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Abstract

For the first time it is shown that for thin metallic films thickness of which

does not exceed thickness of skin – layer, the problem of description of surface

plasma oscillations allows analytical solution under arbitrary ratio of length of

electron mean free path and thickness of a film. The dependance of frequency

of surface plasma oscillations on wave number is deduced. We consider a case

of specular – diffusive boundary value problems.

Key words: degenerate collisional plasma, surface plasma oscillations,

thin metallic film.

PACS numbers: 73.50.-h Electronic transport phenomena in thin films,

73.50.Mx High-frequency effects; plasma effects, 73.61.-r Electrical properties

of specific thin films.

Introduction

Electromagnetic properties of metal films has been being a sub-

ject of great interest for a long time already [1] – [6]. Problem of

surface plasma oscillations has been a problem of special interest in

recent time [7] – [17]. It is connected as with theoretical interest to

this problem, and with numerous practical appendices as well. Thus

the majority of researches is founded on the description of properties

of films with use of methods of macroscopical electrodynamics. Such

approach is inadequate for thin films, since macroscopical electrody-

namics is inapplicable for the description of films in the thickness of an
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order of length of mean free path of electrons and less than this length.

The electrons scattering on a surface demands kinetic consideration.

It complicates the problem significantly.

In the present work it is shown that for thin films, a thickness

of which does not exceed a thickness of a skin – layer, the problem

of description of surface plasma oscillations allows analytical solution

under arbitrary ratio between length of mean free path of electrons

and thickness of a film. The given work is a continuation of our work

[18] in which the case when values of a magnetic field on top and

bottom surface of films coincide was considered . Now the situation,

when the signs of these values differ is investigated.

Let us note, that the most part of reasonings carryied out be-

low is true for more general case of conductive (in particular, semi-

conductor) film.

Problem statement

Let us consider a thin metal film.

We take Cartesian coordinate system with origin of coordinates on

one of the surfaces of a slab, with axis x, directed deep into the slab

and perpendicularly to the surface of the film. The axis z we will direct

along the direction of propagation of the surface electromagnetic wave.

We will note, that in this case magnetic field is directed along the axis

y.

Under such choice of system of coordinates the electric field vector

and magnetic field vector have the following structure

E = {Ex(x, z, t), 0, Ez(x, z, t)}, H = {0, Hy(x, z, t), 0}.

The origin of coordinates we will place at the bottom plane limiting

a film. Let us designate a thickness of the film through d.

Out of the film the electromagnetic field is described by the equa-
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tions
1

c2
∂2E

∂t2
−∆E = 0

and
1

c2
∂2H

∂t2
−∆H = 0.

Here c is the velocity of light, ∆ is the Laplace operator.

The solution of these equations decreasing at infinity point has the

following form

E =

{

E1e
−iωt+αx+ikz, x < 0,

E2e
−iωt+α(d−x)+ikz, x > d,

(1a)

and

H =

{

H1e
−iωt+αx+ikz, x < 0,

H2e
−iωt+α(d−x)+ikz, x > d.

(1b)

Here ω is the wave frequency, k is the wave number, damping pa-

rameter α is connected with these quantities by relation

α =

√

k2 − ω2

c2
, (2)

Ej and Hj (j = 1, 2) are constant amplitudies.

Further we search components of intensity vectors of electric and

magnetic fields in the following form

Ex(x, z, t) = Ex(x)e
−iωt+ikz, Ez(x, z, t) = Ez(x)e

−iωt+ikz,

and

Hy(x, z, t) = Hy(x)e
−iωt+ikz.

Then the behaviour of electric and magnetic fields of the wave

within the film is described by the following system of the differential
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equations ([4] and [19])










































dEz

dx
− ikEx +

iω

c
Hy = 0,

iω

c
Ex − ikHy =

4π

c
jx,

dHy

dx
+

iω

c
Ez =

4π

c
jz.

(3)

Here j is the current density.

The equations (3) are satisfied out of the slab under the condition

j = 0 as well.

Then impedance at the bottom surface of the layer (film) is defined

as follows

Z(j) =
Ez(−0)

Hy(−0)
, j = 1, 2. (4)

Quantities Z(j) (j = 1, 2) correspond to an impedance on the bot-

tom layer surface. At the same time the quantity Z(1) corresponds to

magnetic field–symmetrical configuration of an external field. This is

the case j = 1, when

Hy(0) = Hy(d), Ex(0) = Ex(d), Ez(0) = −Ez(d). (5)

This case has been considered in [18].

The quntity Z(2) corresponds to configuration of an external field

antisymmetric by magnetic field. It is the case j = 2, when

Hy(0) = −Hy(d), Ex(0) = −Ex(d), Ez(0) = Ez(d). (6)

It is required to find a spatial dispersion of the surface plasmon,

i.e. to find dependence of frequency of oscillations of eigen mode of

the system (3) on quantity of the wave vector ω = ω(k).

Let us consider a case when the width of the layer d is less than

the depth of the skin – layer δ. We will note, that the depth of a skin

– layer depends essentially on frequency of radiation, monotonously
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decreasing in the process of growth of the last quantity. The quantity

δ possesses minimum value in so-called infra-red case [20] δ0 =
c

ωp

,

where ωp is the plasma frequency.

For typical metals [20] δ0 ∼ 10−5 cm.

Thus for the films which thickness d is less δ0, our assumption is

true for any frequencies.

Quantities Hy and Ez vary a little on distances smaller than the

depth of a skin – layer. Therefore at performance of the given assump-

tion (d < δ0) thess fields will vary inside of slab.

Surface plasmon. Antisymmetric configuration of magnetic

field

Let us consider the case 2 when Ez(0) = Ez(d). We can assume

that in this layer z – projection of the electric field Ez is constant.

Then magnetic field change on the width of a layer can be defined

from the third equation of the system (1)

Hy(d)−Hy(0) = −iω

c
Ezd+

4π

c

d
∫

0

jz(x)dx. (7)

Thus

jz(x) = σ(x)Ez,

where σ(x) is the conductivity which in general case depends on co-

ordinate x.

We introduce conductivity averaged by the slab thickness

σd =
1

Ezd

d
∫

0

jz(x)dx =
1

d

d
∫

0

σ(x)dx.

Now we can rewrite the relation (7) in the form

Hy(d)−Hy(0) = −iω

c
Ezd+

4πσdd

c
Ez.
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Considering symmetry of a magnetic field, from here we have

Hy(0) =
iωdEz

2c

(

1 + i
4πσd

ω

)

.

Then for impedance (4) we have

Z(2) = − 2ic

ωd
(

1 + i
4πσd

ω

)

. (8)

In the same way as well as in (9), we receive

Z(2) =
iαc

ω
. (9)

The dispersive equation for a surface plasma wave can be derived

from the expressions (2), (8) and (9)

2c

ωd+ 4πiσdd
= −

√
c2k2 − ω2

ω
. (10)

From the dispersive equation (10) we find the required spatial dis-

persion

k(ω) =
ω

c

√

√

√

√

1 +
4c2

ω2d2
(

1 +
4πi

ω
σd

)2 . (11)

Let us assume, that boundary conditions are specular – diffusive, p

is the specularity coefficient. Let the relation kd ≪ 1 be true. Then in

a low-frequency case, when ω → 0, the quantity σd can be presented

in the form [8]

σd =
w

Φ(w)
σ0, w =

d

l
, (12)

and

1

Φ(w)
=

1

w
− 3

2w2
(1− p)

∞
∫

1

( 1

t3
− 1

t5

) 1− e−wt

1− pe−wt
dt. (13)

Here l is the mean free path of electrons, p is the coefficient of

specular reflection (specularity coefficient), σ0 = ω2
pτ/(4π) is the static

conductivity of volume pattern, τ = l/vF is the electron-transit time,

vF is the Fermi velocity.
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For arbitrary frequencies thee expression (12) and (13) will hold

true under the condition, that it is necessary to use the following

expression l → (vFτ)/(1 − iωτ) as quantity l, and instead of σ0 it’s

necessary to use the expression σ0 → σ0/(1− iωτ).

Let us reduce the formula (11) to the form convenient for numerical

calculations. We introduce the dimensionless parameters ε =
ν

ωp

and

Ω =
ω

ωp

. Then we can transform the formula (19) to the following

form

k(Ω, ε) =

√

ω2
p

Ω2

c2
+

4

d2

(

1− ϕ(w)

Ω(Ω− iε)

)−2

, (14)

where

ϕ(w) = 1− 1.5

w
(1− p)

∞
∫

1

( 1

t3
− 1

t5

) 1− e−wt

1− pe−wt
dt.

In the case, when electrons reflect under specular condition from

the film surface (i.e. at p = 1), the formula (14) becomes simpler and

looks like

k(ω) =
ω

c

√

1 +
c2(ν − iω)2

d20(νω − iω2 + iω2
p)

2
, (15)

where d0 =
d

2
is the half of a film thickness.

In dimensionless parametres the formula (15) can be written as

follows

k(Ω) =
ωp

c
Ω

√

1 +
c2(Ω + iε)2

(ωpd)2(Ω2 − 1 + iεΩ)2
. (16)

Under ε = 0 we receive from here that

k(Ω) =
ωp

c
Ω

√

1 +
( c

ωpd0

)2(

Ω− 1

Ω

)−2

.

It is clear that under ε = 0 from the last formula it follows that

Im k(Ω) = 0, i. e. in collisionless plasma plasmon damping is absent.

From the formula (16) it is visible, that there exists such critical

frequency ω0 = ω0(ε, d), that under ω < ωp Im k(ω) > Re k(ω), i.e.

in field of subcritical frequencies sufrace plasmons do not exist.
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We adduce the table of critical frequencies, referring to plasma

(Langmuir) frequencies, Ω0(ε, d) =
ω0(ε, d)

ωp

, under ε = 10−1 for the

case of specular boundary conditions (p = 1).

Table 1 (critical frequencies)

Film thickness d, nm 1 2 3 4

Critical frequency Ω0 0.101 0.100 0.097 0.092

Film thickness d, nm 5 6 7 8 9

Critical frequency Ω0 0.086 0.078 0.067 0.051 0.023
Let us adduce graphics on Figs. 1 – 8 of dependencies of real and

imaginary parts of the wave vector on the ratio of frequencies ω/ωp

under various values of frequency of electron collisions ν, thickness of

a film d and coefficient of specular reflection p. We will consider the

case of sodium films, i.e. we take ωp = 6.5 · 1015sec−1, vF = 8.52 · 107
cm/sec.

Depending on quantity of parametres ν, d, p the quantities Re k and

Im k can essentially differ. So, at ν = 10−5ωp, d = 10 nanometer and

p = 1 (Fig. 1) the quantity Re k surpasses Im k on some orders.

From Fig. 1 it is visible, that if to enter quantity Z =
Re k

Im k
, then

Z(0.1, 10−5, 10, 1) = 2.1 · 104, Z(0.5, 10−5, 10, 1) = 3.8 · 104.
Besides, the quantity Re k is always positive under all values of

parameters ω, ν, d, p, while the quantity Im can be negative in the

field of superhigh frequencies as well.

Let us stop on existence of surface plasma waves (see Figs. 2 and

3).

Depending on quantities ε, d, p two critical frequencies ω0 and ω1,

such, that the inequality Im k < Re k is true under ω0 < ω < ω1, and

the inequality Im k > Re k is true under 0 < ω < ωp or ω1 < ω < ωp

can exist.

In the last case of surface plasma waves do not exist. Let us consider

the case ν = 10−1ωp, p = 0.1. Results calculations we will present in

the following table.
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Table 2 (critical frequencies)

Film thickness, nm First critical Second critical

d frequency, ω0 frequency, ω1

1 0.168 0.904

2 0.130 0.924

3 0.116 0.929

4 0.107 0.932

5 0.098 0.934

6 0.089 0.935

7 0.077 0.935

8 0.063 0.936

9 0.041 0.936

10 0.000 0.937
The behaviour of the real and imaginary parts of a wave vector in

dependence on a thickness of a film is presented on Figs. 4 and 5. The

real part has a sharp maximum nearby the plasma resonance ω ∼ ωp.

Let us note, the more is thickness of a film the less are values

of the real part under each value of frequency of oscillations of an

electromagnetic field. The imaginary part has the same behaviour.

But its values are less than values of real parts significantly. Unlike

the real part in the field of the superhigh frequencies the values of the

imaginary part become negative.

On Figs. 6 and 7 dependences of the real and imaginary parts

of wave vector on quantity of collision frequencies of electrons are

presented. The less is the quantity ν, the more are the values of the

real part. For the imaginary part inverse relation takes place. Namely,

the less is the quantity of collision frequencies, the less is the value of

an imaginary part. It means, that at electron collisions frequency

increase the attenuation of surface plasma waves becomes stronger (in

the field of subcritical frequencies).

On Fig. 8 dependence of an imaginary part of the wave vector on



10

quantity of coefficient of specular reflection in the field of subcritical

frequencies is presented. Graphics show, that with the growth of coef-

ficient of specular reflection the values of an imaginary part decrease.

It means, that damping of plasma waves by that becomes the stronger,

the less are quantities of coefficient of specular reflection.

Conclusion

In the present work the dispersion relation for surface plasmons is

deduced. We consider the case of an antisymmetric configuration of x

– component of the electric field and y – component of magnetic field,

and symmetric z – component of electric field. We consider the case

of specular – diffusive boundary value conditions.
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Figure 1. Real and imaginary parts of wave number, film thickness d = 10 nm, collision

electron frequency ν = 10−5ωp 1/sec, specular reflection, p = 1.
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Figure 2. Real and imaginary parts of wave number, film thickness d = 100 nm, collision

electron frequency ν = 0.1ωp 1/sec, coefficient of specular reflection, p = 0.1.
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Figure 3. Real and imaginary parts of wave number, film thickness d = 100 nm, collision

electron frequency ν = 0.02ωp 1/sec, coefficient of specular reflection, p = 0.1.

0.0 0.5 1.0

104

106

108

p

Re(k)

1
2 3 4

Figure 4. Real and imaginary parts of wave number, collision electron frequency

ν = 10−3ωp 1/sec, p = 0.5, curves 1, 2, 3, 4 correspond to values of the film thickness

d = 10, 25, 50, 100 nm.
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Figure 5. Imaginary part of wave number, ν = 10−3ωp 1/sec, p = 0.5, curves 1, 2, 3, 4

correspond to values of the film thickness d = 10, 25, 50, 100 nm. Subcritical frequencies:

0 < ω < ωp 1/sec.
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Figure 6. Real part of wave number, curves 1, 2, 3 correspond to values of electron

collision frequencies ν = 10−5ωp, 5 · 10−2ωp, 10
−1ωp 1/sec. Film thickness d = 10 nm,

coefficient of specular reflection p = 1 (case of specular reflection).
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Figure 7. Imaginary part of wave number, curves 1, 2, 3 correspond to values of electron

collision frequencies ν = 10−5ωp, 5 · 10−2ωp, 10
−1ωp 1/sec. Film thickness d = 10 nm,

coefficient of specular reflection p = 1 (case of specular reflection).
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Figure 8. Imaginary part of the wave number Im k(ω). Curves 1, 2, 3 correspond to

values of coefficient of specular reflection p = 0, 0.5, 1. Electron collision frequencies is

equal ν = 10−3ωp 1/sec. Film thickness d = 1 nm.


