds,
(2) If γ does not belong to $\iota(\lambda)$, then for some point $p \in \gamma$, the inequality $\max _{i=1,2} d\left(p, \partial_{i} W\right)<\frac{\delta_{1}}{3}$ holds.
Compare this lemma with Lemma 4.2 in [5.
Proof. It follows from Lemma 3.1 that for C_{1} large enough, the pleating map ι is L-bilipschitz for some universal constant $L>1$. Observe that $\iota\left(\mathbb{H}^{2}\right) \subset W$. Moreover, there is a constant $M_{0}>0$, that depends only on L, such that for every $p \in W$ we have $d\left(p, \iota\left(\mathbb{H}^{2}\right)\right)<M_{0}$

We choose $\delta_{1}>0$ as follows. Let P_{0} be the pleated surface in \mathbb{H}^{3} that has a single bending line γ_{0}, and with the bending angle equal to $\frac{\pi}{4}$. Then P_{0} is bounded by a quasicircle at $\partial \mathbb{H}^{3}$. Denote by W_{0} the convex hull of this quasicircle and let $\partial_{i}\left(W_{0}\right), i=1,2$, denote the two boundary components of W_{0}. Then there exists $\delta_{1}>0$ such that for every point $p \in \gamma_{0}$, we have $\max _{i=1,2} d\left(p, \partial_{i} W_{0}\right)>2 \delta_{1}$. Observe that γ_{0} belongs to exactly one of the convex hull boundaries $\partial_{1} W_{0}$ and $\partial_{2} W_{0}$, so one of the numbers $d\left(p, \partial_{1} W_{0}\right)$ and $d\left(p, \partial_{2} W_{0}\right)$ is zero and the other one is larger than $2 \delta_{1}$.

Assume that the first statement of the lemma is false. Then there exists a sequence of measured laminations $\left(\lambda_{n}, \mu_{n}\right)$ with the property $\mathcal{K}\left(\lambda_{n}\right) \rightarrow \infty$, and there are geodesics $l_{n} \in \lambda_{n}$, and points $p_{n} \in \gamma_{n}=\iota_{n}\left(l_{n}\right)$, such that the inequality

$$
\begin{equation*}
\max _{i=1,2} d\left(p_{n}, \partial_{i} W_{n}\right) \leq \delta_{1} \tag{4}
\end{equation*}
$$

holds. We may assume that $p_{n}=p$, and $\gamma_{n}=\gamma$, for every n, where p and γ are fixed. Since ι_{n} is L-bilipschitz, after passing to a subsequence
if necessary, the sequence ι_{n} converges (uniformly on compact sets) to a pleating map ι_{∞}. The pleating map ι_{∞} corresponds to the pleating surface P_{∞}, that has a single bending line γ_{∞}, with the bending angle at least $\frac{\pi}{4}$. Then W_{n} converges to W_{∞} uniformly on compact sets in \mathbb{H}^{3}, where W_{∞} is the convex hull of the quasicircle that bounds P_{∞}. It follows that $d\left(p_{n}, \partial_{i} W_{n}\right) \rightarrow d\left(p, \partial_{i} W_{\infty}\right)$. We may assume that $\gamma_{\infty}=\gamma_{0}$, where γ_{0} is the bending line of the pleated surface P_{0} defined above. Then we have $\max _{i=1,2} d\left(p, \partial_{i} W_{\infty}\right) \geq \max _{i=1,2} d\left(p, \partial_{i} W_{0}\right)>2 \delta_{1}$. But this contradicts (4).

We now prove the second statement of the lemma. Let γ be a geodesic in W that is not in $\iota(\lambda)$. Then we can find a point $p \in \gamma$, such that $d(p, \iota(\lambda))>\mathcal{K}(\lambda)$. Assuming that the second statement is false, we again produce a sequence λ_{n} with $\mathcal{K}\left(\lambda_{n}\right) \rightarrow \infty$, and such that for some sequence of geodesics $\gamma_{n} \subset W_{n}$, that do not belong to $\iota\left(\lambda_{n}\right)$, and all the points $p \in \gamma_{n}$, the inequality

$$
\begin{equation*}
\max _{i=1,2} d\left(p, \partial_{i} W_{n}\right) \geq \frac{\delta_{1}}{3} \tag{5}
\end{equation*}
$$

holds for n large enough. By the previous discussion, there exists a sequence of points $p_{n} \in \gamma_{n}$, such that $d\left(p_{n}, \iota_{n}\left(\lambda_{n}\right)\right)>\mathcal{K}\left(\lambda_{n}\right)$.

Let $q_{n} \in \iota_{n}\left(\mathbb{H}^{2}\right)$ be points such that $d\left(p_{n}, q_{n}\right)<M_{0}$, where M_{0} is the constant defined at the beginning of the proof. Let $z_{n} \in \mathbb{H}^{2}$, such that $q_{n}=\iota\left(z_{n}\right)$. We may assume that $z_{n}=0$ and $q_{n}=q$, for some point q that we fix. Then $p_{n} \rightarrow p$, where $d(p, q) \leq M_{0}$. Moreover, since $\mathcal{K}\left(\lambda_{n}\right) \rightarrow \infty$, the pleating maps $\iota\left(\lambda_{n}\right)$ converge to an isometry uniformly on compact sets in \mathbb{H}^{2}. In particular, the sequence of convex hulls W_{n} converges to a geodesic plane uniformly on compact sets, and therefore $d\left(p_{n}, \partial_{i} W_{n}\right) \rightarrow 0$. But this contradicts (5), and thus we have completed the proof of the lemma.
3.4. (ϵ, R) skew pants. We let S continue to denote a closed surface with a generalized pants decomposition \mathcal{C}, and we fix a holomorphic representations $\rho_{z, w}$ as in Proposition 3.1.

Let $\mathcal{C}_{0} \subset \mathcal{C}$ denote a sub-collection of curves, and for each $C \in \mathcal{C}_{0}$ we choose a number $-\frac{3}{4} \pi<\theta_{C}<\frac{3}{4} \pi$ (for each curve $C \in\left(\mathcal{C} \backslash \mathcal{C}_{0}\right)$ we set $\theta_{C}=0$).

For $C \in \mathcal{C}$, let $\zeta_{C}, \eta_{C} \in \mathbb{D}$, where \mathbb{D} denotes the unit disc in the complex plane. Let $\tau \in \mathbb{D}$ denote a complex parameter and let $t \in\{0,1\}$. Fix $R>1$, and let $z: \mathbb{D} \rightarrow \mathbb{C}_{+}^{\mathcal{C}}$ and $w: \mathbb{D} \rightarrow \mathbb{C}^{\mathcal{C}}$ be the mappings given by

$$
z(C)(\tau)=\frac{R}{2}+\frac{\tau \zeta_{C}}{2}
$$

and

$$
w(C)(\tau, t)=1+i t \theta_{C}+\frac{\tau \eta_{C}}{R}
$$

The maps $z(\tau)$ and $w(\tau, t)$ are complex linear, and therefore holomorphic in τ and t. Therefore the induced family of representations $\rho_{\tau, t}=\rho_{z(\tau), w(\tau, t)}$ is
holomorphic in τ and t. Note that $\rho_{\tau, t}$ depends on R, ζ_{C}, η_{C} and θ_{C}, but we suppress this.

The representation $\rho_{0,0}$ is Fuchsian. Let S_{0} denote the Riemann surface isomorphic to the quotient $\mathbb{H}^{2} / \rho_{0,0}\left(\pi_{1}(S)\right.$) (we also equip S_{0} with the corresponding hyperbolic metric). Let $\mathcal{K}\left(\rho_{0,0}\right)$ denote the largest number so that the collection of collars (of width $\left.\mathcal{K}\left(\rho_{0,0}\right)\right)$ around the curves from \mathcal{C}_{0} is disjoint on S_{0}.

The representation $\rho_{0,1}$ is not Fuchsian (unless $\theta\left(\mathcal{C}_{0}\right)=0$), and the following proposition gives a sufficient condition for it to be quasifuchsian.

We adopt the following notation. Let $G(\tau, t)=\rho_{\tau, t}\left(\pi_{1}(S)\right)$. If $G(\tau, t)$ is a quasifuchsian group we let $f_{\tau, t}: \partial \mathbb{H}^{2} \rightarrow \partial \mathbb{H}^{3}$, denote the quasiconformal map that conjugates $G(0,0)$ to $G(\tau, t)$. The following theorem is a generalization of Theorem 2.2 from [4] (see Theorem [3.4 below). Assuming the above notation, we have:
Theorem 3.2. There exist universal constants $\widehat{R}, \widehat{\epsilon}, M>0$, such that the following holds. If $\mathcal{K}\left(\rho_{0,0}\right)>M$, then for every $R \geq \widehat{R}$ and $|\tau|<\widehat{\epsilon}$, and any choice of constants $\eta_{C}, \zeta_{C} \in \mathbb{D}$, and $-\frac{3}{4}<\theta_{C}<\frac{3}{4}$, for $C \in \mathcal{C}_{0}$, the group $G(\tau, 1)$ is quasifuchsian and the induced quasiconformal map $f_{\tau, 1} \circ f_{0,1}$ (that conjugates $G(0,1)$ to $G(\tau, 1)$), is $K(\tau)$-quasiconformal, where

$$
K(\tau)=\frac{\widehat{\epsilon}+|\tau|}{\widehat{\epsilon}-|\tau|} .
$$

Let $\mathcal{C}_{0}(\tau, t)$ denote the collection of axes of elements of the form $\rho_{\tau, t}(c)$, where $c \in \pi_{1}(S)$ and c belongs to the conjugacy class of some curve $C \in \mathcal{C}_{0}$. Then by definition, the set $\mathcal{C}_{0}(\tau, t)$ is invariant under the group $G(\tau, 1)$. Next, we prove that $\mathcal{C}_{0}(\tau, 1)$ is invariant under any Möbius transformation from $\operatorname{PSL}(2, \mathbb{C})$ that preserves the limit set of $G(\tau, 1)$. The following theorem is the main result of this section.

Theorem 3.3. There exist constants $\widehat{\epsilon}_{1}, M_{1}>0$, with the following properties. Assume that $\mathcal{K}\left(\rho_{0,0}\right)>M_{1}$ and let $|\tau|<\widehat{\epsilon}_{1}$. If $T \in \operatorname{PSL}(2, \mathbb{C})$, is a Möbius transformation that preserves the limit set of $G(\tau, 1)$, then the set of geodesics $\mathcal{C}_{0}(\tau, 1)$ is invariant under T.

Compare this theorem with Lemma 4.2 in [5].
Proof. Let $W(\tau, t)$ denote the convex hull of the limit set of $G(\tau, t)$. It follows from Lemma 3.3 that for $\mathcal{K}\left(\rho_{0,0}\right)$ large enough, the following holds
(1) For every $\gamma \in \mathcal{C}_{0}(0,1)$ and $p \in \gamma$, the inequality $\max _{i=1,2} d\left(p, \partial_{i} W(0, t)\right)>$ δ_{1} holds,
(2) For every $\gamma \subset W(0,1)$ the inequality, there exists $p \in \gamma$ such that $\max _{i=1,2} d\left(p, \partial_{i} W(0,1)\right)<\frac{\delta_{1}}{2}$.
Then by Theorem 3.2 we can choose $\widehat{\epsilon}_{1}$ small enough so that for $|\tau|<\widehat{\epsilon}_{1}$, the constant $K(\tau)$ (from Theorem (3.2) is close enough to 1 , so that the following holds:
(1) For every $\gamma \in \mathcal{C}_{0}(\tau, 1)$ and $p \in \gamma$, the inequality $\max _{i=1,2} d\left(p, \partial_{i} W(0, t)\right)>$ $\frac{4 \delta_{1}}{5}$ holds,
(2) For every $\gamma \subset W(0,1)$ the inequality, there exists $p \in \gamma$ such that $\max _{i=1,2} d\left(p, \partial_{i} W(0,1)\right)<\frac{2 \delta_{1}}{3}$.
Then any Möbius transformation $A \in \mathbf{P S L}(2, \mathbb{C})$ that preserves $W(\tau, 1)$ will also preserve the set $\mathcal{C}(\tau, 1)$. This proves the theorem.
3.5. A proof of Theorem 3.2. We need to prove that $G(\tau, 1)$ is a quasifuchsian group. The last estimate in Theorem 3.2 then follows from the fact that a holomorphic map from the unit disc into the Teichmüller space of a Riemann surface is a contraction with respect to the hyperbolic metric on the unit disc and the Teichmüller metric.

Recall Theorem 2.2 from [4].
Theorem 3.4. There exist universal constants $\widehat{R}, \widehat{\epsilon}$, such that the following holds. For every $R \geq \widehat{R}$ and $|\tau|<\widehat{\epsilon}$, and any choice of constants $\eta_{C}, \zeta_{C} \in \mathbb{D}$, the group $G(\tau, 0)$ is quasifuchsian, and the induced quasiconformal map $f_{\tau, 0}$ that conjugates $G(0,0)$ to $G(\tau, 0)$, is $K(\tau)$-quasiconformal, where

$$
K(\tau)=\frac{\widehat{\epsilon}+|\tau|}{\widehat{\epsilon}-|\tau|} .
$$

The group $G(\tau, 1)$ is obtained from the group $G(\tau, 0)$, by bending along the lifts of curves $C \in \mathcal{C}_{0}$, for the angle θ_{C}. It follows from Theorem 3.1 that the group $G(\tau, 1)$ is quasifuchsian if $\mathcal{K}\left(\rho_{0,0}\right)>C$, and if the map $f_{\tau, 0}$ is K quasiconformal, where K is close enough to 1 . But it follows from Theorem 3.4 that for $|\tau|$ small enough this will be the case. This proves Theorem 3.2,

4. The lower bound

4.1. Amalgamating two representations. Let S denote a closed surfaces with generalized pants decompositions \mathcal{C}, and let $\rho: \pi_{1}(S) \rightarrow \operatorname{PSL}(2, \mathbb{C})$ denote an admissible (in sense of Definition 3.1) representation with the reduced Fenchel-Nielsen coordinates satisfying the inequalities

$$
\left|\mathbf{h l}(C)-\frac{R}{2}\right| \leq \epsilon,
$$

and

$$
|s(C)-1| \leq \frac{\epsilon}{R},
$$

for some $\epsilon, R>0$, and $C \in \mathcal{C}$. We say that such a representation is (ϵ, R) good.

Let \mathbf{M}^{3} denote a closed hyperbolic manifold such that $\mathbf{M}^{3}=\mathbb{H}^{3} / \Gamma$ for some Kleinian group Γ. In [4] we proved that one can find many (ϵ, R) good representations $\rho: \pi_{1}(S) \rightarrow \Gamma$, for a given $\epsilon>0$ and R large enough. Moreover, if $A \in \Gamma$ has the translation length $\mathbf{l}(A)$ satisfying the inequality $|\mathbf{l}(A)-R| \leq \frac{\epsilon}{2}$, then we can find such ρ so that A is in the image of ρ. From
now on we assume that such $A \in \Gamma$ is primitive, that is A is not equal to an integer power of another element of Γ.

In particular, it follows from Section 4 of 4] (the statements about the equidistribution of (ϵ, R)-good pairs of skew pants around a given closed curve in \mathbf{M}^{3} whose length is ϵ close to R) that we can find two (ϵ, R)-good representations $\rho(i): \pi_{1}(S(i)) \rightarrow \Gamma, i=1,2$, where $S(1)$ and $S(2)$ are two closed surfaces with pants decompositions $\mathcal{C}(i)$, and two pars of pants Π_{i}^{+} and Π_{i}^{-}with the following properties:

- There are two oriented, degree one curves $C(i) \in \mathcal{C}(i)$, and $c(i) \in$ $\pi_{1}(S(i))$ in the conjugacy classes of $C(1)$ and $C(2)$ respectively, such that $\rho(1)(C(1))=\rho(2)(C(2))=[A]$, where $[A]$ is the conjugacy class of a given primitive element $A \in \Gamma$, whose translation length $\mathbf{l}(A)$ satisfies the inequality $|\mathbf{l}(A)-R| \leq \frac{\epsilon}{2}$.
- Let γ denote the closed geodesic corresponding to A. There exist two pars of skew pants Π_{i}^{+}and Π_{i}^{-}in $\rho(i)\left(\pi_{1}(S(i))\right)$ such that γ is positively oriented boundary component of Π_{i}^{+}and negatively oriented for Π_{i}^{-}, and recalling the notation from [4] we have the inequality

$$
\begin{equation*}
\left|\operatorname{foot}_{\gamma}\left(\Pi_{2}^{+}\right)-\operatorname{foot}_{\gamma}\left(\Pi_{1}^{-}\right)-\frac{\pi}{2}\right| \leq \frac{\epsilon}{R} \tag{6}
\end{equation*}
$$

After replacing $S(1)$ and $S(2)$ with appropriate finite degree covers if necessary, we may assume in addition to the above two conditions the following also hold

- The curves $C(1)$ and $C(2)$ are non-separating simple closed curves in $S(1)$ and $S(2)$ respectively,
- The surfaces $S(1)$ and $S(2)$ have the same genus,
- By Proposition 3.1 the representation $\rho(i)$ can be embedded in the holomorphic family of representations $\rho_{\tau, t}(i)$. We may assume that $\mathcal{K}\left(\rho_{0,0}(S(i))\right)>C_{1}, i=1,2$, where C_{1} is the constant from Theorem 3.3 .

We now fix such two representations $\rho(1)$ and $\rho(2)$, surfaces $S(1)$ and $S(2)$, and the two oriented curves $C(1)$ and $C(2)$ (we also fix the corresponding primitive element $A \in \Gamma)$.

Let $i \in\{1,2\}$. For $n>1$, let $S_{n}(1)$ and $S_{n}(2)$ denote two primitive degree n covers of $S(1)$ and $S(2)$ respectively (a finite cover of a surface is primitive if it does not factor through an intermediate cover), such that for some $1 \leq k \leq(n-1)$, the curves $C(1)$ and $C(2)$ have two degree k lifts $C_{n}(1)$ and $C_{n}(2)$. Then $C_{n}(1)$ and $C_{n}(2)$ are two oriented, non-separating simple closed curves in $S_{n}(1)$ and $S_{n}(2)$ respectively. We then have the two induced representations $\rho_{n}(i): \pi_{1}\left(S_{n}(i)\right) \rightarrow \Gamma$, that also satisfy the above five conditions, except that

$$
\rho_{n}(1)\left(\pi_{1}\left(S_{n}(1)\right)\right) \cap \rho_{n}(2)\left(\pi_{1}\left(S_{n}(2)\right)\right)=\left\{A^{k}\right\} .
$$

We amalgamate them as follows. Cut the surface $S_{n}(i)$ along $C_{n}(i)$, to get two topological surfaces $\bar{S}_{n}(i), i=1,2$, each having two boundary components $C_{n}^{1}(i)$ and $C_{n}^{2}(i)$. We glue together the surfaces $\bar{S}_{n}(1)$ and $\bar{S}_{n}(2)$ by gluing $C_{n}^{j}(1)$ to $C_{n}^{j}(2), j=1,2$, and obtain a closed topological surface S_{n} (this is well defined up to a twist by $\Re(\mathbf{l}(A))$ which has a period k). The surface S_{n} has the induced generalized pants decomposition \mathcal{C}_{n}. The pair of curves $C_{n}^{1}(1)$ and $C_{n}^{1}(2)$ that were glued together produce a closed curve C_{n}^{1} in S_{n}. Similarly, the pair of curves $C_{n}^{2}(1)$ and $C_{n}^{2}(2)$ that were glued together produce a closed curve C_{n}^{2} in S_{n}. We set $\mathcal{C}_{0, n}=\left\{C_{n}^{1}, C_{n}^{2}\right\}$.

Then there is the induced representation $\rho_{n}: \pi_{1}\left(S_{n}\right) \rightarrow \Gamma$. We orient the curves C_{n}^{1} and C_{n}^{2} such that for any choice of $c_{i} \in \pi_{1}\left(S_{n}\right)$, where c_{i} is in the conjugacy class of C_{n}^{i}, we have that both $\rho_{n}\left(c_{1}\right)$ and $\rho_{n}\left(c_{2}\right)$ are in the conjugacy class of A^{k} in Γ.

The representation ρ_{n} has the reduced Fenchel-Nielsen coordinates satisfying the relations

$$
\left|\mathbf{h l}(C)-\frac{R}{2}\right| \leq \epsilon,
$$

and

$$
|s(C)-1| \leq \frac{\epsilon}{R},
$$

if C does not belong to $\mathcal{C}_{0, n}$, and

$$
\left|s(C)-\left(1+i \frac{\pi}{2}\right)\right| \leq \frac{\epsilon}{R},
$$

if $C \in \mathcal{C}_{0, n}$.
It follows from Theorem 3.2 that for ϵ small enough and R large enough, the group $\rho_{n}\left(\pi_{1}\left(S_{n}\right)\right)$ is quasifuchsian. In the remainder of this subsection we prove that the group $\rho_{n}\left(\pi_{1}\left(S_{n}\right)\right)$ is a maximal subgroup of Γ.

First we prove a preliminary lemma. Let \bar{S} be a surface with boundary components C_{+}and C_{-}, oriented so that \bar{S} is on the left of C_{+}and the right of C_{-}. We say that $f: \bar{S} \rightarrow \mathbf{M}^{3}$ is rejoinable if the restrictions of f to C^{+}and C_{-}respectively are freely homotopic in \mathbf{M}^{3}. We say (f, \bar{S}) is geodesically rejoinable if $\left.f\right|_{C_{+}}$and $\left.f\right|_{C_{-}}$map to the same closed geodesic in \mathbf{M}^{3}. In this case we say a rejoining of (f, \bar{S}) is a homeomorphism $h: C_{+} \rightarrow C_{-}$such that $f \circ h=f$, and we say $(f, \bar{S} / h)$ is \bar{S} rejoined by h.

Lemma 4.1. If (f, \bar{S}), and (g, \bar{T}) are (geodesically) rejoinable surfaces, and $\pi: \bar{S} \rightarrow \bar{T}$ is a finite cover such that $g \circ \pi$ is homotopic to f, then for any rejoining h of (f, \bar{S}) we can find a rejoining k of (g, \bar{T}) such that (f, \bar{S}) rejoined by h covers (g, \bar{T}) rejoined by k.
Proof. Left to the reader.

The following theorem is a corollary of Theorem 3.3. We adopt the following definition. Let $f: S \rightarrow \mathbf{M}^{3}$ be a quasifuchsian map, and let \mathcal{C}_{0} denote a collection of disjoint simple closed curves on S. We say that f is bent along
each curve of \mathcal{C}_{0} and nearly locally isometric on $S \backslash \mathcal{C}_{0}$ if the induced map $f_{*}: \pi_{1}(S) \rightarrow \Gamma$ is of the form $\rho_{\tau, 1}$ for some $|\tau| \leq \widehat{\epsilon}$.

Theorem 4.1. Let S be a closed surface. Suppose that $f: S \rightarrow \mathbf{M}^{3}$ is a π_{1}-injective and quasifuchsian, and \mathcal{C}_{0} is a collection of disjoint simple closed curves on S, such that f is bent along each curve of \mathcal{C}_{0} and nearly locally isometric on $S \backslash \mathcal{C}_{0}$. Suppose that $f=g \circ \pi$, where $\pi: S \rightarrow Q$ is a covering, and $g: Q \rightarrow \mathbf{M}^{3}$ is π_{1}-injective and quasifuchsian. Then we can find a collection of simple closed curves $\widehat{\mathcal{C}}_{0}$ on Q such that $\mathcal{C}_{0}=\pi^{-1}\left(\widehat{\mathcal{C}}_{0}\right)$.

Proof. We get a discrete lamination $\widetilde{\mathcal{C}}_{0}$ on \mathbb{H}^{2}, which we push forward by $\widetilde{f}=\widetilde{g}$ to \mathbb{H}^{3}. We find a homomorphism $\sigma: \operatorname{Deck}\left(\mathbb{H}^{2} / Q\right) \rightarrow \Gamma$ such that $\widetilde{f}(\gamma(x))=\sigma(\gamma)(\widetilde{f}(x))$ for every $x \in \mathbb{H}^{2}$ and $\gamma \in \operatorname{Deck}\left(\mathbb{H}^{2} / Q\right)$.

We let $G=\sigma\left(\operatorname{Deck}\left(\mathbb{H}^{2} / Q\right)\right)$, and $H=\sigma\left(\operatorname{Deck}\left(\mathbb{H}^{2} / S\right)\right)<G$. Then $[G$: $H]<\infty$, and G and H are quasifuchsian groups, and they have the same limit set, so by Theorem 3.3 every element of G maps $\widetilde{g}\left(\widetilde{\mathcal{C}_{0}}\right)$ to itself. Hence $\operatorname{Deck}\left(\mathbb{H}^{2} / Q\right)$ maps $\widetilde{\mathcal{C}_{0}}$ to itself, so $\widetilde{\mathcal{C}_{0}}$ is a lift of $\widehat{\mathcal{C}_{0}}$ on Q, and hence \mathcal{C}_{0} is.

Theorem 4.2. The quasifuchsian group $\rho_{n}\left(\pi_{1}\left(S_{n}\right)\right)<\Gamma$ is a maximal surface subgroup of Γ, that is, if $\rho_{n}\left(\pi_{1}\left(S_{n}\right)\right)<G$ for a surface subgroup $G<\Gamma$, then $G=\rho_{n}\left(\pi_{1}\left(S_{n}\right)\right)$.

Proof. For simplicity let $G_{n}=\rho_{n}\left(\pi_{1}\left(S_{n}\right)\right)$ and $G(1)=\rho(1)\left(\pi_{1}(S(1))\right)$. Also set $G_{n}(1)=\rho_{n}\left(\pi_{1}\left(\bar{S}_{n}(1)\right)\right)$, where we consider $\pi_{1}\left(\bar{S}_{n}(1)\right)$ as a subgroup of $\pi_{1}\left(S_{n}\right)$.

Let $f_{n}: S_{n} \rightarrow \mathbf{M}^{3}$ denote the continuous map that corresponds to the representation ρ_{n}. We claim that $f_{n}: S_{n} \rightarrow \mathbf{M}^{3}$ is primitive. If not, we can find a Riemann surface Q and $\pi: S_{n} \rightarrow Q$ and $g: Q \rightarrow \mathbf{M}^{3}$ such that $g \circ \pi=f_{n}$ and $d>1$ where d is the degree of the cover π. We recall that f_{n} is bent along C_{n}^{1} and C_{n}^{2}, and nearly isometric on the complement. So by Theorem 4.1, $\left\{C_{n}^{1}, C_{n}^{2}\right\}$ are the lifts by π of some set \mathcal{C}_{Q} of simple closed curves on Q. So $\left|\mathcal{C}_{Q}\right|=1$ or $\left|\mathcal{C}_{Q}\right|=2$.

If $\left|\mathcal{C}_{Q}\right|=2$, then each component of $S_{n} \backslash \cup C_{n}^{i}$ maps by degree d to a component of $Q \backslash \mathcal{C}_{Q}$. We can then write $Q \backslash \mathcal{C}_{Q}=\bar{Q}(1) \cup \bar{Q}(2)$ such that $\pi: \bar{S}_{n}(i) \rightarrow \bar{Q}(i)$ is a degree d cover, and then by Lemma 4.1 we can rejoin the boundary curves of $\bar{Q}(1)$ to form $Q^{\prime}(1)$ such that $S_{n}(1)$ is a cover of $Q^{\prime}(1)$. But then we get a subgroup $G_{Q^{\prime}}$ of $G_{n}(1)\left(G_{Q^{\prime}}=\pi_{1}\left(Q^{\prime}(1)\right)\right)$, and $G_{n}(1)<G_{Q^{\prime}} \cap G(1)<G(1)$, where both inclusions are proper. The first inclusion is proper because $A^{\frac{k}{d}} \in G_{Q^{\prime}} \cap G(1) \backslash G_{n}(1)$, and the second is proper because $k<n$. This contradicts the assumption on the maximality of $G_{n}(1)$.

If $\left|\mathcal{C}_{Q}\right|=1$, we let $\mathcal{C}_{Q}=\left\{C_{Q}\right\}$. First suppose that C_{Q} is non-separating. Then writing $Q \backslash C_{Q}=\bar{Q}$ we find that $\bar{S}_{n}(1)$ and $\bar{S}_{n}(2)$ are both degree $\frac{d}{2}$ covers of \bar{Q}. But then we can reassemble \bar{Q} to make Q^{\prime} (by Lemma 4.1)
such that $S_{n}(1)$ is a degree $\frac{d}{2}$ cover of Q^{\prime}, when $\frac{d}{2} \leq k$. Then we arrive at a contradiction by the same reasoning as before.

Finally, suppose that C_{Q} is separating. Then we can write $Q \backslash C_{Q}=$ $\bar{Q}(1) \cup \bar{Q}(2)$ so that the restriction of π to $\bar{S}_{n}(i)$ is a cover of $\bar{Q}(i)$. Then the conjugacy classes for C_{n}^{1} and C_{n}^{2}, oriented as curves covered by the axis of A, are both in $\left[A^{k}\right]$, but C_{n}^{1} and C_{n}^{2} both cover C_{Q} with opposite orientations, so the conjugacy class for C_{Q} must be both $\left[A^{l}\right]$ and $\left[A^{-l}\right]$, where $l=\frac{2 k}{d}$. But then $B^{-1} A^{l} B=A^{-l}$ for some $B \in \Gamma$, which means that B preserves the axis of A and reverses its orientation; such B would have a fixed point in \mathbb{H}^{3}, which is a contradiction.
4.2. The lower bound. We now proceed to prove the lower bound

$$
\begin{equation*}
\left(c_{1} g\right)^{2 g} \leq s_{1}\left(\mathbf{M}^{3}, g\right) \tag{7}
\end{equation*}
$$

for g large enough, from Theorem 1.1.
By the above theorem the representation $\rho_{n}: \pi_{1}\left(S_{n}\right) \rightarrow \Gamma$, is maximal. It remains to count the number of such representations. Let g_{n} denote the genus of the surface S_{n}. If g_{0} denotes the genus of the surfaces $S(1)$ and $S(2)$, we have

$$
g_{n}=n\left(2 g_{0}-1\right)
$$

Given a closed surface S_{0}, Let $m_{n}\left(S_{0}\right)$ denote the number of maximal degree n covers of S_{0}. Let C_{0} denote a simple closed and non-separating curve in S_{0}. For $1 \leq k \leq n$, by $m_{n}\left(S_{0}, C_{0}, k\right)$ we denote the number of maximal n degree covers of S_{0} such that the curve C_{0} has at least one lift of degree k. Clearly the number $m_{n}\left(S_{0}, C_{0}, k\right)$ does not depend on the choice of the simple closed and non-non-separating curve C_{0}, so we sometimes write $m_{n}\left(S_{0}, k\right)=m_{n}\left(S_{0}, C_{0}, k\right)$.

Theorem 4.3. Let g_{0} denote the genus of S_{0}. Then for n large we have:

$$
m_{n}\left(S_{0}\right)=(n!)^{g_{0}-2}(1+o(1))
$$

where $o(1) \rightarrow 0$ when $n \rightarrow \infty$. Moreover, for some $1 \leq k \leq(n-1)$, $k=k\left(n, g_{0}\right)$, we have

$$
m_{n}\left(S_{0}, k\right)>((n-1)!)^{g_{0}-2}(1+o(1))
$$

Proof. The first equality directly follows from Corollary 3 and the formula in Section 4.4 in [6], which shows that a random finite cover of a closed surface is maximal. It remains to prove the second inequality.

Since

$$
\sum_{k=1}^{n} m_{n}\left(S_{0}, k\right) \geq m_{n}\left(S_{0}\right)
$$

it follows that for some $1 \leq k \leq n$, the second inequality in the statement of the theorem holds. The following lemma implies that this inequality holds for some $1 \leq k \leq(n-1)$.
Lemma 4.2. The inequality $m_{n}\left(S_{0}, 1\right) \geq m_{n}\left(S_{0}, n\right)$, holds for every n.
Proof. Let C_{0} and D_{0} be two simple closed and non-separating curves on S_{0}, that intersect exactly once. Let S_{n} be a degree n cover of S_{0}, such that the curve C_{0} has a degree n lift which we denote by C_{n}. Then C_{n} is the only lift of C_{0}. We show that in this case, every lift of the curve D_{0} is a degree one lift. Let $\widetilde{S}_{0}=S_{0} \backslash C_{0}$ and $\widetilde{S}_{n}=S_{n} \backslash C_{n}$, denote the two surfaces each having exactly two boundary components. Then \widetilde{S}_{n} covers \widetilde{S}_{0}, because C_{n} is the only lift of C_{0} to S_{n}. After removing the curve C_{0} from S_{0}, the closed curve D_{0} becomes an interval $I_{0} \subset \widetilde{S}_{0}$, whose endpoints lie on different boundary components of \widetilde{S}_{0}. Therefore, every lift of I_{0} to \widetilde{S}_{n} is a degree one lift. This proves the statement.

Restricting to the cases when S_{n} is a maximal cover, yields the inequality $m_{n}\left(S_{0}, C_{0}, n\right) \leq m_{n}\left(S_{0}, D_{0}, 1\right)$. Since $m_{n}\left(S_{0}, C_{0}, k\right)=m_{n}\left(S_{0}, D_{0}, k\right)=$ $m_{n}\left(S_{0}, k\right)$, it follows that $m_{n}\left(S_{0}, 1\right) \geq m_{n}\left(S_{0}, n\right)$, and we have proved the lemma.

This proves the theorem.

Now fix a large n and choose $1 \leq k \leq(n-1)$ so that the second inequality in Theorem 4.3 holds. We then amalgamate any two maximal covers $S_{n}(1)$ and $S_{n}(2)$ along the curves $C_{n}(1)$ and $C_{n}(2)$ that are both k degree lifts of the curves $C(1)$ and $C(2)$ respectively (there may be more than one such k degree lift, but we choose arbitrarily). Then the corresponding group $\rho_{n}\left(\pi_{1}\left(S_{n}\right)\right)<\Gamma$ is maximal surface subgroup of Γ. Combining the above formula for g_{n} with the Theorem 4.3, we derive the estimate (7) for some $c_{1}>0$.

References

[1] E. Bender, R. Canfield, The asymptotic number of rooted maps on a surface. J. Combin. Theory Ser. A 43 (1986), no. 2, 244-257.
[2] D. Epstein, A. Marden, V. Markovic, Quasiconformal homeomorphisms and the convex hull boundary. Ann. of Math. (2) 159 (2004), no. 1, 305-336.
[3] C. Kourouniotis, Complex length coordinates for quasifuchsian groups. Mathematika, 41 (1994), 173-188.
[4] J. Kahn, V. Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three manifold arXiv:0910.5501
[5] J. Masters, Counting immersed surfaces in hyperbolic 3-manifolds. Algebr. Geom. Topol. 5 (2005), 835-864
[6] T. Muller, J-C. Puchta, Character theory of symmetric groups and subgroup growth of surface groups. Journal London Math. Soc. (2) 66 (2002) 623640
[7] S. Tan, Complex Fenchel-Nielsen coordinates for quasi-Fuchsian structures. Internat. J. Math. 5 (1994), no. 2, 239-251
[8] C. Series, An extension of Wolpert's derivative formula. Pacific J. Math. 197 (2001), no. 1, 223-239.

Mathematics Department, Stony Brook University, Stony Brook, NY 11794
E-mail address: kahn@math.sunysb.edu
University of Warwick, Institute of Mathematics, Coventry, CV4 7AL, UK
E-mail address: v.markovic@warwick.ac.uk

[^0]: 2000 Mathematics Subject Classification. Primary 20H10.
 JK was supported by NSF grant DMS 0905812.

