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Multilinear commutators in residually

finite groups

Pavel Shumyatsky

Abstract. The following result is proved. Let w be a multilinear
commutator and n a positive integer. Suppose that G is a resid-
ually finite group in which every product of at most 896 w-values
has order dividing n. Then the verbal subgroup w(G) is locally
finite.

1. Introduction

According to the solution of the Restricted Burnside Problem - the
celebrated result of Zelmanov [25], [26] - every residually finite group of
finite exponent is locally finite. The Lie-theoretic methods used in the
solution happened to be very effective in treatment of other problems
in group theory. In [18] we used the methods to prove the following
theorem.

Theorem 1.1. Let n be a prime-power and G a residually finite group

satisfying the identity [x, y]n ≡ 1. Then G′ is locally finite.

Note that in general a periodic residually finite group need not
be locally finite. The corresponding examples have been constructed
in [2, 7, 9, 10, 24]. Moreover, if the assumption that G is residually
finite is dropped from the hypothesis of Theorem 1.1, the derived group
need not even be periodic. Deryabina and Kozhevnikov showed that
for sufficiently big odd integers n there exist groups G in which all
commutators have order dividing n such that G′ has elements of infinite
order [4]. Independently, this was also proved by Adian [1].

In view of Theorem 1.1 we raised in [19] the next problem.
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Problem 1.2. Let n be a positive integer and w a word. Assume that G
is a residually finite group such that any w-value in G has order dividing

n. Does it follow that the verbal subgroup w(G) is locally finite?

If w is a word in variables x1, . . . , xt we think of it primarily as a
function of t variables defined on any given group G. The correspond-
ing verbal subgroup w(G) is the subgroup of G generated by the values
of w. The word w is commutator if the sum of the exponents of any
variable involved in w is zero. According to the solution of the Re-
stricted Burnside Problem the answer to the above question is positive
if w(x) = x. In fact it is easy to see that the answer is positive when-
ever w is any non-commutator word. Indeed, suppose w(x1, . . . , xt) is
such a word and that the sum of the exponents of xi is r 6= 0. Now,
given a residually finite group G, substitute the unit for all the vari-
ables except xi and an arbitrary element g ∈ G for xi. We see that gr

is a w-value for all g ∈ G. Hence G satisfies the identity xnr = 1 and
therefore is locally finite by the result of Zelmanov.

Hence, Problem 1.2 is essentially about commutator words. In [19]
the problem was solved positively in the case where n is a prime-power
and w a multilinear commutator (outer commutator word). A word
w is a multilinear commutator if it can be written as a multilinear
Lie monomial. Particular examples of multilinear commutators are the
derived words, defined by the equations:

δ0(x) = x,

δk(x1, . . . , x2k) = [δk−1(x1, . . . , x2k−1), δk−1(x2k−1+1 . . . , x2k)],

and the lower central words:

γ1(x) = x,

γk+1(x1, . . . , xk+1) = [γk(x1, . . . , xk), xk+1].

In the case that n is not a prime-power Problem 1.2 seems to be
very hard. We mention a theorem obtained in [21].

Theorem 1.3. Let n be a positive integer that is not divisible by p2q2

for any distinct primes p and q. Let G be a residually finite group

satisfying the identity ([x1, x2][x3, x4])
n ≡ 1. Then G′ is locally finite.

Some further progress has been made in [22] where the following
theorem was proved.

Theorem 1.4. For any positive integer n there exists t depending only

on n such that if w is a multilinear commutator and G is a residually

finite group in which every product of t values of w has order dividing

n, then w(G) is locally finite.
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More recently it was shown that in the case that w = [x, y] the
number t in the above theorem can be taken to be 68 independently of
n [23]. The purpose of the present article is to prove a similar result
for arbitrary multilinear commutators. Thus, we improve Theorem 1.4
as follows.

Theorem 1.5. Let n be a positive integer and w a multilinear commu-

tator. Let G be a residually finite group in which every product of 896

w-values has order dividing n. Then w(G) is locally finite.

The constant 896 in the theorem comes from the famous results
of Nikolov and Segal on commutator width of finite groups. In the
course of proving Theorem 1.5 we need to consider subgroups of a
finite soluble group that can be generated by 4 w-values. In the paper
of Segal [17] it was shown that every element in the derived group of
a finite soluble d-generated group is a product of at most 72d2+46d
commutators. A better bound can be obtained working through the
proofs given in [15]. It follows that every element of the derived group
of a finite soluble d-generated group is a product of at most

min{d(6d2 + 3d+ 4), 8d(3d+ 2)}

commutators. In the case that d = 4 this is 448. We apply this result
in the situation where each commutator is a product of 2 w-values. So
the constant 896 comes about.

Thus, the theorem of Nikolov and Segal plays an important role in
the proof of Theorem 1.5. The proof also relies on the classification of
finite simple groups as well as on the Lie-theoretic techniques that Zel-
manov created in his solution of the Restricted Burnside Problem. We
also use recent result, essentially due to Flavell, Guest and Guralnick,
that an element a of a finite group G belongs to Fh(G) if and only if
every 4 conjugates of a generate a soluble subgroup of Fitting height
at most h [6]. It is the necessity to use this result that accounts for the
difference between the constants 896 in Theorem 1.5 and 68 in the case
of simple commutators [x, y] [23]. When dealing with simple commuta-
tors [x, y] it is enough to bound the Fitting height of some 2-generated
subgroups while, as was already mentioned, the case of general multilin-
ear commutators requires considering 4-generated subgroups. It should
be said that the case of arbitrary multilinear commutators differs from
the case of simple commutators [x, y] in several ways. Probably the
most significant difference occurs when reducing the problem to ques-
tions about finite soluble groups. In the case of commutators [x, y] this
was performed with a relatively short argument as in [23, Proposition
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2.3]. In the present paper the short argument was of no help at all.
Instead, we use a rather intricate Proposition 2.5 in the next section.

2. Some useful results on finite groups

All groups considered in this and the next sections are finite. We use
the expression “{a, b, c, . . . }-bounded” to mean “bounded from above
by some function depending only on a, b, c, . . . ”. Recall that the Fitting
subgroup F (G) of a group G is the product of all normal nilpotent
subgroups of G. The Fitting series of G can be defined by the rules:
F0(G) = 1, F1(G) = F (G), Fi+1(G)/Fi(G) = F (G/Fi(G)) for i =
1, 2, . . . . If G is a finite soluble group, then the minimal number h =
h(G) such that Fh(G) = G is called the Fitting height of G. We will
require the following proposition.

Proposition 2.1. Let G be a group and a ∈ G. Suppose that every

subgroup of G that can be generated by four conjugates of a is soluble

with Fitting height at most h. Then a ∈ Fh(G).

Essentially, the above proposition is due to Flavell, Guest and Gu-
ralnick. All the tools and arguments that are used in the proof of
Proposition 2.1 can be found in [6]. However since the proposition was
not stated in [6] explicitly, we outline the proof here.

The fact of crucial importance is that if every four conjugates of an
element a in a group G generate a soluble subgroup, then a belongs to
the soluble radical of G. This was established independently in [6] and
also in Gordeev, Grunewald, Kunyavskii and Plotkin [8]. The proof
uses the classification of finite simple groups. Therefore it is sufficient
to prove Proposition 2.1 under the additional hypothesis that G is
soluble. The key rôle in the soluble case is played by the following
lemma, due to Flavell, Guest and Guralnick [6].

Lemma 2.2. Let G be a soluble group that possesses an element a such

that G = 〈aG〉. Let k be a field. Let V be a nontrivial irreducible

kG-module. Then dimCV (a) ≤
3
4
dimV .

The particular case of the above lemma where a has order 3 was
established earlier in Al-Roqi and Flavell [3]. This enabled the authors
to prove that if G is a soluble group containing an element a of order 3
such that G = 〈aG〉, then there exist four conjugates of a that generate
a subgroup with the same Fitting height as G. Using Lemma 2.2 in
place of the particular case of 3-elements in the Al-Roqi and Flavell
arguments we see that the assumption that a is of order 3 can be
dropped and so we obtain the following lemma.
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Lemma 2.3. Let G be a soluble group that possesses an element a such

that G = 〈aG〉. Then there exist four conjugates of a that generate a

subgroup with the same Fitting height as G.

Now the proof of Proposition 2.1 becomes very easy.

Proof. As was mentioned above we can assume that G is soluble.
Set H1 = 〈aG〉, H2 = 〈aH1〉, H3 = 〈aH2〉, etc. Let H = ∩iHi. Then H
is the smallest subnormal subgroup of G containing a and it is clear
that H = 〈aH〉. It follows that the Fitting height of H is at most h.
Since H is subnormal, we conclude that a ∈ Fh(G). �

We call an element a of G a δk-commutator if it is a value of the
word δk in G. A well-known corollary of the Hall-Higman theory [12]
says that the Fitting height of a finite soluble group of exponent n is
bounded by a number depending only on n. We will denote the number
by h(n).

Lemma 2.4. Let k, n ≥ 1 and G a soluble group in which every product

of 896 δk-commutators has order dividing n. Then h(G) ≤ h(n)+k+1.

Proof. Let a = a1 ∈ G be a δk-commutator and a2, a3, a4 some
conjugates of a. Put H = 〈a1, a2, a3, a4〉 and h = h(n). We know from
[15] that every element of H ′ is a product of 448 commutators of the
form [x, ai] for suitable x ∈ G. Each commutator of the form [x, ai] is a
product of 2 δk-commutators so every element of H ′ is a product of 896
δk-commutators. Hence, H ′ is of exponent n and so the Fitting height
of H ′ is at most h. It follows that the Fitting height of H is at most
h+1. We now deduce from Proposition 2.1 that every δk-commutator
of G is contained in Fh+1(G). Therefore G(k) ≤ Fh+1(G) and the lemma
follows. �

In what follows Xk(G) denotes the set of all δk-commutators ob-
tained using elements of the group G. Note that if P is a subgroup of
G, in general Xk(G) ∩ P 6= Xk(P ).

Let G be a finite group and k a positive integer. We will associate
with G a triple of numerical parameters nk(G) = (λ, µ, ν) where the
parameters λ, µ, ν are defined as follows.

If G is of odd order, we set λ = µ = ν = 0. Suppose that G is
of even order and choose a Sylow 2-subgroup P in G. If the derived
length dl(P ) of P is at most k + 1, we define λ = dl(P ) − 1. Put
µ = 2 if Xλ(P ) contains elements of order greater than two and µ = 1
otherwise. We let ν = µ if Xλ(P ) 6⊆ Z(P ) and ν = 0 if Xλ(P ) ⊆ Z(P ).

If the derived length of P is at least k + 2, we define λ = k. Then
µ will denote the number with the property that 2µ is the maximum
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of orders of elements in Xk(P ). Finally, we let 2ν be the maximum of
orders of commutators [a, b], where b ∈ P and a is an involution in a
cyclic subgroup generated by some element from Xk(P ).

The set of all possible triples nk(G) is naturally endowed with the
lexicographical order. Following the terminology used by Hall and Hig-
man [12] we call a groupGmonolithic if it has a unique minimal normal
subgroup which is non-abelian simple. In the modern literature such
groups very often are called “almost simple”.

Proposition 2.5. Let k ≥ 1 and G be a group of even order such

that G has no nontrivial normal soluble subgroups. Then G possesses a

normal subgroup L such that L is residually monolithic and nk(G/L) <
nk(G).

Proof. Let M be a minimal normal subgroup of G. We know that
M ∼= S1 × S2 × · · · × Sr, where S1, S2, . . . , Sr are isomorphic simple
groups. The group G acts on M by permuting the simple factors so we
obtain a representation ofG by permutations of the set {S1, S2, . . . , Sr}.
Let LM be the kernel of the representation. We want to show that
nk(G/LM ) < nk(G). Suppose this is not true and nk(G/LM) = nk(G).
Let P be a Sylow 2-subgroup of G and assume first that the derived
length of P is at least k + 2. Suppose further that ν(G) 6= 0. Let
q = 2ν . Since ν(G/LM ) = ν(G), there exist an involution a in a cyclic
subgroup generated by an element from Xk(P ) and b in P such that
[a, b] is of order q modulo LM . Then [a, b] permutes regularly some q
factors in {S1, S2, . . . , Sr}. Without loss of generality we will assume
that S1 is one of those factors and S1, . . . , Sq is the corresponding orbit
under [a, b].

Suppose that a takes S1 outside the orbit S1, . . . , Sq.
Let Pi = P ∩ Si. Choose a nontrivial element x ∈ P1 and set

y = [a, x], c = [a, b]x. Then yc = [a, bx] is a commutator of the required
form and therefore (yc)q = 1. Write

1 = (yc)q = yyc
−1

yc
−2

. . . yc.

The element yyc
−1

yc
−2

. . . yc is a product of elements of the form xcj ,
each lying in a different Sj ∈ {S1, . . . , Sq} and elements of the form

x−acj lying in other simple factors. Looking at it we conclude that
yyc

−1

yc
−2

. . . yc 6= 1. But that means that the order of yc is divisible by
2q, a contradiction.

Therefore for every i the a-orbit of Si is contained in S1, . . . , Sq.
Suppose that S1

a = Si1 , S2
a = Si2, . . . , Sq

a = Siq . Again we look at the

expression 1 = (yc)q = yyc
−1

yc
−2

. . . yc. As above, this is the product of
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elements of the form xcj , each lying in a different Sj ∈ {S1, . . . , Sq}, and

elements of the form x−acj , each lying in a different Sj ∈ {S1, . . . , Sq}

as well. Since both elements x−a, xci1 lie in Si1 and since 1 = (yc)q, it

follows that x−axci1 = 1 for every x ∈ S1. From this and the fact that
c = [a, b]x we deduce that ax−1[b, a]i1 commutes with x. Taking into

account that also x−[b,a]i1 commutes with x (because x−[b,a]i1 belongs
to Sq−i1), we conclude that a[b, a]i1 commutes with x for all x ∈ S1.
Thus, a[b, a]i1 commutes with S1. Similarly we arrive at the conclusion
that a[b, a]i2 commutes with S2, a[b, a]

i3 commutes with S3 and so on.

Recall that S1
[a,b] = S2, S2

[a,b] = S3, . . . , etc. Therefore all the elements

[a, b]a[b, a]i2 [b, a],

[a, b]2a[a, b]i3 [b, a]2,
...

[a, b]q−1a[a, b]iq [b, a]q−1

commute with S1. Remembering that a is an involution we write

[a, b]a[b, a]i2 [b, a] = [a, b]i2+2a,

[a, b]2a[b, a]i3 [b, a]2 = [a, b]i3+4a,
...

[a, b]q−1a[b, a]iq [b, a]q−1 = [a, b]iq+2(q−1)a.

Therefore the elements [a, b]i1a, [a, b]i2+2a, . . . , [a, b]iq+2(q−1)a commute
with S1. Since [a, b] permutes regularly S1, S2, . . . , Sq, we deduce that

i1 ≡ i2 + 2 ≡ i3 + 4 ≡ . . . ≡ iq + 2(q − 1) (mod q).

It follows now that i1 = i1+q/2 and so S1 = S1+q/2, a contradiction.
Thus, if ν(G) 6= 0, then ν(G/LM ) < ν(G). Suppose that ν(G) = 0,

that is, every involution a in a cyclic subgroup generated by an element
from Xk(P ) is central in P . Keeping the above notation we remark
that since a centralizes Pi, it follows that a normalizes Si for every i.
Therefore a ∈ LM and we conclude that µ(G/LM) < µ(G).

So nk(G/LM) < nk(G) whenever the derived length of P is at least
k + 2. We will now assume that the derived length of P is at most
k + 1 and so Xλ(P ) is contained in a normal abelian subgroup of P .
Choose d ∈ Xλ(P ) and x ∈ Pi. Since [x, d, d] = 1, it is easy to see
that d normalizes SiSi

d. It follows that d2 ∈ LM . Thus, µ(G/LM) = 1.
If µ(G) = 2, then nk(G/LM) < nk(G) so suppose that µ(G) = 1. If
ν(G) = 0, it follows that d ∈ Z(P ) and so d centralizes Pi whence we
deduce that d ∈ LM , in which case λ(G/LM) < λ(G) and we are done.
It remains to deal with the case where ν(G) = 1 and ν(G/LM ) = 1. In
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other words, we have to deal with the case where the elements ofXλ(P )
are involutions generating a normal abelian subgroup of P . Moreover,
there exist d ∈ Xλ(P ) and b ∈ P such that [d, b] 6∈ LM . It is clear that
for some i we have Si

d 6= Si
[d,b]. Without loss of generality we assume

that S1
d = S2 and S1

[d,b] = S3. Now choose x ∈ P1 and write

1 = [d, bx]2 = ([d, x][d, b]x)2 = [d, x][d, x][d,b]
x

.

This shows that [d, x] commutes with [d, b]x, which easily leads to a

contradiction in view of the assumption that S1
d = S2 and S1

[d,b] = S3.
Thus, we have shown that nk(G/LM) < nk(G). Let now L be the

intersection of all the subgroups LM , where M ranges through the min-
imal normal subgroups of G. It follows that nk(G/L) < nk(G) so the
proof of the proposition will be complete once it is shown that L is
residually monolithic. If T is the product of the minimal normal sub-
groups of G, it is clear that T is the product of pairwise commuting
simple groups S1, S2, . . . , St and that L is the intersection of the nor-
malizers of Si. Since G has no nontrivial normal soluble subgroups,
it follows that CG(T ) = 1 and therefore any element of L induces a
nontrivial automorphism of some the Si. Let ρi be the natural homo-
morphism of L into the group of automorphisms of Si. It is easy to
see that the image of ρi is monolithic and that the intersection of the
kernels of all ρi is trivial. Hence L is residually monolithic. �

The next lemma is given without proof as it is precisely Lemma 3.2
from [20]. The proof is based on Lie-theoretic techniques created by
Zelmanov.

Lemma 2.6. Let G be a group in which every δk-commutator is of order

dividing n. Let H be a nilpotent subgroup of G generated by a set of δk-
commutators. Assume that H is in fact m-generated for some m ≥ 1.
Then the order of H is {k,m, n}-bounded.

The lemma that follows partially explains why Proposition 2.5 is
important for the proof of Theorem 1.5.

Lemma 2.7. There exist {k, n}-bounded numbers λ0, µ0, ν0 with the

property that if G is a group in which every δk-commutator is of order

dividing n, then nk(G) ≤ (λ0, µ0, ν0).

Proof. Suppose that G is a group of even order in which every
δk-commutator is of order dividing n and let P be a Sylow 2-subgroup
of G. It suffices to show that there exists a {k, n}-bounded number
ν0 such that if b ∈ P and a is the involution in a cyclic subgroup
generated by some element d ∈ Xk(P ), then the order of [a, b] is at
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most 2ν0. It is clear that [a, b] ∈ 〈d, db〉. By Lemma 2.6 the order of
〈d, db〉 is {k, n}-bounded so the result follows. �

3. Bounding the order of a finite group

The purpose of this section is to find some sufficient conditions for
a finite group to have bounded order. Recall that all groups considered
in this section are finite.

Lemma 3.1. Let k, m, n be positive integers and G a nilpotent group in

which every δk-commutator is of order dividing n. Assume that G can

be generated by m elements g1, g2, . . . , gm such that each gi and each

commutator of the form [g, x], where g ∈ {g1, g2, . . . , gm} and x ∈ G,

have order dividing n. Then the order of G is bounded by a function

depending only on k,m, n.

Proof. Since G is a nilpotent group, it is clear that any prime
divisor of |G| is a divisor of n. Hence, it is sufficient to bound the order
of the Sylow p-subgroup of G for any prime p. We can pass to the
quotient G/Op′(G). Thus, G can be assumed to be a p-group and n a
p-power.

Suppose first that G is soluble with derived length j ≤ k. If G is
abelian, it is easy to see that |G| is {k,m, n}-bounded. Arguing by
induction on j, we assume that the index [G : G(j−1)] is {k,m, n}-
bounded.

Suppose that G(j−1) is central. In this case the index [G : Z(G)] is
{k,m, n}-bounded and Schur’s Theorem [16, p. 102] guarantees that
so is |G′|. Since G can be generated by m elements of order dividing
n, it follows that G has {k,m, n}-bounded order.

Let us see what happens if G(j−1) is not central. Consider the
subgroup

A = 〈[g1, G
(j−1)], [g2, G

(j−1)], . . . , [gm, G
(j−1)]〉.

Clearly, A is normal in G. Applying the results of the previous para-
graph to the quotient G/A, it follows that A has {k,m, n, }-bounded
index in G. Now Schreier’s Theorem says that A can be generated by
a {k,m, n}-bounded number of elements. Since A is abelian and, by
the hypothesis, the order of each commutator of the form [g, x] divides
n, it follows that A has exponent dividing n. Hence, |A| and therefore
|G| is {k,m, n}-bounded.

Now consider the general case, that is, we do not assume anymore
that G is soluble with derived length at most k. Applying the results
of the previous paragraph to the quotient G/G(k), it follows that [G :
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G(k)] is {k,m, n}-bounded. It remains to show that |G(k)| is {k,m, n}-
bounded. Let r be the minimal number of generators of G(k). Note that
r is {k,m, n}-bounded. A well-known corollary of the Burnside Basis
Theorem [13] says that if a p-group is r-generated, then any generating
set contains a generating set of precisely r elements. Thus, G(k) can be
generated by r δk-commutators. By Lemma 2.6 we conclude that the
order of G(k) is {k, r, n}-bounded, as required. �

In what follows, we denote by π(G) the set of prime divisors of |G|.

Lemma 3.2. Let k, l, m, n be positive integers and G a group in which

every δk-commutator is of order dividing n. Assume that G can be

generated by m elements g1, g2, . . . , gm such that each gi and each com-

mutator of the forms [g, x] and [g, x, y], where g ∈ {g1, g2, . . . , gm} and

x, y ∈ G, have order dividing n. Assume further that |G/F (G)| =
l. Then the order of G is bounded by a function depending only on

k, l,m, n.

Proof. Let F = F (G) be the Fitting subgroup of G. Suppose
first that F is central. In this case the index [G : Z(G)] is {k, l,m, n}-
bounded and Schur’s Theorem guarantees that so is |G′|. Since G can
be generated by m elements of order dividing n, it follows that |G| is
{k, l,m, n}-bounded.

If F is not central, consider the subgroup

N = 〈[g1, F ], [g2, F ], . . . , [gm, F ]〉.

It is easy to see that N is normal in G. Applying the results of the
previous paragraph to the quotient G/N , it follows that the index
[G : N ] is {k, l,m, n}-bounded. We will show that |N |, and therefore
|G|, is {k, l,m, n}-bounded.

We know thatN can be generated by a {k, l,m, n}-bounded number
of elements. Let s be the minimal number of generators of N . Since N
is nilpotent, π(N) consists of prime divisors of n. Thus, it is sufficient
to bound the order of the Sylow p-subgroup of N for every prime p ∈
π(N). Let P be the Sylow p-subgroup of N and write N = P×Op′(N).
If y1, y2, . . . is the list of all elements of the form [gi, y], where 1 ≤ i ≤ m
and y ∈ F , we write b1, b2, . . . for the corresponding projections of
yj in P . Then P = 〈b1, b2, . . .〉. Since P is an s-generated p-group,
the Burnside Basis Theorem shows that P is actually generated by s
elements in the list b1, b2, . . .. By the hypothesis, the order of each
of them divides n. Each commutator of the form [bi, z] also has order
dividing n. By Lemma 3.1 we conclude that P has {k, l,m, n}-bounded
order. The proof is complete. �
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Proposition 3.3. Let k, m, n be positive integers and G a group

in which every product of 896 δk-commutators is of order dividing n.
Assume that G can be generated by m elements g1, g2, . . . , gm such that

each gi and all commutators of the forms [g, x] and [g, x, y], where

g ∈ {g1, g2, . . . , gm}, x, y ∈ G, have orders dividing n. Then the order

of G is bounded by a function depending only on k,m, n.

Proof. We use nk(G) to denote the triple of numerical parameters
as in the previous section. According to Lemma 2.7 the number of all
triples that can be realized as nk(G) is {k, n}-bounded. We therefore
can use induction on nk(G). If nk(G) = (0, 0, 0), then G has odd
order. By the Feit-Thompson Theorem [5] G is soluble. By Lemma 2.4
h(G) ≤ h(n)+k+1. Arguing by induction on h(G) we can assume that
F (G) has {k,m, n}-bounded index in G. Now the result is immediate
from Lemma 3.2. Hence, we assume that nk(G) > (0, 0, 0) and there
exists a {k,m, n}-bounded number N0 with the property that if L is a
normal subgroup such that nk(G/L) < nk(G), then the index of L is
at most N0.

Suppose first that G has no nontrivial normal soluble subgroups.
Proposition 2.5 tells us that G possesses a normal subgroup L such
that L is residually monolithic and nk(G/L) < nk(G). It follows that
the index of L in G is at most N0. We deduce that L can be generated
by r elements for some {k,m, n}-bounded number r.

A result of Jones [14] says that any infinite family of finite simple
groups generates the variety of all groups. It follows that up to isomor-
phism there exist only finitely many monolithic groups in which every
δk-commutator is of order dividing n. Let N1 = N1(k, n) be the maxi-
mum of their orders. Then L is residually of order at most N1. Since
L is r-generated, the number of distinct normal subgroups of index at
most N1 in L is {r,N1}-bounded [11, Theorem 7.2.9]. Therefore L has
{k,m, n}-bounded order. We conclude that |G| is {k,m, n}-bounded.

Now let us drop the assumption that G has no nontrivial normal
soluble subgroups. Let S be the product of all normal soluble subgroups
of G. The above paragraph shows that G/S has {k,m, n}-bounded
order and we know from Lemma 2.4 that h(S) ≤ h(n) + k + 1. Again
we let F = F (G) be the Fitting subgroup of G. Using induction on the
Fitting height of S, we assume that F has {k,m, n}-bounded index in
G, in which case the result is immediate from Lemma 3.2. �

4. Main results

We are now ready to prove Theorem 1.5 in the case where w is a
δk-commutator.
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Theorem 4.1. Let n be a positive integer and G a residually finite

group in which every product of 896 δk-commutators has order dividing

n. Then G(k) is locally finite.

Proof. Let T be any finite subset of G(k). Clearly one can find
finitely many δk-commutators h1, h2, . . . , hm ∈ G such that T is con-
tained in H = 〈h1, h2, . . . , hm〉. It is sufficient to prove that the
subgroup H is finite. The order of each hi divides n. Moreover, if
h ∈ {h1, h2, . . . , hm} and x, y ∈ H , then the commutator [h, x] is a
product of two δk-commutators and the commutator [h, x, y] is a prod-
uct of four δk-commutators. So the order of each of the commutators
divides n. If Q is any finite quotient of G, by Proposition 3.3 the order
of the image of H in Q is finite and {k,m, n}-bounded, so it follows
that this order actually does not depend on Q. Since G is residually
finite, we conclude that H is finite, as required. �

Theorem 1.5 easily follows from Theorem 4.1. For the reader’s
convenience we will reproduce here a couple of lemmas from [19]. We
say that a multilinear commutator w has weight k if it depends on
precisely k independent variables. It is clear that there are only k-
boundedly many distinct multilinear commutators of weight k.

Lemma 4.2. Let G be a group and w a multilinear commutator of

weight k. Then every δk-commutator in G is a w-value.

Proof. The case k = 1 is quite obvious so we assume that k ≥ 2
and use induction on k. Write w = [w1, w2], where w1 and w2 are
multilinear commutators of weight k1 and k2 respectively, k1 + k2 = k,
and the variables involved in one of w1, w2 do not occur in the other.
Let k0 be the maximum of k1, k2. By the induction hypothesis any
δk0-commutator in G is a w1-value as well as a w2-value. Since w =
[w1, w2], it follows that the set of w-values contains the set of elements
of the form [x, y], where x, y range independently through the set of
δk0-commutators. Hence any δk0+1-commutator represents a w-value.
It remains to remark that k0 + 1 ≤ k so the lemma follows. �

Let w be a multilinear commutator of weight t. In the next lemma
we shall require the concept of a subcommutator of weight s ≤ t of
w. This can be defined by backward induction on s in the following
way. The only subcommutator of w of weight t is w itself. If s ≤ t− 1
a multilinear commutator v of weight s is a subcommutator of w if
and only if there exists a subcommutator u of weight > s of w and a
multilinear commutator v1 such that either u = [v, v1] or u = [v1, v]. It
is quite obvious that if v is a subcommutator of w then w(G) ≤ v(G)
for any group G.
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Lemma 4.3. Let w be a multilinear commutator, G a soluble group in

which all w-values have finite order. Then the verbal subgroup w(G) is
locally finite.

Proof. Let G be a counter-example whose derived length is as
small as possible, and let T be the last nontrivial term of the derived
series of G. Passing to the quotient over the subgroup generated by
all normal locally finite subgroups of G we can assume that G has no
nontrivial normal locally finite subgroups. Since T is abelian, it follows
that no w-value lies in T \{1}. Let s = s(w,G) be the smallest number
such that any subcommutator of weight s of w has no values in T \{1}.
Obviously, s ≥ 2 since T 6= 1. We can choose a subcommutator v =
[v1, v2] of weight ≥ s of w such that both v1 and v2 are subcommutators
of weight < s, at least one of which having nontrivial values in T \{1}.
Let Hi be the subgroup of T generated by the vi-values contained in T ;
i = 1, 2. By the choice of v at least one of these subgroups is nontrivial.
Since v has no values in T \ {1}, it follows that H1 ≤ CG(v2(G)) and
H2 ≤ CG(v1(G)). Taking into account that w(G) ≤ u(G) for any
subcommutator u of w we conclude that H1 and H2 centralize the
verbal subgroup w(G). Hence both subcommutators v1 and v2 have no
nontrivial value in the image of T in G/CG(w(G)). This shows that
s(w,G/CG(w(G))) ≤ s− 1. The induction on s(w,G) now shows that
w(G)/Z(w(G)), the image of w(G) in G/CG(w(G)), is locally finite.
Then, by Schur’s Theorem, the derived group of w(G) is locally finite.
Because w(G) is generated by elements of finite order, Gmust be locally
finite. �

Theorem 1.5 is now immediate.

Proof. Indeed, suppose thatG satisfies the hypothesis of Theorem
1.5. By Lemma 4.2 there exists k ≥ 1 such that any δk-commutator is
a w-value. Hence any product of 896 δk-commutators in G has order
dividing n. Theorem 4.1 now tells us that G(k) is locally finite. It
is straightforward from Lemma 4.3 that w(G)/G(k) is likewise locally
finite, as required. �

In [20] we raised the following problem that generalizes the Re-
stricted Burnside Problem.

Problem 4.4. Let n ≥ 1 and w a group-word. Consider the class of all

groups G satisfying the identity wn ≡ 1 and having the verbal subgroup

w(G) locally finite. Is that a variety?

Recall that variety is a class of groups defined by equations. More
precisely, if W is a set of words in x1, x2, . . . , the class of all groups
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G such that W (G) = 1 is called the variety determined by W . By a
well-known theorem of Birkhoff varieties are precisely classes of groups
closed with respect to taking quotients, subgroups and cartesian prod-
ucts of their members.

We do not know if Problem 1.2 and Problem 4.4 are equivalent. It
is fairly easy to see that whenever the answer to Problem 4.4 is positive,
so is the answer to Problem 1.2. We will show now that for words that
are products of multilinear commutators on independent variables the
problems are equivalent indeed.

Proposition 4.5. Let C be a positive integer and w a multilinear

commutator of weight k. The following statements are equivalent.

(1) Every residually finite group G in which all products of C w-
values are of order dividing n has w(G) locally finite.

(2) Let G be a finite group in which all products of C w-values
are of order dividing n. Let a1, . . . , am be w-values. Then the

order of 〈a1, . . . , am〉 is {k,m, n}-bounded.
(3) The class of all groups G in which w(G) is locally finite and

every product of C w-values has order dividing n is a variety.

Proof. Suppose first that the first statement is correct but the
second is false. Choose a family of finite groups G1, G2, . . . , Gi, . . .
in which all products of C w-values are of order dividing n with the
property that for some m the groups Gi contain w-values ai1, . . . , aim
such that

|〈ai1, . . . , aim〉| < |〈aj1, . . . , ajm〉|

whenever i < j. Let G be the Cartesian product of the groups Gi. It
is clear that G is residually finite. The elements
b1 = (a11, a21, . . . , ai1, . . . )
b2 = (a12, a22, . . . , ai2, . . . )
. . .
bm = (a1m, a2m, . . . , aim, . . . )
are w-values in G but 〈b1, . . . , bm〉 is infinite. A contradiction. There-
fore the first statement implies the second.

Let us now show that the second statement implies the third. We
assume that the second statement is correct and let X denote the class
of all groups G in which w(G) is locally finite and every product of
C w-values has order dividing n. It is easy to see that the class X is
closed to taking subgroups and quotients of its members. Hence, we
only need to show that if D is a cartesian product of groups from X

then D ∈ X. Obviously, every product of C w-values in D has order
dividing n so it remains only to prove that w(D) is locally finite. In
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view of Lemma 4.3 it is sufficient to show that so is some term of the
derived series ofD. According to Lemma 4.2 every δk-commutator in G
is a w-value. We wish to show that D(k) is locally finite. Let T be any
finite subset ofD(k). Clearly one can find finitely many δk-commutators
h1, h2, . . . , hm ∈ D such that T ≤ 〈h1, h2, . . . , hm〉 = H . It is sufficient
to prove that the subgroup H is finite. Since H is generated by finitely
many δk-commutators and since every commutator of δk-commutators
is again a δk-commutator, we deduce that H(k) has finite index in H
and so is generated by finitely many δk-commutators, too. Since the
second statement is correct, it follows that the image of H(k) in any
finite quotient ofH is finite and has bounded order. Thus, it is sufficient
to show that H is residually finite. However this is immediate from the
facts that H is finitely generated and every group G in X has G(k)

locally finite.
It remains to show that the third statement implies the first. Let X

have the same meaning as in the above paragraph and assume that X is
a variety. Let G be a residually finite group in which all products of C
w-values are of order dividing n. Then any finite quotient of G belongs
to the variety X. However, it is clear that if a group residually belongs
to a certain variety, then it actually belongs to the variety. Thus, it
follows that w(G) is locally finite. �

The next corollaries are now immediate.

Corollary 4.6. Let w be a multilinear commutator and n a positive

integer. The class of all groups G in which w(G) is locally finite and

every product of 896 w-values has order dividing n is a variety.

Corollary 4.7. Let w be a multilinear commutator of weight k and

n a positive integer. Let G be a finite group in which every product of

896 w-values has order dividing n. If a1, . . . , am ∈ G are w-values then
the order of 〈a1, . . . , am〉 is {k,m, n}-bounded.
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