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Abstract

We study two-parameter oscillator variations of the classical theorem on har-
monic polynomials, associated with noncanonical oscillator representations of sl(n,F)
and o(n,F). We find the condition when the homogeneous solution spaces of the
variated Laplace equation are irreducible modules of the concerned algebras and
the homogeneous subspaces are direct sums of the images of these solution sub-
spaces under the powers of the dual differential operator. This establishes a local
(sl(2,F), sl(n,F)) and (sl(2,F), o(n,F)) Howe duality, respectively. In generic case,
the obtained irreducible o(n,F)-modules are infinite-dimensional non-unitary mod-
ules without highest-weight vectors. As an application, we determine the structure
of noncanonical oscillator representations of sp(2n,C). When both parameters are
equal to the maximal allowed value, we obtain an infinite family of explicit irre-
ducible (G,K)-modules for o(n,F) and sp(2n,C). Methodologically we have exten-
sively used partial differential equations to solve representation problems.

1 Introduction

Harmonic polynomials are important objects in analysis, differential geometry and physics.

A fundamental theorem in classical harmonic analysis says that the spaces of homoge-

neous harmonic polynomials (solutions of Laplace equation) are irreducible modules of

the corresponding orthogonal Lie group (algebra) and the whole polynomial algebra is a

free module over the invariant polynomials generated by harmonic polynomials. Bases of

these irreducible modules can be obtained easily (e.g., cf. [X]). The algebraic beauty of

the above theorem is that Laplace equation characterizes the irreducible submodules of

the polynomial algebra and the corresponding quadratic invariant gives a decomposition

of the polynomial algebra into a direct sum of irreducible submodules. This actually forms

an (sl(2,F), o(n,F)) Howe duality.

Lie algebras (Lie groups) serve as the symmetries in quantum physics (e.g., cf. [FC, L,

LF, G]). Their various representations provide distinct concrete practical physical mod-

els. Many important physical phenomena have been interpreted as the consequences of

symmetry breaking (e.g., cf. [LF]). Harmonic oscillators are basic objects in quantum

mechanics (e.g., cf. [FC, G]). Oscillator representations of finite-dimensional simple Lie

algebras are the most fundamental ones in quantum physics. Their infinite-dimensional

analogues are free field representations of affine Kac-Moody algebras.
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The aim of this work is to establish certain two-parameter oscillator variations of the

classical theorem on harmonic polynomials, associated with noncanonical oscillator repre-

sentations of special linear Lie algebras and orthogonal Lie algebras, which are obtained

by swapping differential operators and multiplication operators in the canonical oscillator

representations induced from the natural representations. The Howe duality does not

hold on the whole polynomial algebras. But we find the condition when the homogeneous

solution spaces of the variated Laplace equation are irreducible modules of the concerned

algebras and the homogeneous subspaces are direct sums of the images of these solution

subspaces under the powers of the dual differential operator. We may call this a local

(sl(2,F), sl(n,F)) and (sl(2,F), o(n,F)) Howe duality, respectively. In particular, we ob-

tain explicit infinite-dimensional non-unitary modules of orthogonal Lie algebras that are

not of highest-weight type. As an application of our results on special linear Lie algebras,

we prove that the homogeneous subspaces in noncanonical oscillator representations of

symplectic Lie algebras are irreducible except some singular cases, in which the homoge-

neous subspaces are direct sums of exactly two explicitly given irreducible submodules.

Explicit bases of all the above irreducible modules in generic case are obtained.

Let G be a semisimple Lie algebra and let K be a maximal proper reductive Lie sub-

algebra of G. An infinite-dimensional irreducible G-module is said of (G,K)-type if it is

a direct sum of finite-dimensional irreducible K-submodules. When both parameters are

equal to the maximal allowed value, we obtain an infinite family of explicit irreducible

(G,K)-modules for orthogonal Lie algebras and symplectic Lie algebras. Since our rep-

resentations are not unitary, the concerned modules are infinite-dimensional and we are

dealing with pairs of dual invariant differential operators, traditional methods fail to solve

our problems. In fact, we have extensively used the method of solving flag partial dif-

ferential equations developed in [X] by the second author. Below we give a technical

introduction.

For convenience, we will use the notion i, i+ j = {i, i+ 1, i+ 2, ..., i+ j} for integers

i and j with i ≤ j. Denote by N the additive semigroup of nonnegative integers.

Let Er,s be the square matrix with 1 as its (r, s)-entry and 0 as the others. The compact

orthogonal Lie algebra o(n,R) =
∑

1≤r<s≤nR(Er,s − Es,r), whose representation on the

polynomial algebra A = R[x1, ..., xn] is determined by (Er,s − Es,r)|A = xr∂xs
− xs∂xr

,

which we call the canonical oscillator representation of o(n,R) (e.g., cf. [FSS]). Denote by

Ak the subspace of homogeneous polynomials in A with degree k. Recall that the Laplace

operator ∆ = ∂2x1
+ · · ·+∂2xn

and its corresponding invariant η = x21+x
2
2+ · · ·+x2n. When

n ≥ 3, it is well known that the subspace of harmonic polynomials

Hk = {f ∈ Ak | ∆(f) = 0} (1.1)

forms an irreducible o(n,R)-module and Ak = Hk ⊕ ηAk−2, which is equivalent to that

Ak =
⊕Jk/2K

i=1 ηiHk−2i is a direct sum of irreducible submodules. Since the space F∆ +

F[∆, η] + Fη forms an operator Lie algebra isomorphic to sl(2,R), the above conclusion

gives an (sl(2,R), o(n,R)) Howe duality.

Below all the vector spaces are assumed over a field F with characteristic 0. Moreover,

we always assume that n ≥ 2 is an integer. Let us reconsider the canonical oscillator



representation of sl(n,F):

Ei,j |A = xi∂j for i, j ∈ 1, n. (1.2)

Fix 1 ≤ n1 < n. Note

[∂xr
, xr] = 1 = [−xr, ∂xr

]. (1.3)

Changing operators ∂xr
7→ −xr and xr 7→ ∂xr

in (1.2) for r ∈ 1, n1, we obtain the following

noncanonical oscillator representation of sl(n,F) determined by:

Ei,j |A =







−xj∂xi
− δi,j if i, j ∈ 1, n1;

∂xi
∂xj

if i ∈ 1, n1, j ∈ n1 + 1, n;
−xixj if i ∈ n1 + 1, n, j ∈ 1, n1;
xi∂xj

if i, j ∈ n1 + 1, n.

(1.4)

For any k ∈ Z, we denote

A〈k〉 = Span {xα | α ∈ N
n;

n∑

r=n1+1

αr −

n1∑

i=1

αi = k}. (1.5)

It was presented by Howe in his work [Ho] that for m1, m2 ∈ N with m1 > 0, A〈−m1〉 is

an irreducible highest-weight sl(n,F)-submodule with highest weight m1λn1−1 − (m1 +

1)λn1
and A〈m2〉 is an irreducible highest-weight sl(n,F)-submodule with highest weight

−(m2 + 1)λn1
+m2(1− δn1,n−1)λn1+1.

Denote B = F[x1, ..., xn, y1, ..., yn]. Fix n1, n2 ∈ 1, n with n1 ≤ n2. Changing operators

∂xr
7→ −xr, xr 7→ ∂xr

for r ∈ 1, n1 and ∂ys 7→ −ys, ys 7→ ∂ys for s ∈ n2 + 1, n, we get

another noncanonical oscillator representation of sl(n,F) on B determined by

Ei,j|B = Ex
i,j − Ey

j,i for i, j ∈ 1, n (1.6)

with

Ex
i,j |B =







−xj∂xi
− δi,j if i, j ∈ 1, n1;

∂xi
∂xj

if i ∈ 1, n1, j ∈ n1 + 1, n;
−xixj if i ∈ n1 + 1, n, j ∈ 1, n1;
xi∂xj

if i, j ∈ n1 + 1, n

(1.7)

and

Ey
i,j|B =







yi∂yj if i, j ∈ 1, n2;
−yiyj if i ∈ 1, n2, j ∈ n2 + 1, n;
∂yi∂yj if i ∈ n2 + 1, n, j ∈ 1, n2;
−yj∂yi − δi,j if i, j ∈ n2 + 1, n.

(1.8)

The related variated Laplace operator becomes

D = −
n1∑

i=1

xi∂yi +
n2∑

r=n1+1

∂xr
∂yr −

n∑

s=n2+1

ys∂xs
(1.9)

and its dual

η =

n1∑

i=1

yi∂xi
+

n2∑

r=n1+1

xryr +

n∑

s=n2+1

xs∂ys . (1.10)

Set

B〈ℓ1,ℓ2〉 = Span{xαyβ | α, β ∈ N
n;

n∑

r=n1+1

αr −

n1∑

i=1

αi = ℓ1;

n2∑

i=1

βi −
n∑

r=n2+1

βr = ℓ2} (1.11)



for ℓ1, ℓ2 ∈ Z. Define

H〈ℓ1,ℓ2〉 = {f ∈ B〈ℓ1,ℓ2〉 | D(f) = 0}. (1.12)

The following is our first result:

Theorem 1. For any ℓ1, ℓ2 ∈ Z such that ℓ1 + ℓ2 ≤ n1 − n2 + 1 − δn1,n2
, H〈ℓ1,ℓ2〉 is

an irreducible highest-weight sl(n,F)-module and B〈ℓ1,ℓ2〉 =
⊕∞

m=0 η
m(H〈ℓ1−m,ℓ2−m〉) is a

decomposition of irreducible submodules. In particular, B〈ℓ1,ℓ2〉 = H〈ℓ1,ℓ2〉 ⊕ η(B〈ℓ1−1,ℓ2−1〉).

When n1 + 1 < n2 < n and ℓ1 + ℓ2 > n1 − n2 + 1, H〈ℓ1,ℓ2〉 is not irreducible and

contains nonzero elements in η(B〈ℓ1−1,ℓ2−1〉). Although the space FD+F[D, η] +Fη forms

an operator Lie algebra isomorphic to sl(2,R), we do not have an (sl(2,F), sl(n,F)) Howe

duality. We may call Theorem 1 an local (sl(2,F), sl(n,F)) Howe duality.

Consider the split

o(2n,F) =

n∑

i,j=1

F(Ei,j −En+j,n+i)+
∑

1≤i<j≤n

[F(Ei,n+j −Ej,n+i)+F(En+j,i−En+i,j)] (1.13)

and define a noncanonical oscillator representation of o(2n,F) on B by

(Ei,j − En+j,n+i)|B = Ex
i,j|B −Ey

j,i|B, (1.14)

Ei,n+j|B =







∂xi
∂yj if i ∈ 1, n1, j ∈ 1, n2,

−yj∂xi
if i ∈ 1, n1, j ∈ n2 + 1, n,

xi∂yj if i ∈ n1 + 1, n, j ∈ 1, n2,
−xiyj if i ∈ n1 + 1, n, j ∈ n2 + 1, n

(1.15)

and

En+i,j|B =







−xjyi if j ∈ 1, n1, i ∈ 1, n2,
−xj∂yi if j ∈ 1, n1, i ∈ n2 + 1, n,
yi∂xj

if j ∈ n1 + 1, n, i ∈ 1, n2,
∂xj

∂yi if j ∈ n1 + 1, n, i ∈ n2 + 1, n.

(1.16)

Set

B〈k〉 =
⊕

ℓ1,ℓ2∈Z;ℓ1+ℓ2=k

B〈ℓ1,ℓ2〉, H〈k〉 = {f ∈ B〈k〉 | D(f) = 0}. (1.17)

Below we always take K =
∑n

i,j=1 F(Ei,j −En+j,n+i). Our second results is:

Theorem 2. For any n1 − n2 + 1 − δn1,n2
≥ k ∈ Z, H〈k〉 is an irreducible o(2n,F)-

submodule and B〈k〉 =
⊕∞

i=0 η
i(H〈k−2i〉) is a decomposition of irreducible submodules. In

particular, B〈k〉 = H〈k〉 ⊕ η(B〈k−2〉). The module H〈k〉 under the assumption is of highest-

weight type only if n2 = n. When n1 = n2 = n, all the irreducible modules H〈k〉 with

0 ≥ k ∈ Z are of (G,K)-type.

We may view Theorem 2 as an local (sl(2,F), o(2n,F)) Howe duality.

Note the split

o(2n+ 1,F) = o(2n,F)⊕
n⊕

i=1

[F(E0,i − En+i,0) + F(E0,n+i −Ei,0)]. (1.18)



Let B′ = F[x0, x1, ..., xn, y1, ..., yn]. We define a noncanonical oscillator representation of

o(2n+ 1,F) on B′ by the differential operators in (1.14)-(1.16) and

E0,i|B′ =







−x0xi if i ∈ 1, n1,
x0∂xi

if i ∈ n1 + 1, n,
x0∂yi if i ∈ n+ 1, n+ n2,
−x0yi if i ∈ n+ n2 + 1, 2n

(1.19)

and

Ei,0|B′ =







∂x0
∂xi

if i ∈ 1, n1,
xi∂x0

if i ∈ n1 + 1, n,
yi∂x0

if i ∈ n + 1, n+ n2,
∂x0

∂yi if i ∈ n + n2 + 1, 2n.

(1.20)

Now the variated Laplace operator becomes

D′ = ∂2x0
− 2

n1∑

i=1

xi∂yi + 2

n2∑

r=n1+1

∂xr
∂yr − 2

n∑

s=n2+1

ys∂xs
(1.21)

and its dual operator

η′ = x20 + 2

n1∑

i=1

yi∂xi
+ 2

n2∑

r=n1+1

xryr + 2

n∑

s=n2+1

xs∂ys . (1.22)

Set

B′
〈k〉 =

∞∑

i=0

B〈k−i〉x
i
0, H′

〈k〉 = {f ∈ B′
〈k〉 | D

′(f) = 0}. (1.23)

The following is our third result.

Theorem 3. For any n1−n2+1− δn1,n2
≥ k ∈ Z, H′

〈k〉 is an irreducible o(2n+1,F)-

submodule and B′
〈k〉 =

⊕∞
i=0(η

′)i(H′
〈k−2i〉) is a decomposition of irreducible submodules. In

particular, B′
〈k〉 = H′

〈k〉 ⊕ η′(B′
〈k−2〉). The module H′

〈k〉 under the assumption is of highest-

weight type only if n2 = n. When n1 = n2 = n, all the irreducible modules H′
〈k〉 with

0 ≥ k ∈ Z are of (G,K)-type.

Again Theorem 2 can be viewed as an local (sl(2,F), o(2n+ 1,F)) Howe duality.

Define a noncanonical oscillator representation of sp(2n,F) on B by (1.14)-(1.16).

Using some results in the proof of Theorem 1, we prove:

Theorem 4. Let k ∈ Z. If n1 < n2 or k 6= 0, the subspace B〈k〉 (cf. (1.17)) is

an irreducible sp(2n,F)-submodule. When n1 = n2, the subspace B〈0〉 is a direct sum of

two irreducible sp(2n,F)-submodules. Moreover, each irreducible submodule is of highest-

weight module only if n2 = n. When n1 = n2 = n, all the irreducible submodules are of

(G,K)-type.

In addition, the explicit expressions for all the above irreducible modules are given.

In the case of highest-weight type, the highest-weight vector and its weight of the corre-

sponding irreducible modules are also presented. Since the representations with parame-

ters (n1, n2) are contragredient to those with parameters (n−n2, n−n1), the case n2 < n1

has virtually been handled.



In Section 2, we present some preparatory works, in particular, the method of solving

flag partial differential equations found in [X] by the second author. In Section 3, we

prove Theorem 1 when n1 < n2. Section 4 is devoted to the proof of Theorem 1 with

n1 = n2. In Sections 5, 6 and 7, we prove Theorems 2, 3 and 4, respectively.

2 Preparation

It is very often that Lie group theorists characterize certain irreducible modules as kernels

of a set of differential operators. But how to solve the corresponding systems of partial

differential equations is in general unknown. It was realized by the second author that

these equations are of “flag type” when the modules are of highest-weight type. A linear

transformation (operator) T on a vector space V is called locally nilpotent if for any v ∈ V ,

there exists a positive integer k such that T k(v) = 0. A partial differential equation of

flag type is the linear differential equation of the form:

(d1 + f1d2 + f2d3 + · · ·+ fn−1dn)(u) = 0, (2.1)

where d1, d2, ..., dn are certain commuting locally nilpotent differential operators on the

polynomial algebra F[x1, x2, ..., xn] and f1, ..., fn−1 are polynomials satisfying di(fj) = 0 if

i > j. Many variable-coefficient (generalized) Laplace equations, wave equations, Klein-

Gordon equations, Helmholtz equations are of this type. Solving such equations is also

important in finding invariant solutions of nonlinear partial differential equations (e.g., cf.

[I1, I2]). In representation theory, we are more interested in polynomial solutions of flag

partial differential equations. The second author [X] found an effective way of solving for

them. The following lemma is a slightly generalized form of Lemma 2.1 in [X].

Lemma 2.1 (Xu [X]). Let B be a commutative associative algebra and let A be a

free B-module generated by a filtrated subspace V =
⋃∞

r=0 Vr (i.e., Vr ⊂ Vr+1). Let T1 be

a linear operator on B ⊕A with a right inverse T−
1 such that

T1(B,A), T−
1 (B,A) ⊂ (B,A), T1(η1η2) = T1(η1)η2, T−

1 (η1η2) = T−
1 (η1)η2 (2.2)

for η1 ∈ B, η2 ∈ V , and let T2 be a linear operator on A such that

T2(Vr+1) ⊂ BVr, T2(fζ) = fT2(ζ) for r ∈ N, f ∈ B, ζ ∈ A. (2.3)

Then we have

{g ∈ A | (T1 + T2)(g) = 0}

= Span{

∞∑

i=0

(−T−
1 T2)

i(hg) | g ∈ V, h ∈ B; T1(h) = 0}. (2.4)

Set

ǫi = (0, ..., 0,
i

1, 0, ..., 0) ∈ N
n. (2.5)

For each i ∈ 1, n, we define the linear operator
∫

(xi)
on A by:

∫

(xi)

(xα) =
xα+ǫi

αi + 1
for α ∈ N

n. (2.6)



Furthermore, we let

∫ (0)

(xi)

= 1,

∫ (m)

(xi)

=

m
︷ ︸︸ ︷∫

(xi)

· · ·

∫

(xi)

for 0 < m ∈ Z (2.7)

and denote

∂α = ∂α1

x1
∂α2

x2
· · ·∂αn

xn
,

∫ (α)

=

∫ (α1)

(x1)

∫ (α2)

(x2)

· · ·

∫ (αn)

(xn)

for α ∈ N
n. (2.8)

Obviously,
∫ (α)

is a right inverse of ∂α for α ∈ N n.We remark that
∫ (α)

∂α 6= 1 if α 6= 0 due

to ∂α(1) = 0. In this paper, our T1’s are of the type ∂α and the right inverse T−
1 =

∫ (α)
.

Let m1, m2, ..., mn be positive integers. Taking T1 = ∂m1

x1
, T2 = ∂m2

x2
+ · · ·+ ∂mn

xn
and

T−
1 =

∫ (m1)

(x1)
, we find that the set

{
∞∑

k2,...,kn=0

(−1)k2+···+kn

(
k2 + · · ·+ kk
k2, ..., kn

)∫ ((k2+···+kn)m1)

(x1)

(xℓ11 )

×∂k2m2

x2
(xℓ22 ) · · ·∂

knmn

xn
(xℓnn ) | ℓ1 ∈ 0, m1 − 1, ℓ2, ..., ℓn ∈ N} (2.9)

forms a basis of the space of polynomial solutions for the equation

(∂m1

x1
+ ∂m2

x2
+ · · ·+ ∂mn

xn
)(u) = 0. (2.10)

When all mi = 2, we get a basis of the space of harmonic polynomials.

Cao [C] used Lemma 2.1 to prove that the subspaces of homogeneous polynomial

vector solutions of the n-dimensional Navier equations in elasticity are exactly direct

sums of three explicitly given irreducible submodules when n 6= 4 and direct sums of

four explicitly given irreducible submodules if n = 4 of the corresponding orthogonal Lie

group (algebra), and the whole polynomial vector space is also a free module over the

invariant polynomials generated these solutions. The result can be viewed as a vector

generalization of the classical theorem on harmonic polynomials. Moreover, Cao solved

the initial value problem for the Navier equations based on the ideas in [X].

The idea of solving flag partial differential equation in [X] leads the second author to

find a family of special functions functions

Yr(y1, ..., ym) =
∞∑

i1,...,im=0

(
i1 + · · ·+ im
i1, ..., im

)
yi11 y

i2
2 · · · yimm

(r +
∑m

s=1 sis)!
, (2.11)

by which we can solve the initial value problem of the equation:

(∂mx1
−

m∑

r=1

∂m−i
x1

fi(∂x2
, ..., ∂xn

))(u) = 0, (2.12)

where fi(∂x2
, ..., ∂xn

) ∈ R[∂x2
, ..., ∂xn

].

Let A = F[x1, ..., xn] and let gl(n,F) act on A by (1.4). With the notion in (1.5),

A =
⊕

k∈Z A〈k〉 is a Z graded algebra and each homogeneous subspace A〈k〉 is infinite-

dimensional. Set

♭ =
n∑

r=n1+1

xr∂xr
−

n1∑

i=1

xi∂xi
. (2.13)



Then

A〈k〉 = {f ∈ A | ♭(f) = kf}. (2.14)

Moreover, we have

♭Ei,j = Ej,i♭ on A for i, j ∈ 1, n. (2.15)

Thus A〈k〉 forms a G-module for any subalgebra G of gl(n,F).

For α ∈ N n, we denote α! =
∏n

i=1 αi! and define a symmetric bilinear form (·|·) on A

by

(xα|xβ) = δα,β(−1)
∑n1

i=1
αiα! for α, β ∈ N

n. (2.16)

Then we have:

Lemma 2.2. For any A ∈ gl(n,F) and f, g ∈ A, we have (A(f)|g) = (f |At(g)), where

At denote the transpose of the matrix A.

Proof. Let α, β ∈ N n. For i, j ∈ 1, n1,

(Ei,j(x
α)|xβ) = −αi(x

α+ǫj−ǫi|xβ)− δi,j(x
α|xβ) (2.17)

and

(xα|Ej,i(x
β)) = −βj(x

α|xβ+ǫi−ǫj)− δi,j(x
α|xβ) (2.18)

by (1.4). Note

αi(x
α+ǫj−ǫi|xβ) = δα+ǫj−ǫi,β(−1)

∑n1
i=1

αi(αj + 1)α!

= βjδα,β+ǫi−ǫj(−1)
∑n1

i=1
αiα! = βj(x

α|xβ+ǫi−ǫj) (2.19)

by (2.16). Hence

(Ei,j(x
α)|xβ) = (xα|Ej,i(x

β)). (2.20)

If i, j ∈ n1 + 1, n, then (2.19) holds and so does (2.20).

Consider i ∈ 1, n1 and j ∈ n1 + 1, n.

(Ei,j(x
α)|xβ) = αiαj(x

α−ǫi−ǫj |xβ) = −δα−ǫi−ǫj ,β(−1)
∑n1

i=1
αiα! (2.21)

and

(xα|Ej,i(x
β)) = −(xα|xβ+ǫi+ǫj) = −δα,β+ǫi+ǫj(−1)

∑n1
i=1

αiα! (2.22)

by (1.4) and (2.16). So (2.20) holds. Therefore, the lemma holds by the symmetry of the

form. 2

Let G be simple Lie subalgebra of gl(n,F) such that At ∈ G if A ∈ G. Let H be a

Cartan subalgebra of G and assume that A forms a weighted G-module with respect to

H . Fix the positivity of roots and denote by G+ the sum of positive root subspaces. A

singular vector is a weight vector annihilated by positive root vectors.

From now on, we count the number of singular vectors up to a scalar multiple. More-

over, an element g ∈ A is called nilpotent with respect to G+ if there exist a positive integer

m such that

ξ1 · · · ξm(g) = 0 for any ξ1, ..., ξm ∈ G+. (2.23)



A subspace V of A is called nilpotent with respect to G+ if all its elements are nilpotent

with respect to G+. If the elements of G+|A are locally nilpotent and G+(Ai) ⊂
∑i

r=0Ar

for any i ∈ N, then any element of A is nilpotent with respect to G+ by Engel’s Theorem.

Lemma 2.3. If a submodule N of A is nilpotent with respect to G+, N contains only

one singular vector v and (v|v) 6= 0, then N is an irreducible summand of A.

Proof. Under the nilpotent assumption, any nonzero submodule of N contains a sin-

gular vector. In particular, N1 = U(G)(v) is an irreducible submodule by the uniqueness

of singular vector. Set

N̄⊥
1 = {u ∈ N |(u|w) = 0 | w ∈ N1}. (2.24)

and

R = {u ∈ N |(u|w) = 0 | w ∈ N}. (2.25)

Note that N̄⊥
1 and R are submodules of N by Lemma 2.2. If R 6= 0, it should contain

a nonzero singular vector, which is impossible according to the assumption (v|v) 6= 0.

Therefore R = {0}, and N = N1

⊕
N̄⊥

1 . But N̄⊥
1 = 0 by the same argument, and so

N = N1. The fact R = {0} implies that

A = N ⊕ {f ∈ A | (f |g) = 0 for g ∈ N} (2.26)

is a direct sum of G-submodules. 2

Let Q = F(x1, ..., xn, y1, ..., yn) be the space of rational functions in x1, ..., xn, y1, ..., yn.

Define a representation of sl(n,F) on Q via

Ei,j |Q = xi∂xj
− yj∂yi for i, j ∈ 1, n. (2.27)

Set ζ =
∑n

i=1 xiyi. Then

ξ(ζ) = 0 for ξ ∈ sl(n,F). (2.28)

Take

H =

n−1∑

i=1

F(Ei,i − Ei+1,i+1) (2.29)

as a Cartan subalgebra of sl(n,F) and the subspace spanned by positive root vectors:

sl(n,F)+ =
∑

1≤i<j≤

FEi,j. (2.30)

The following lemma was proved in [X], which will be used in next section.

Lemma 4. Any singular function in Q is a rational function in x1, yn, ζ .

3 The sl(n,F)-Variation I: n1 < n2

Fix n1, n2 ∈ 1, n such that n1 ≤ n2. Recall that Q is the space of rational functions in

x1, ..., xn, y1, ..., yn. Define a representation of sl(n,F) on Q determined by

Ei,j|Q = Ex
i,j − Ey

j,i for i, j ∈ 1, n (3.1)



with

Ex
i,j|Q =







−xj∂xi
− δi,j if i, j ∈ 1, n1;

∂xi
∂xj

if i ∈ 1, n1, j ∈ n1 + 1, n;
−xixj if i ∈ n1 + 1, n, j ∈ 1, n1;
xi∂xj

if i, j ∈ n1 + 1, n

(3.2)

and

Ey
i,j|Q =







yi∂yj if i, j ∈ 1, n2;
−yiyj if i ∈ 1, n2, j ∈ n2 + 1, n;
∂yi∂yj if i ∈ n2 + 1, n, j ∈ 1, n2;
−yj∂yi − δi,j if i, j ∈ n2 + 1, n.

(3.3)

Recall ♭ in (2.13) and define

♭′ =

n2∑

i=1

yi∂yi −
n∑

r=n2+1

yr∂yr. (3.4)

Moreover, the deformed Laplace operator D in (1.9) and its dual η in (1.10). Then

TEi,j |Q = Ei,j |QT for T = ♭, ♭′,D, η; i, j ∈ 1, n. (3.5)

In addition,

[♭,D] = [♭′,D] = −D, [♭, η] = [♭′, η] = η. (3.6)

By (3.1)-(3.3), we find

Ei,r|Q = −xr∂xi
− yr∂yi for 1 ≤ i < r ≤ n1, (3.7)

Ei,n1+s|Q = ∂xi
∂xn1+s

− yn1+s∂yi for i ∈ 1, n1, s ∈ 1, n2 − n1, (3.8)

Er,s|Q = xr∂xs
− ys∂yr for n1 < r < s ≤ n2, (3.9)

En2,n2+1 = xn2
∂xn2+1

− ∂yn2
∂yn2+1

, (3.10)

Ei,r|Q = xi∂xr
+ yi∂yr for n2 + 1 ≤ i < r ≤ n. (3.11)

The subalgebra sl(n,F)+ in (2.30) is generated by the above Ei,j .

Denote

ζ1 = xn1−1yn1
− xn1

yn1−1, ζ =

n2∑

r=n1+1

xryr, ζ2 = xn2+1yn2+2 − xn2+2yn2+1. (3.12)

We will process according to three cases.

Case 1. n1 + 1 < n2

Assume n1 + 1 < n2 < n. Suppose that f ∈ Q is a singular vector. By Lemma 2.4, f

can be written as a rational function in

{xi, yr, ζ1, ζ, ζ2 | n2 + 2 6= i ∈ 1, n1 + 1
⋃

n2 + 1, n, n1 − 1 6= r ∈ 1, n1

⋃

n2, n}. (3.13)

Note

En1−1,n1
(f) = −xn1

∂xn1−1
(f) = 0 (3.14)

by (3.7) and

En2+1,n2+2(f) = yn2+1∂yn2+2
(f) = 0 (3.15)



by (3.11). So f is independent of xn1−1 and yn2+2. For i ∈ 1, n1 − 2, we have

Ei,n1−1(f) = −xn1−1∂xi
(f)− yn1−1∂yi(f)

= −xn1−1(∂xi
(f) + x−1

n1
yn1

∂yi(f)) + x−1
n1
ζ1∂yi(f) = 0 (3.16)

by (3.7). Since both ∂xi
(f) + x−1

n1
yn1

∂yi(f) and x
−1
n1
ζ1∂yi(f) are independent of xn1−1, we

have ∂yi(f) = 0, which implies ∂xi
(f)=0 by (3.16). Thus f is independent of {xi, yi |

i ∈ 1, n1 − 1. Similarly, we can prove that f is independent of {xi, yi | i ∈ n2 + 1, n.

Therefore, f only depends on

{xn1
, xn1+1, xn2+1, yn1

, yn2
, yn2+1, ζ1, ζ, ζ2}. (3.17)

According to (3.8) and (3.12), En1,n1+1|Q = ∂xn1
∂xn1+1

− yn1+1∂yn1
and

En1,n1+1(f) = fxn1
xn1+1

+ yn1+1(fxn1
ζ − yn1−1fζ1ζ − fyn1

− xn1−1fζ1) = 0. (3.18)

Applying En1+1,n2
|Q = xn1+1∂xn2

− yn2
∂yn1+1

to the above equation, we get

−fxn1
ζ + yn1−1fζ1ζ + fyn1

+ xn1−1fζ1 = 0 (3.19)

by (3.9). According to (3.12),

xn1−1 = y−1
n1
ζ1 + xn1

y−1
n1
yn1−1. (3.20)

Substituting it into (3.19), we get

yn1−1(fζ1ζ + y−1
n1
xn1

fζ1) + fyn1
+ y−1

n1
ζ1fζ1 − fxn1

ζ = 0. (3.21)

Since f is independent of yn1−1, we have

fζ1ζ + y−1
n1
xn1

fζ1 = 0. (3.22)

Thus

fζ1 = e−y−1
n1

xn1
ζg (3.23)

for some function g in the variables of (3.17) except ζ , i.e., gζ = 0. But f is a rational

function in the variables of (3.17) and so is fζ1. Hence (3.23) forces fζ1 = 0, that is, f

is independent of ζ1. Similarly, we can prove that f is independent of ζ2. Now f only

depends on

{xn1
, xn1+1, xn2+1, yn1

, yn2
, yn2+1, ζ}. (3.24)

Since ζ =
∑n2

i=n1+1 xiyi, f ∈ B = F[x1, ..., xn, y1, ..., yn] if and only if f is a polynomial in

the variables (3.24). Now (3.18) and (3.19) are equivalent to

fxn1
xn1+1

= 0, fxn1
ζ − fyn1

= 0. (3.25)

Similarly, we can prove

fyn2
yn2+1

= 0, fyn2+1ζ − fxn2+1
= 0. (3.26)

Set

φ(m1, m2) =

∞∑

i=0

yin1
(∂xn1

∂ζ)
i(xm1

n1
ζm2)

i!
for m1, m2 ∈ N. (3.27)



By Lemma 2.1 with T1 = ∂yn1
, T−

1 =
∫

(yn1
)
(cf. (2.6)) and T2 = −∂xn1

∂ζ , the polynomial

solution space of (3.25) is

[F[xn1+1, ζ ] +

∞∑

m1=1

∞∑

m2=0

Fφ(m1, m2)][F[xn2+1, yn2
, yn2+1]]. (3.28)

Denote

ψ(m1, m2) =
∞∑

i=0

xin2+1(∂yn2+1
∂ζ)

i(ym1

n2+1ζ
m2)

i!
for m1, m2 ∈ N, (3.29)

φ(m1, m2, m3) =
∞∑

r=0

xrn2+1(∂yn2+1
∂ζ)

r(φ(m1, m2)y
m3

n2+1)

r!

=

∞∑

i,r=0

yini
xrn2+1∂

i
xn1
∂ryn2+1

∂i+r
ζ (xm1

n1
ζm2ym3

n2+1)

i!r!
. (3.30)

Solving (3.26) by Lemma 2.1 with T1 = ∂xn2+1
T−
1 =

∫

(xn2+1)
(cf. (2.6)) and T2 =

−∂yn2+1
∂ζ , we find the polynomial solution space of the system (3.25) and (3.26) is

F[xn1+1, yn2
, ζ ] +

∞∑

m1,m3=1

∞∑

m2=0

Fφ(m1, m2, m3)

+
∞∑

m1=1

∞∑

m2=0

(F[yn2
]φ(m1, m2) + F[xn1+1]ψ(m1, m2)). (3.31)

According to (1.10),

xm1

n1+1y
m2

n2
ζm3 = ηm3(xm1

n1+1y
m2

n2
), (3.32)

ηm2(xm1

n1
ym3

n2
) = (ζ + yn1

∂xn1
)m2(xm1

n1
ym3

n2
) = φ(m1, m2)y

m3

n2
, (3.33)

ηm2(ym1

n2+1x
m3

n1+1) = (ζ + xn2+1∂yn2+1
)m2(ym1

n2+1x
m3

n1+1) = ψ(m1, m2)x
m3

n1+1, (3.34)

ηm2(xm1

n1
ym3

n2+1) = (ζ + yn1
∂xn1

+ xn2+1∂yn2+1
)m2(xm1

n1
ym3

n2+1) = φ(m1, m2, m3). (3.35)

It can be verified that {ηm1(xm2

i ym3

j ) | m1, m2, m3 ∈ N; i = n1, n1 + 1; j = n2, n2 + 1} are

singular vectors. By (3.31)-(3.35), the nonzero vectors in

{F[η](xm1

i ym2

j ) | m1, m2 ∈ N; i = n1, n1 + 1; j = n2, n2 + 1} (3.36)

are all the singular vectors of sl(n,F) in B = F[x1, ..., xn1
, y1, ..., yn2

].

Similarly, when n2 = n and n1 ≤ n− 2, the nonzero vectors in

{F[η](xm1

i ym2

n ) | m1, m2 ∈ N; i = n1, n1 + 1} (3.37)

are all the singular vectors of sl(n,F) in B.

Denote

H = {f ∈ B | D(f) = 0}. (3.38)

By (3.5), H forms an sl(n,F)-submodule. Recall B〈ℓ1,ℓ2〉 defined in (1.11). Then

B〈ℓ1,ℓ2〉 = {f ∈ B | ♭(f) = ℓ1f ; ♭
′(f) = ℓ2f} (3.39)



by (2.13) and (3.4). Moreover, B =
⊕

ℓ1,ℓ2∈Z
B〈ℓ1,ℓ2〉 becomes a Z2-graded algebra. Ac-

cording to (3.5), B〈ℓ1,ℓ2〉 forms an sl(n,F)-submodule, and so does

H〈ℓ1,ℓ2〉 = B〈ℓ1,ℓ2〉

⋂

H. (3.40)

Next (1.9) and (1.10) imply

[D, η] = n2 − n1 + ♭+ ♭′, D(xm1

i ym2

j ) = 0 (3.41)

for m1, m2 ∈ N, i = n1, n1 + 1 and j = n2, n2 + 1. Thus

xm1

n1+1y
m2

n2
∈ H〈m1,m2〉, xm1

n1+1y
m2

n2+1 ∈ H〈m1,−m2〉, (3.42)

xm1

n1
ym2

n2
∈ H〈−m1,m2〉, xm1

n1
ym2

n2+1 ∈ H〈−m1,−m2〉. (3.43)

For any g ∈ H〈ℓ1,ℓ2〉and 0 < m ∈ N, we have ηm(g) ∈ Bℓ1+m,ℓ2+m and

D(ηm(g)) = m(n2 − n1 + ℓ1 + ℓ2 +m− 1)ηm−1(g). (3.44)

Thus

D(ηm(g)) = 0 if and only if ℓ1 + ℓ2 ≤ n1 − n2 and m = n1 − n2 − ℓ1 − ℓ2 + 1. (3.45)

If so,

ηm(g) ∈ Hn1−n2−ℓ2+1,n1−n2−ℓ1+1. (3.46)

Note

(n1−n2−ℓ2+1)+(n1−n2−ℓ1+1) = n1−n2+2+(n1−n2−ℓ1−ℓ2) ≥ n1−n2+2. (3.47)

Let f〈ℓ1,ℓ2〉 ∈ H〈ℓ1,ℓ2〉 be a singular vector in (3.42) and (3.43). Then the singular

vectors in H are nonzero weight vectors in

Span{f〈ℓ1,ℓ2〉, η
n1−n2+1−r1−r2(f〈r1,r2〉) | ℓ1, ℓ2, r1, r2 ∈ Z; r1 + r2 ≤ n1 − n2} (3.48)

by (3.36), where

ηn1−n2+1−r1−r2(f〈r1,r2〉) ∈ H〈n1−n2+1−r2,n1−n2+1−r1〉. (3.49)

Thus when n1 + 1 < n2 < n, we have

H〈ℓ1,ℓ2〉 has a unique singular vector if ℓ1 + ℓ2 ≤ n1 − n2 + 1 (3.50)

and

H〈ℓ1,ℓ2〉 has exactly two singular vectors if ℓ1 + ℓ2 > n1 − n2 + 1. (3.51)

In the case n1 + 1 < n2 = n, B〈ℓ1,ℓ2〉 = 0 if ℓ2 < 0, and for ℓ1 ∈ Z, ℓ2 ∈ N,

H〈ℓ1,ℓ2〉 has a unique singular vector if ℓ1 ≥ n1 − n+ 2 or ℓ1 + ℓ2 ≤ n1 − n + 1. (3.52)

H〈ℓ1,ℓ2+1〉 has exactly two singular vector if and n1−n+1−ℓ2 ≤ ℓ1 ≤ n1−n+1. (3.53)

Observe that the symmetric bilinear form (·|·) on B is determined by

(xαyβ|xα1yβ1) = δα,α1
δβ,β1

(−1)
∑n1

i=1
αi+

∑n
r=n2+1

βrα!β! for α, β, α1, β1 ∈ N
n. (3.54)



When n1 + 1 < n2 < n, Lemma 2.3 tells us that H〈ℓ1,ℓ2〉 for ℓ1, ℓ2 ∈ Z is an irreducible

summand of Bℓ1,ℓ2 if and only if ℓ1 + ℓ2 ≤ n1 − n2 + 1. It can be verified that

(D(xαyβ)|xα1yβ1) = (xαyβ|η(xα1yβ1)). (3.55)

Recall that f〈ℓ1,ℓ2〉 ∈ H〈ℓ1,ℓ2〉 is a singular vector in (3.42) and (3.43). Thus

(f〈ℓ1,ℓ2〉|f〈ℓ1,ℓ2〉) 6= 0 (3.56)

and

(f〈ℓ1,ℓ2〉|f〈ℓ′1,ℓ′2〉) = 0 if (ℓ1, ℓ2) 6= (ℓ′1, ℓ
′
2). (3.57)

Recall sl(n,F)+ in (2.30) and let sl(n,F)− =
∑

1≤i<j≤n FEj,i be the subalgebra spanned by

the negative root vectors. Moreover, (sl(n,F)−)
t = sl(n,F)+. According to (3.7)-(3.11),

B is nilpotent with respect to sl(n,F)+. Thus all H〈ℓ1,ℓ2〉 with ℓ1 + ℓ2 ≤ n1 − n2 + 1 are

irreducible sl(n,F)-submodules by Lemma 2.3 and (3.50), and so are ηm(H〈ℓ1,ℓ2〉) for any

m ∈ N by (3.5).

We extend the transpose to an algebraic anti-isomorphism on U(sl(n,F)) by 1t = 1

and

(A1A2 · · ·Ar)
t = At

r · · ·A
t
2A

t
1 for Ai ∈ sl(n,F). (3.58)

By the irreducibility,

H〈ℓ1,ℓ2〉 = U(sl(n,F)−)(f〈ℓ1,ℓ2〉) if ℓ1 + ℓ2 ≤ n1 − n2 + 1. (3.59)

Let ℓ1, ℓ2, ℓ
′
1, ℓ

′
2 ∈ Z such that ℓ1+ ℓ2, ℓ

′
1+ ℓ

′
2 ≤ n1−n2+1 and (ℓ1, ℓ2) 6= (ℓ′1, ℓ

′
2). Then

(w(f〈ℓ1,ℓ2〉)|f〈ℓ′1,ℓ′2〉) = (f〈ℓ1,ℓ2〉|w
t(f〈ℓ′

1
,ℓ′
2
〉)) = 0 for w ∈ U(sl(n,F)−)sl(n,F)− (3.60)

by Lemma 2.2. Since f〈ℓ1,ℓ2〉 is a weight vector, we have U(H)(f〈ℓ1,ℓ2〉) ⊂ Ff〈ℓ1,ℓ2〉 (cf.

(2.29)). Thus for any w1, w2 ∈ U(sl(n,F)−),

(w1(f〈ℓ1,ℓ2〉)|w1(f〈ℓ′
1
,ℓ′
2
〉)) = (wt

2w1(f〈ℓ1,ℓ2〉)|f〈ℓ′1,ℓ′2〉) = c(f〈ℓ1,ℓ2〉)|f〈ℓ′1,ℓ′2〉) (3.61)

for some c ∈ F by (3.60). Hence (3.59) implies

(H〈ℓ1,ℓ2〉|H〈ℓ′
1
,ℓ′
2
〉) = {0}. (3.62)

For f ∈ H〈ℓ1,ℓ2〉, g ∈ B and m,m1 ∈ N such that m ≤ m1, we find

(ηm(f)|ηm1(g)) = (Dm1ηm(f)|g) = δm1,mm![

m−1∏

r=0

(ℓ1 + ℓ2 + n2 − n1 + r)](f |g) (3.63)

by (3.44) and (3.55). In particular, the singular vectors ηn1−n2+1−r1−r2(f〈r1,r2〉) for r1, r2 ∈

Z with r1 + r2 ≤ n1 − n2 are isotropic polynomials. Moreover, for m,m1 ∈ N and

ℓ1, ℓ2, ℓ
′
1, ℓ

′
2 ∈ Z such that ℓ1 + ℓ2, ℓ

′
1 + ℓ′2 ≤ n1 − n2 + 1,

(ηm(H〈ℓ1,ℓ2〉)|η
m1(H〈ℓ′

1
,ℓ′
2
〉)) = {0} if (m, ℓ1, ℓ1) 6= (m1, ℓ

′
1, ℓ

′
1) (3.64)

by (3.62) and (3.63). On the other hand,

(ηm(f〈ℓ1,ℓ2〉)|η
m(f〈ℓ1,ℓ2〉)) = m![

m−1∏

r=0

(ℓ1 + ℓ2 + n2 − n1 + r)](f〈ℓ1,ℓ2〉|f〈ℓ1,ℓ2〉) 6= 0 (3.65)



by (3.63). Since the radical of (·|·) on ηm(H〈ℓ1,ℓ2〉) is a proper submodule by Lemma 2.2,

the irreducibility of ηm(H〈ℓ1,ℓ2〉) implies that

(·|·) is nondegenerate rewtricted to ηm(H〈ℓ1,ℓ2〉). (3.66)

Fix ℓ1, ℓ2 ∈ Z with ℓ1 + ℓ2 ≤ n1 − n2 + 1. Set

B̂〈ℓ1,ℓ2〉 =
∞∑

m=0

ηm(H〈ℓ1−m,ℓ2−m〉). (3.67)

By (3.64) and (3.66), the above sum is a direct sum and (·|·) is nondegenerate restricted

to B̂〈ℓ1,ℓ2〉. Hence

B〈ℓ1,ℓ2〉 = B̂〈ℓ1,ℓ2〉 ⊕ (B̂⊥
〈ℓ1,ℓ2〉

⋂

B〈ℓ1,ℓ2〉). (3.68)

If B̂⊥
〈ℓ1,ℓ2〉

⋂
B〈ℓ1,ℓ2〉 6= {0}, then it contains a singular vector, which must be of the

form ηm1(f〈ℓ1−m1,ℓ2−m1〉) for some m1 ∈ N by (3.36). This contradicts (3.65). Thus

B̂⊥
〈ℓ1,ℓ2〉

⋂
B〈ℓ1,ℓ2〉 = {0}, equivalently

B〈ℓ1,ℓ2〉 =
∞⊕

m=0

ηm(H〈ℓ1−m,ℓ2−m〉) (3.69)

is completely reducible. Applying (3.69) to B〈ℓ1−1,ℓ2−1〉, we have

Bℓ1,ℓ2 = H〈ℓ1,ℓ2〉 ⊕ η(B〈ℓ1−1,ℓ2−1〉) if ℓ1 + ℓ2 ≤ n1 − n2 + 1. (3.70)

Assume n1+1 < n2 = n. For ℓ1 ∈ Z and ℓ2 ∈ N such that ℓ1 ≥ n1−n+2 or ℓ1+ ℓ2 ≤

n1−n+1, all Hℓ1,ℓ2 are irreducible submodules of Bℓ1,ℓ2 by Lemma 2.3, (3.52) and (3.54).

When ℓ1 + ℓ2 ≤ n1 − n2 + 1, (3.64), (3.66), (3.69) and (3.70) also hold by the same

arguments as in the above. In summary, we have:

Theorem 3.1. Suppose n1+1 < n2. For ℓ1, ℓ2 ∈ Z with ℓ1+ ℓ2 ≤ n1−n2+1 , H〈ℓ1,ℓ2〉

is an irreducible highest-weight sl(n,F)-module and

B〈ℓ1,ℓ2〉 =
∞⊕

m=0

ηm(H〈ℓ1−m,ℓ2−m〉) (3.71)

is an orthogonal decomposition of irreducible submodules. In particular, B〈ℓ1,ℓ2〉 = H〈ℓ1,ℓ2〉⊕

η(B〈ℓ1−1,ℓ2−1〉). The symmetric bilinear form (·|·) restricted to ηm(H〈ℓ1−m,ℓ2−m〉) is non-

dengerate. If n2 < n, all H〈ℓ1,ℓ2〉 for ℓ1, ℓ2 ∈ Z with ℓ1 + ℓ2 > n1 − n2 +1 have exactly two

singular vectors.

Assume n2 = n. Then B〈ℓ,0〉 = H〈ℓ,0〉 with ℓ ∈ Z are irreducible highest-weight sl(n,F)-

modules. All H〈ℓ1,ℓ2〉 for ℓ1 ∈ Z and ℓ2 ∈ N such that ℓ1 ≥ n1 − n + 2 are also irreducible

highest-weight sl(n,F)-modules. Moreover, for ℓ2 ∈ 1 + N and n1 − n2 + 1 + ℓ2 ≤ ℓ1 ∈ Z,

the orthogonal decompositions in (3.71) also holds. Furthermore, H〈ℓ1,ℓ2+1〉 for ℓ1 ∈ Z and

ℓ2 ∈ N such that n1 − n + 1− ℓ2 ≤ ℓ1 ≤ n1 − n+ 1 have exactly two singular vectors.

Indeed, we have more detailed information. Suppose n1+1 < n2 < n. For m1, m2 ∈ N

with m1 +m2 ≥ n2 − n1 − 1, H〈−m1,−m2〉 has a highest-weight vector xm1

n1
ym2

n2+1 of weight

m1λn1−1 − (m1 + 1)λn1
− (m2 + 1)λn2

+ m2(1 − δn2,n−1)λn2+1. When m1, m2 ∈ N with



m2 − m1 ≥ n2 − n1 − 1, H〈m1,−m2〉 has a highest-weight vector xm1

n1+1y
m2

n2+1 of weight

−(m1 + 1)λn1
+ m1λn1+1 − (m2 + 1)λn2

+ m2(1 − δn2,n−1)λn2+1. If m1, m2 ∈ N with

m1 − m2 ≥ n2 − n1 − 1, H〈−m1,m2〉 is has a highest-weight vector xm1

n1
ym2

n2
of weight

m1λn1−1 − (m1 + 1)λn1
+m2λn2−1 − (m2 + 1)λn2

.

Assume n1 + 1 < n2 = n. When m1, m2 ∈ N, H〈m1,m2〉 has a highest-weight vector

xm1

n1+1y
m2

n of weight −(m1 + 1)λn1
+ m1λn1+1 + m2λn−1. If m1, m2 ∈ N with m1 ≤ n −

n1 − 2 or m2 −m1 ≤ n1 − n+ 1, H〈−m1,m2〉 has a highest-weight vector xm1

n1
ym2

n of weight

m1λn1−1 − (m1 + 1)λn1
+m2λn−1.

By Lemma 2.1 with T1 = ∂xn1+1
∂yn1+1

, T−
1 =

∫

(xn1+1)

∫

(yn1+1)
and T2 = D−∂xn1

+1∂yn1
+1,

H〈ℓ1,ℓ2〉 has a basis

{
∞∑

i=0

(xn1+1yn1+1)
i(D − ∂xn1

+1∂yn1
+1)

i(xαyβ)
∏i

r=1(αn1+1 + r)(βn1+1 + r)
| α, β ∈ N

n;

αn1+1βn1+1 = 0;
n∑

r=n1+1

αr −
n1∑

i=1

αi = ℓ1;
n2∑

i=1

βi −
n∑

r=n2+1

βr = ℓ2
}
. (3.72)

Case 2. n1 + 1 = n2

In this case, ζ = xn1+1yn1+1. First we consider the subcase n2 < n. Suppose that

f ∈ Q is a singular vector. According to the arguments in (3.13)-(3.17), f is a rational

function in

{xn1
, xn1+1, xn1+2, yn1

, yn1+2, ζ, ζ1, ζ2}. (3.73)

Moreover, (3.18) holds. Substituting (3.20) and yn1+1 = x−1
n1+1ζ into (3.18), we still get

(3.22), which implies fζ1 = 0. Symmetrically, fζ2 = 0. Hence we can rewrite f as a

rational function in

{xn1
, xn1+1, xn1+2, yn1

, yn1+1, yn1+2}. (3.74)

Now f is a singular vector if and only if it is a weight vector satisfying the following

system of differential equations

(∂xn1
∂xn1+1

− yn1+1∂yn1
)(f) = 0, (3.75)

(xn1+1∂xn1+2
− ∂yn1+1

∂yn1+2
)(f) = 0 (3.76)

by (3.8) and (3.10) with n2 = n1 + 1. Note

En1,n1+2|Q = [En1,n1+1|Q, En1+1,n1+2|Q] = ∂xn1
∂xn1+2

− ∂yn1
∂yn1+2

(3.77)

by (3.8) and (3.10) with n2 = n1 + 1. So

(∂xn1
∂xn1+2

− ∂yn1
∂yn1+2

)(f) = 0. (3.78)

For our purpose of representation, we only consider f is a polynomial in {xi, yi | i =

n1, n1 + 1, n1 + 2}. Set

φm1,m2,m3
= [

m2∏

s=1

(m1 + s)]
∞∑

i=0

xm1+i
n1

xin1+2(∂yn1
∂yn1+2

)i(ym2

n1
ym3

n1+2)

i!
∏i

r=1(m1 + r)

= (yn1
∂xn1

+ xn1+2∂yn1+2
)m2(xm1+m2

n1
ym3

n1+2) (3.79)



and

ψm1,m2,m3
=

(m1 +m2)!
∏m1

s=1(m3 + s)

m1!

∞∑

i=0

xin1
xm1+i
n1+2 (∂yn1

∂yn1+2
)i(ym2

n1
ym3

n1+2)

i!
∏i

r=1(m1 + r)

=

m2∑

i=0

(
m2

i

)
(m1 +m2)!x

i
n1
xm1+i
n1+2y

m2−i
n1

∂m1+i
yn1+2

(ym1+m3

n1+2 )

(m1 + i)!

=

m2∑

i=0

(
m2

m2 − i

)
(m1 +m2)!x

i
n1
ym2−i
n1

(xn1+2∂yn1+2)
m1+i(ym1+m3

n1+2 )

(m1 + i)!

=

m2∑

i=0

(m1 +m2)!(yn1
∂xn1

)m2−i(xm2

n1
)(xn1+2∂yn1+2)

m1+i(ym1+m3

n1+2 )

(m2 − i)!(m1 + i)!

=
∞∑

r=0

(m1 +m2)!(yn1
∂xn1

)r(xm2

n1
)(xn1+2∂yn1+2)

m1+m2−r(ym1+m3

n1+2 )

r!(m1 +m2 − r)!

= (yn1
∂xn1

+ xn1+2∂yn1+2
)m1+m2(xm2

n1
ym1+m3

n1+2 ). (3.80)

By Lemma 2.1 with T1 = ∂xn1
∂xn1+2

, T−
1 =

∫

(xn1
)

∫

(xn1+2)
(cf. (2.6)) and T2 = ∂yn1

∂yn1+2
,

the polynomial solution space of (3.78) is

Span{φm1,m2,m3
xm4

n1+1y
m5

n1+1, ψm1+1,m2,m3
xm4

n1+1y
m5

n1+1 | mi ∈ N}. (3.81)

Note

φm1,m2,0x
m3

n1+1y
m4

n1+1 = [
m2∏

r=1

(m1 + r)]xm1

n1
ym2

n1
xm3

n1+1y
m4

n1+1 for mi ∈ N (3.82)

and

xm1

n1+1y
m2

n1+1ψm3,0,m4
= [

m3∏

i=1

(m4 + i)]xm1

n1+1y
m2

n1+1x
m3

n1+2y
m4

n1+2 for mi ∈ N. (3.83)

In particular, all the polynomials in (3.83) are solutions of the equation (3.75). Now

η =

n1∑

i=1

yi∂xi
+ xn1+1yn1+1 +

n∑

s=n1+2

xs∂ys . (3.84)

Write

hm1,m2,m3
=

(m1 +m2)!

m1!

∞∑

i=0

xin1
xm1+i
n1+1y

m3+i
n1+1 ∂

i
yn1

(ym2

n1
)

i!
∏i

r=1(m1 + r)

=

m2∑

i=0

(
m2

i

)
(m1 +m2)!x

i
n1
xm1+i
n1+1y

m3+i
n1+1 y

m2−i
n1

(m1 + i)!

=
m2∑

i=0

(
m2

m2 − i

)
(m1 +m2)!x

i
n1
xm1+i
n1+1y

m3+i
n1+1 y

m2−i
n1

(m1 + i)!

=
m2∑

i=0

(m1 +m2)!(yn1
∂xn1

)m2−i(xm2

n1
)xm1+i

n1+1y
m3+i
n1+1

(m2 − i)!(m1 + i)!

= ηm1+m2(xm2

n1
ym3−m1

n1+1 ) (3.85)



and calculate

ηm2(xm1+m2

n1
)ym3

n1+1 = ηm2(xm1+m2

n1
ym3

n1+1)

=

m2∑

i=0

(
m2

m2 − i

)

[

m2−i∏

r=1

(m1 + i+ r)]ym2−i
n1

xm1+i
n1

xin1+1y
m3+i
n1+1

=

m2∑

i=0

(
m2

i

)
[
∏m2

r=1(m1 + r)]ym2−i
n1

xm1+i
n1

xin1+1y
m3+i
n1+1

∏i
s=1(m1 + s)

= [

m2∏

r=1

(m1 + r)]

m2∑

i=0

xm1+i
n1

xin1+1y
m3+i
n1+1 ∂

i
yn1

(ym2

n1
)

i![
∏i

s=1(m1 + s)]
. (3.86)

Lemma 2.1 with T1 = ∂xn1
∂xn1+1

, T−
1 =

∫

(xn1
)

∫

(xn1+1)
(cf. (2.6)) and T2 = −yn1+1∂yn1

tells us that Span{hm1,m2,m3
, ηm2(xm1+m2

n1
)ym3

n1+1 | mi ∈ N} is the solution space of (3.75)

in Span{xm1

n1
ym2

n1
xm3

n1+1y
m4

n1+1 | mi ∈ N}. In particular, (3.85) and (3.86) can be viewed as

algorithms of solving the equation (3.75).

On the other hand,

∂xn1
(φ0,m2,m3

) = m2ψ1,m2,m3−1, (3.87)

∂xn1
(φm1,m2,m3

) = (m1 +m2)φm1−1,m2,m3
if m1 > 0, (3.88)

∂xn1
(ψm1,m2,m3

) = m2ψm1+1,m2−1,m3−1, (3.89)

∂yn1
(φm1,m2,m3

) = m2(m1 +m2)φm1,m2−1,m3
, (3.90)

∂yn1
(ψm1,m2,m3

) = m2(m1 +m2)ψm1,m2−1,m3
. (3.91)

Applying the algorithm (3.85) to (3.81), we get that φ̂m1,m2,m3
ym4

n+1 and ψ̂m1,m2,m3
ym4

n+1 are

the solutions of (3.75) by (3.87)-(3.91), where

φ̂m1,m2,m3
=

∞∑

i=0

(
m2

i

)

φm1+i,m2−i,m3
(xn1+1yn1+1)

i = ηm2(xm1+m2

n1
ym3

n1+2), (3.92)

ψ̂m1,m2,m3
=

m1∑

i=0

(
m1 +m2

i

)

ψm1−i,m2,m3+i(xn1+1yn1+1)
i

+

m2∑

r=1

(
m1 +m2

m1 + r

)

φm2−r,r,m1+m3
(xn1+1yn1+1)

m1+r

= ηm1+m2(xm2

n1
ym1+m3

n1+2 ). (3.93)

Using the algorithm (3.86), we find that the solution space of (3.75) in (3.81) is

Span{xm1

n1+1y
m2

n1+1x
m3

n1+2y
m4

n1+2, φ̂m1,m2,m3
ym4

n1+1, hm1,m2,m3
,

ψ̂m1+1,m2+1,m3
ym4

n1+1 | mi ∈ N}. (3.94)

According to (3.84), (3.92) and (3.93),

∂xn1+2
(φ̂m1,m2,m3

) = m2m3φ̂m1,m2−1,m3−1, (3.95)

∂yn1+1
(φ̂m1,m2,m3

) = m2xn1+1φ̂m1,m2−1,m3
, (3.96)

∂yn1+2
(φ̂m1,m2,m3

) = m3φ̂m1,m2,m3−1, (3.97)



∂xn1+2
(ψ̂m1,m2,m3

) = (m1 +m2)(m1 +m3)ψ̂m1−1,m2,m3
, (3.98)

∂yn1+1
(ψ̂m1,m2,m3

) = (m1 +m2)xn1+1ψ̂m1−1,m2,m3+1, (3.99)

∂yn1+2
(ψ̂m1,m2,m3

) = (m1 +m3)ψ̂m1,m2,m3−1. (3.100)

Put

gm1,m2,m3
=

(m1 +m2)!

m1!

∞∑

i=0

yin1+2y
m1+i
n1+1 x

m3+i
n1+1∂

i
xn1+2

(xm2

n1+2)

i!
∏i

r=1(m1 + r)

= ηm1+m2(ym2

n1+2x
m3−m1

n1+1 ) (3.101)

and

g′m1,m2,m3
=

∞∑

i=0

[
∏m2

s=1(m1 + s)]ym1+i
n1+2 y

i
n1+1x

m3+i
n1+1∂

i
xn1+2

(xm2

n1+2)

i!
∏i

r=1(m1 + r)

= ηm2(ym1+m2

n1+2 xm3

n1+1). (3.102)

Symmetrically, Span{gm1,m2,m3
, g′m1,m2,m3

| mi ∈ N} is the solution space of (3.76) in

Span{xm1

n1+1y
m2

n1+1x
m3

n1+2y
m4

n1+2 | mi ∈ N} by Lemma 2.1 with T1 = ∂yn1+1
∂yn1+2

, T−
1 =

∫

(yn1+1)

∫

(yn1+2)
(cf. (2.6)) and T2 = −xn1+1∂xn1+2

. Observe that {φ̂m1,m2,m3
, ψ̂m1,m2,m3

,

hm1,m2,m3
| mi ∈ N} are solutions of (3.76). Thus the solution space of (3.76) in (3.94) is

Span{gm1,m2,m3
, g′m1,m2,m3

, hm1,m2,m3
, φ̂m1,m2,m3

,

φ̂m1,m2,0y
m3

n1+1, ψ̂m1+1,m2+1,m3
| mi ∈ N} (3.103)

by (3.97) and (3.100).

Expressions (3.85), (3.92), (3.93), (3.101) and (3.102) imply that the solution space of

the singular vectors in B is

Span{ηm2(xm1

i ym3

j ), xm1

n1+1y
m2

n1+1, η
m1+m2(xm2

n1
ym3−m1

n1+1 ), ηm1+m2(ym2

n1+2x
m3−m1

n1+1 )

| mr ∈ N; (i, j) = (n1, n1 + 1), (n1, n1 + 2), (n1 + 1, n1 + 2)}. (3.104)

Remind that in this case,

D = −

n1∑

i=1

xi∂yi + ∂xn1+1
∂yn1+1

−
n∑

s=n1+2

ys∂xs
. (3.105)

We have

D[ηm1+m2(xm2

n1
ym3−m1

n1+1 )] = (m1 +m2)m3η
m1+m2−1(xm2

n1
ym3−m1

n1+1 ) (3.106)

by (3.44). Thus we find a singular

ηm1+m2(xm2

n1
y−m1

n1+1) ∈ H〈m1,m2〉 (3.107)

of new type if m1, m2 ≥ 1. Symmetrically, ηm1+m2(ym2

n1+2x
−m1

n1+1) ∈ H〈m2,m1〉 is a singular

vector.

Recall the singular vectors

f〈−m1,−m2〉 = xm1

n1
ym2

n1+2 ∈ H〈−m1,−m2〉, f〈−m1,m2〉 = xm1

n1
ym2

n1+1 ∈ H〈−m1,m2〉, (3.108)



f〈m1,−m2〉 = xm1

n1+1y
m2

n1+2 ∈ H〈m1,−m2〉. (3.109)

Moreover, we have the singular vectors

η−ℓ1−ℓ2(f〈ℓ1,ℓ2〉) ∈ H〈−ℓ2,−ℓ1〉 for ℓ1, ℓ2 ∈ Z with ℓ1 + ℓ2 ≤ −1. (3.110)

Therefore, any singular vector in H (cf. (3.38)) is a nonzero weight vector in

Span{f〈ℓ1,ℓ2〉, η
−ℓ′

1
−ℓ′

2(f〈ℓ′
1
,ℓ′
2
〉), η

m1+m2(xm2

n1
y−m1

n1+1), η
m1+m2(ym2

n1+2x
−m1

n1+1)

| ℓ1, ℓ2, ℓ
′
1, ℓ

′
2 ∈ Z, m1, m2 ∈ N+ 1; ℓ1 ≤ 0 or ℓ2 ≤ 0; ℓ′1 + ℓ′2 ≤ −1}. (3.111)

Assume n2 = n. We similarly find that the solution space of the singular vectors in B

is

Span{ηm2(xm1

n−1y
m3

n ), xm1

n ym2

n , ηm1+m2(xm2

n−1y
m3−m1

n ) | mi ∈ N}. (3.112)

In particular, any singular vector in H (cf. (3.38)) is a nonzero weight vector in

Span{xm1

n−1y
m2

n , xm1

n , ηm1+1(xm1+m2+1
n−1 ym2

n ),

ηm1+m2+2(xm2+1
n−1 y−m1−1

n ) | m1, m2 ∈ N}. (3.113)

By the arguments of (3.55)-(3.70), we have:

Theorem 3.2. Suppose n1 + 1 = n2. For ℓ1, ℓ2 ∈ Z with ℓ1 + ℓ2 ≤ 0 or n2 = n and

0 ≤ ℓ2 ≤ ℓ1, H〈ℓ1,ℓ2〉 is an irreducible highest-weight sl(n,F)-module and

B〈ℓ1,ℓ2〉 =

∞⊕

m=0

ηm(H〈ℓ1−m,ℓ2−m〉) (3.114)

is an orthogonal decomposition of irreducible submodules. In particular, B〈ℓ1,ℓ2〉 = H〈ℓ1,ℓ2〉⊕

η(B〈ℓ1−1,ℓ2−1〉). The symmetric bilinear form (·|·) restricted to ηm(H〈ℓ1−m,ℓ2−m〉) is nonde-

generate.

Assume n2 < n. For m1, m2 ∈ N+ 1, H〈m1,m2〉 has exactly three singular vectors. All

the submodules H〈ℓ1,ℓ2〉 for ℓ1, ℓ2 ∈ Z such ℓ1 + ℓ2 > 0 and ℓ1ℓ2 ≤ 0 have two singular

vectors. Consider n2 = n. For m1, m2 ∈ N with m1 < m2, H〈m1,m2〉 is also an irreducible

highest-weight sl(n,F)-module. All submodules H〈−m1,m1+m2+1〉 with m1, m2 ∈ N have

have exactly two singular vectors.

Indeed, we have more detailed information. Suppose n2 < n. For m1, m2 ∈ N,

H〈−m1,−m2〉 has a highest-weight vector xm1

n1
ym2

n1+2 of weight m1λn1−1− (m1+1)λn1
− (m2+

1)λn1+1 +m2(1 − δn1,n−2)λn1+2. When m1, m2 ∈ N with m2 − m1 ≥ 0, H〈m1,−m2〉 has a

highest-weight vector xm1

n1+1y
m2

n1+2 of weight −(m1 + 1)λn1
+ (m1 −m2 − 1)λn1+1 +m2(1−

δn1,n−2)λn1+2. If m1, m2 ∈ N with m1 −m2 ≥ 0, H〈−m1,m2〉 is has a highest-weight vector

xm1

n1
ym2

n1+1 of weight m1λn1−1 + (m2 −m1 − 1)λn1
− (m2 + 1)λn1+1.

Assume n2 = n. For m1, m2 ∈ N with m2 ≤ m1, H〈−m1,m2〉 has a highest-weight vector

xm1

n−1y
m2

n of weight m1λn−2 + (m2 −m1 − 1)λn−1. Moreover, H〈m,0〉 has a highest-weight

vector xmn−1 of weight mλn−2 − (m+ 1)λn−1 for m ∈ Z. For m1, m2 ∈ N+ 1, H〈m1,m2〉 has

a highest-weight vector ηm1+m2(xm2

n−1y
−m1

n ) of weight m2λn−2+ (m1 −m2 − 1)λn−1. Again

H〈ℓ1,ℓ2〉 has a basis of the form (3.72).



4 The sl(n,F)-Variation II: n1 = n2

In this section, we continue the discussion from last section. Recall n ≥ 2.

Case 3. n1 = n2.

In this case, the variated Laplace operator

D = −

n1∑

i=1

xi∂yi −
n∑

s=n1+1

ys∂xs
(4.1)

and its dual

η =
n1∑

i=1

yi∂xi
+

n∑

s=n2+1

xs∂ys . (4.2)

First we consider the subcase 1 < n1 < n−1. Suppose that f ∈ Q is a singular vector.

According to the arguments in (3.13)-(3.17), f is a rational function in

{xn1
, xn1+1, yn1

, yn1+1, ζ1, ζ2} (4.3)

(cf. (3.12)). Note

En1,n1+1|Q = ∂xn1
∂xn1+1

− ∂yn1
∂yn1+1

(4.4)

by (3.1)-(3.3). Now En1,n1+1(f) = 0 implies

(∂xn1
∂xn1+1

− ∂yn1
∂yn1+1

)(f) = 0, (4.5)

equivalently,

(xn1−1xn1+2 − yn1−1yn1+2)fζ1ζ2 − yn1−1fζ1xn1+1
− xn1−1fζ1yn1+1

+yn1+2fζ2xn1
+ xn1+2fζ2yn1

+ fxn1
xn1+1

− fyn1
yn1+1

= 0. (4.6)

According to (3.12),

yn1−1 = x−1
n1
yn1

xn1−1 − x−1
n1
ζ1, yn1+2 = x−1

n1+1ζ2 + x−1
n1+1yn1+1xn1+2. (4.7)

Substituting (4.7) into (4.6), the coefficient of xn1−1xn1+2 implies fζ1ζ2 = 0. Thus

f = g + h with gζ2 = hζ1 = 0. (4.8)

Now (4.6) becomes

x−1
n1
ζ1gζ1xn1+1

− (x−1
n1
yn1

gζ1xn1+1
+ gζ1yn1+1

)xn1−1 + (x−1
n1+1yn1+1hζ2xn1

+ hζ2yn1
)xn1+2

+x−1
n1+1ζ2hζ2xn1

+ gxn1
xn1+1

− gyn1
yn1+1

+ hxn1
xn1+1

− hyn1
yn1+1

= 0, (4.9)

which implies

x−1
n1
yn1

gζ1xn1+1
+ gζ1yn1+1

= 0, x−1
n1+1yn1+1hζ2xn1

+ hζ2yn1
= 0. (4.10)

For the representation purpose, we assume that g is polynomial in ζ1 with g|ζ1=0 = 0

and h is polynomial in ζ2. Set

ζ3 = xn1
yn1+1 − xn1+1yn1

. (4.11)



By (4.10),

g is a function in xn1
, yn1

, ζ1, ζ3. (4.12)

Moreover, (4.9) says

−x−1
n1
yn1

ζ1gζ1ζ3 − yn1
gxn1

ζ3 − xn1
gyn1

ζ3 = 0. (4.13)

Again we can assume that g = ĝ + g̃ is polynomial in xn1
, yn1

, ζ3 with ĝ|ζ3=0 = 0 and

g̃ζ3 = 0. Then (4.13) is equivalent to

yn1
ζ1ĝζ1 + xn1

yn1
ĝxn1

+ x2n1
ĝyn1

= 0. (4.14)

This shows that ĝ is a function in ζ1/xn1
, x2n1

−y2n1
, ζ3. If ĝ is a polynomial, then ĝ = 0. So

the polynomial solution of g must be a polynomial in xn1
, yn2

, ζ1 with gζ1 6= 0. Similarly, if

hζ2 6= 0 and h|ζ2=0 = 0, the polynomial solution of hmust be a polynomial in xn+1, yn+1, ζ2.

Assume hζ2 = 0. Then

hxn1
xn1+1

− hyn1
yn1+1

= 0 (4.15)

by (4.9).

By Lemma 2.1, (3.78)-(3.80) and (4.2), the polynomial solution of h must be in

Span{ηm3(xm1

n1
ym2

n1+1) | m1, m2, m3 ∈ N}. (4.16)

Therefore, a singular vector in B must be a nonzero weight vector in

Span{xm1

n1
ym2

n1
ζm3+1
1 , xm1

n1+1y
m2

n1+1ζ
m3+1
2 , ηm3(xm1

n1
ym2

n1+1) | mi ∈ N}. (4.17)

Note

xm1

n1
ym2

n1
ζm3+1
1 ∈ B〈−m1−m3−1,m2+m3+1〉, (4.18)

xm1

n1+1y
m2

n1+1ζ
m3+1
2 ∈ B〈m1+m3+1,−m2−m3−1〉. (4.19)

Moreover,

D(xm1

n1
ym2

n1
ζm3+1
1 ) = −m2x

m1+1
n1

ym2−1
n1

ζm3+1
1 = 0 ⇐⇒ m2 = 0 (4.20)

and

D(xm1

n1+1y
m2

n1+1ζ
m3+1
2 ) = −m1x

m1−1
n1+1 y

m2+1
n1+1 ζ

m3+1
2 = 0 ⇐⇒ m1 = 0 (4.21)

by (3.12) and (4.1). Furthermore,

xm1

n1
ym2

n1
ζm3+1
1 =

ηm2(xm1+m2

n1
ζm3+1
1 )

∏m2

r=1(m1 + r)
, xm1

n1+y
m2

n1+1ζ
m3+1
2 =

ηm1(ym1+m2

n1+1 ζm3+1
2 )

∏m1

r=1(m2 + r)
(4.21)

by (4.2). Indeed,

ηm1+1(xm1

n1
ζm2

1 ) = ηm1+1(ym1

n1+1ζ
m2

2 ) = 0 for m1, m2 ∈ N. (4.22)

Since xm1

n1
ym2

n1+1 ∈ H〈−m1,−m2〉, (3.45) says that η
m(xm1

n1
ym2

n1+1) with m > 0 is a singular

vector only if m = m1+m2+1. But ηm1+m2+1(xm1

n1
ym2

n1+1) = 0 by (4.2). Thus any singular

vector in H (cf. (3.38)) is a nonzero weight vector in

Span{xm1

n1
ζm2+1
1 , ym1

n1+1ζ
m2+1
2 , xm1

n1
ym2

n1+1 | m1, m2 ∈ N}. (4.23)



Since B is nilpotent with respect to sl(n,F)+ (cf. (2.30)), any nonzero submodule of B has

a singular vector. The above fact implies H〈ℓ1,ℓ2〉 = {0} for ℓ1, ℓ2 ∈ Z such that ℓ1+ℓ2 > 0.

Observe that

(xm1

n1
ζm2

1 |xm1

n1
ζm2

1 )

= (

m2∑

i=0

(
m2

i

)

(−1)ixm2−i
n1−1x

m1+i
n1

yin1−1y
m2−i
n1

|

m2∑

i=0

(
m2

i

)

(−1)ixm2−i
n1−1x

m1+i
n1

yin1−1y
m2−i
n1

)

= (−1)m1+m2m2!

m2∑

i=0

(
m2

i

)

(m1 + i)!(m2 − i))! 6= 0 (4.24)

by (3.55). Similarly, (ym1

n1+1ζ
m2

2 |ym1

n1
ζm2

2 ) 6= 0.

Next we assume n1 = n2 = 1 and n ≥ 3. By the arguments in the above, a singular

vector in B must be a nonzero weight vector in

Span{xm1

n1+1y
m2

n1+1ζ
m3+1
2 , ηm3(xm1

n1
ym2

n1+1) | mi ∈ N}. (4.25)

Thus any singular vector in H (cf. (3.38)) is a nonzero weight vector in

Span{ym1

n1+1ζ
m2+1
2 , xm1

n1
ym2

n1+1 | m1, m2 ∈ N}. (4.26)

The above fact implies H〈ℓ1,ℓ2〉 = {0} for ℓ1, ℓ2 ∈ Z such that ℓ1 + ℓ2 > 0 or ℓ2 > 0.

Consider the subcase n1 = n2 = n − 1 and n ≥ 3. A singular vector in B must be a

nonzero weight vector in

Span{xm1

n1
ym2

n1
ζm3+1
1 , ηm3(xm1

n1
ym2

n1+1) | mi ∈ N}. (4.27)

Thus any singular vector in H (cf. (3.38)) is a nonzero weight vector in

Span{xm1

n1
ζm2+1
1 , xm1

n1
ym2

n1+1 | m1, m2 ∈ N}. (4.28)

The above fact implies H〈ℓ1,ℓ2〉 = {0} for ℓ1, ℓ2 ∈ Z such that ℓ1 + ℓ2 > 0 or ℓ1 > 0.

Suppose n1 = n2 = 1 and n = 2. A singular vector in B must be a nonzero weight

vector in

Span{ηm3(xm1

1 ym2

2 ) | mi ∈ N}. (4.29)

Thus any singular vector in H (cf. (3.38)) is a nonzero weight vector in

Span{xm1

1 ym2

2 | m1, m2 ∈ N}. (4.30)

The above fact implies H〈ℓ1,ℓ2〉 = {0} for ℓ1, ℓ2 ∈ Z such that ℓ1 > 0 or ℓ2 > 0.

Finally, we assume n1 = n2 = n. A singular vector in B must be a nonzero weight

vector in

Span{xm1

n1
ym2

n1
ζm3

1 | mi ∈ N}. (4.31)

Thus any singular vector in H (cf. (3.38)) is a nonzero weight vector in

Span{xm1

n1
ζm2

1 | m1, m2 ∈ N}. (4.32)

The above fact implies H〈ℓ1,ℓ2〉 = {0} for ℓ1, ℓ2 ∈ Z such that ℓ1 + ℓ2 > 0. Indeed, all

B〈−m1,m2〉 with m1, m2 ∈ N are finite-dimensional and completely reducible by Weyl’s



Theorem of complete reducibility. Moreover, their irreducible summands are completely

determined by (4.31).

By the arguments of (3.55)-(3.70), we obtain:

Theorem 4.1. Suppose n1 = n2. Let ℓ1, ℓ2 ∈ Z such that ℓ2 ≥ 0 when n1 = n.

Assume ℓ1 + ℓ2 ≤ 0 and: (a) ℓ2 ≤ 0 if n1 = 1 and n ≥ 3; (b) ℓ1 ≤ 0 if n1 = n − 1 and

n ≥ 3; (c) ℓ1, ℓ2 ≤ 0 when n1 = 1 and n = 2. Then H〈ℓ1,ℓ2〉 is an irreducible highest-weight

sl(n,F)-module and

B〈ℓ1,ℓ2〉 =
∞⊕

m=0

ηm(H〈ℓ1−m,ℓ2−m〉) (4.33)

is an orthogonal decomposition of irreducible submodules. The symmetric bilinear form

restricted to ηm(H〈ℓ1−m,ℓ2−m〉). In particular, B〈ℓ1,ℓ2〉 = H〈ℓ1,ℓ2〉 ⊕ η(B〈ℓ1−1,ℓ2−1〉). If the

conditions fails, H〈ℓ1,ℓ2〉 = {0}. When n1 = n2 = n, all the above irreducible modules are

of finite-dimensional.

Suppose n1 < n − 1. Let m1, m2 ∈ N. The subspace H〈−m1,−m2〉 has a highest-

weight vector xm1

n1
ym2

n1+1 of weight m1(1 − δ1,n1
)λn1−1 − (m1 + m2 + 2)λn1

+ m2λn1+1. If

n1 ≥ 2, the subspace H〈−m1−m2−1,m2+1〉 has a highest-weight vector xm1

n1
ζm2+1
1 of weight

(m2+1)λn1−2−m1λn1−1−(m1+m2+3)λn1
. The subspace H〈m1+1,−m2−m1−1〉 has a highest-

weight vector ym2

n1+1ζ
m1+1
2 of weight−(m1+m2+3)λn1

+m2λn1+1−(m1+1)(1−δn1,n−2)λn1+2.

Consider n1 = n − 1. The subspace H〈−m1,−m2〉 has a highest-weight vector xm1

n1
ym2

n1+1

of weight m1(1− δn,2)λn−2− (m1+m2+2)λn−1. If n ≥ 3, the subspace H〈−m1−m2−1,m2+1〉

has a highest-weight vector xm1

n1
ζm2+1
1 of weight (m2 +1)(1− δn,3)λn−3 −m1λn−2 − (m1 +

m2 + 3)λn−1.

Assume n1 = n. The subspace H〈−m1−m2,m2〉 has a highest-weight vector xm1

n ζm2

1 of

weight m2(1− δn,2)λn−2 +m1λn−1.

Now we want to find an explicit expression for H〈ℓ1,ℓ2〉 when it is irreducible. Set

G ′ =

n1∑

i=1

n∑

j=n1+1

FEj,i, (4.34)

Ĝ = H +
∑

r,s∈1,n1 or r,s∈n1+1,n;r 6=s

FEr,s +

n1∑

i=1

n∑

j=n1+1

FEi,j. (4.35)

Then G ′ and Ĝ are Lie subalgebras of sl(n,F) and sl(n,F) = G ′ ⊕ Ĝ. By PBW Theorem,

U(sl(n,F)) = U(G ′)U(Ĝ). According to (1.6)-(1.8),

Er,s|B = −xs∂xr
− ys∂yr , Ep,q|B = xp∂xq

+ yp∂yq , (4.36)

Er,p|B = ∂xr
∂xp

− ∂yr∂yp , Ep,r|B = −xrxp + yryp (4.37)

for r, s ∈ 1, n1 and p, q ∈ n1 + 1, n.



First we assume n1 < n. For m1, m2 ∈ N, we have

H〈−m1,−m2〉 = U(sl(n,F))(xm1

n1
ym2

n1+1) = U(G ′)U(Ĝ)(xm1

n1
ym2

n1+1)

= Span{[

n1∏

r=1

xlrr ][

n−n1∏

s=1

yksn1+s][

n1∏

r=1

n−n1∏

s=1

(xrxn1+s − yryn1+s)
lr,s ]

| lr, ks, lr,s ∈ N;

n1∑

r=1

lr = m1;

n−n1∑

s=1

ks = m2} (4.38)

by (4.36) and (4.37). Furthermore, we assume n1 > 1. We let

H′
〈−m1−m2,m2〉

= Span{[

n1∏

r=1

xlrr ][
∏

1≤p<q≤n1

(xpyq − xqyp)
kp,q ][

n1∏

r=1

n−n1∏

s=1

(xrxn1+s − yryn1+s)
lr,s ]

| lr, kp,q, lr,s ∈ N;

n1∑

r=1

lr = m1;
∑

1≤p<q≤n1

kp,q = m2}. (4.39)

By (3.38), (3.40) and (4.1), we have H′
〈−m1−m2,m2〉

⊂ H〈−m1−m2,m2〉. Moreover, (4.37) and

(4.38) yield

H〈−m1−m2,m2〉 = U(sl(n,F))(xm1

n1
ζm2

1 ) = U(G ′)U(Ĝ)(xm1

n1
ζm2

1 ) ⊂ H′
〈−m1−m2,m2〉

. (4.40)

Thus H′
〈−m1−m2,m2〉

= H〈−m1−m2,m2〉. Symmetrically, if n1 = n2 < n− 1,

H〈m2,−m1−m2〉 = Span{[
∏

n1+1≤p<q≤n

(xpyq − xqyp)
kp,q ][

n1∏

r=1

n∏

s=n1+1

(xrxs − yrys)
lr,s ]

×[

n−n1∏

r=1

ylrn1+r] | lr, kp,q, lr,s ∈ N;

n1∑

r=1

lr = m1;
∑

n1+1≤p<q≤n

kp,q = m2}. (4.41)

When n1 = n2 = n, by the arguments between (4.39) and(4.40),

H〈−m1−m2,m2〉 = Span{[

n∏

r=1

xlrr ][
∏

1≤p<q≤n

(xpyq − xqyp)
kp,q ]

| lr, kp,q ∈ N;

n∑

r=1

lr = m1;
∑

1≤p<q≤n

kp,q = m2}, (4.42)

which is of finite-dimensional.

5 The o(2n,F)-Variation

Recall that B = F[x1, ..., xn, y1, ..., yn] and the representation of o(2n,F) on B defined by

(1.14)-(1.16). It is easy to verify

Tξ = ξT on B for ξ ∈ o(2n,F);T = ♭, ♭′,D, η (5.1)

by (1.9), (1.10), (2.13) and (3.4). Recall the notions B〈k〉 and H〈k〉 defined in (1.17). The

B =
⊕

k∈Z B〈k〉 forms a Z-graded algebra and

H〈k〉 =
⊕

ℓ1,ℓ2∈Z;ℓ1+ℓ2=k

H〈ℓ1,ℓ2〉. (5.2)



Moreover, B〈k〉 and H〈k〉 are o(2n,F)-submodules. Recall K =
∑n

i,j=1 F(Ei,j − En+j,n+i).

Theorem 5.1. For any n1 − n2 + 1− δn1,n2
≥ k ∈ Z, H〈k〉 is an irreducible o(2n,F)-

submodule and

B〈k〉 =
∞⊕

i=0

ηi(H〈k−2i〉) (5.3)

is an orthogonal decomposition of irreducible submodules. In particular, B〈k〉 = H〈k〉 ⊕

η(B〈k−2〉). Moreover, the bilinear form (·|·) restricted to ηi(H〈k−2i〉) is nondegenerate.

Furthermore, H〈k〉 has a basis

{
∞∑

i=0

(xn1+1yn1+1)
i(D − ∂xn1

+1∂yn1
+1)

i(xαyβ)
∏i

r=1(αn1+1 + r)(βn1+1 + r)
| α, β ∈ N

n;

αn1+1βn1+1 = 0;−

n1∑

i=1

αi +
n∑

r=n1+1

αr +

n2∑

i=1

βi −
n∑

r=n2+1

βr = k
}

(5.4)

when n1 < n2. The module H〈k〉 under the assumption is of highest-weight type only if

n2 = n, in which case x−k
n1

is a highest-weight vector with weight −kλn1−1 + (k − 1)λn1
+

[(k − 1)δn1,n−1 − 2kδn1,n]λn. When n1 = n2 = n, all the irreducible modules H〈k〉 with

0 ≥ k ∈ Z are of (G,K)-type.

Proof. Let n1 − n2 +1 ≥ k ∈ Z. Note sl(n,F)|B is a subalgebra of o(2n,F)|B. Suppose

n1 + 1 < n2 < n. By (5.2), Theorem 3.1 and the paragraph below, the sl(n,F)-singular

vectors in H〈k〉 are: for m1, m2 ∈ N,

xm1

n1
ym2

n2+1 with − (m1 +m2) = k, (5.5)

xm1

n1+1y
m2

n2+1 with m1 −m2 = k, (5.6)

xm1

n1
ym2

n2
with −m1 +m2 = k. (5.7)

Note

(En+n2+1,n1
−En+n1,n2+1)|B = −xn1

∂yn2+1
− yn1

∂xn2+1
(5.8)

by (1.16). So

(En+n2+1,n1
−En+n1,n2+1)

m2(xm1

n1
ym2

n2+1) = (−1)m2m2!x
−k
n1

(5.9)

for the vectors in (5.5). Moreover,

(En+n2+1,n1+1 − En+n1+1,n2+1)|B = ∂xn1+1
∂yn2+1

− yn1+1∂xn2+1
(5.10)

again by (1.16), which implies

(En+n2+1,n1+1 − En+n1+1,n2+1)
m2(xm1

n1+1y
m2

n2+1) = m1![

m1−1∏

r=0

(m2 − r)]y−k
n2+1 (5.11)

for the vectors in (5.6). Furthermore,

(En1,n+n2
− En2,n+n1

)|B = ∂xn1
∂yn2

− xn2
∂yn1

(5.12)



by (1.15), which implies

(En1,n+n2
−En2,n+n1

)m2(xm1

n1
ym2

n2
) = m2![

m2−1∏

r=0

(m1 − r)]x−k
n1

(5.13)

for the vectors in (5.7).

On the other hand,

(En1,n+n2+1 −En2+1,n+n1
)|B = −yn2+1∂xn1

− xn2+1∂yn1
(5.14)

by (1.15), which implies

(En1,n+n2+1 −En2+1,n+n1
)m2(x−k

n1
) = (−1)m2 [

m2−1∏

r=0

(−k − r)]xm1

n1
ym2

n2+1 (5.15)

for the vectors in (5.5). Moreover,

(En1+1,n+n2+1 −En2+1,n+n1+1)|B = −xn1+1yn2+1 − xn2+1∂yn1+1
(5.16)

by (1.15), which implies

(En1+1,n+n2+1 −En2+1,n+n1+1)
m2(y−k

n2+1) = (−1)m2xm1

n1
ym2

n2+1 (5.17)

for the vectors in (5.6). Furthermore,

(En+n2,n1
− En+n1,n2

)|B = −xn1
yn2

− yn1
∂xn2

(5.18)

by (1.16), which implies

(En+n2,n1
− En+n1,n2

)m2(x−k
n1
) = (−1)m2xm1

n1
ym2

n2
(5.19)

for the vectors in (5.7). Thus for any two vectors in (5.5)-(5.7), there exists an element in

the universal enveloping algebra U(o(2n,F)) which carries one to another. On the other

hand, the vectors in (5.5)-(5.7) have distinct weights (see the paragraph below Theorem

3.1). Thus any nonzero submodule of H〈k〉 must contain one of the vectors in (5.5)-(5.7).

Hence all the vectors in (5.5)-(5.7) are in the submodule by (5.8)-(5.19). Therefore, the

submodule must be equal to H〈k〉, that is, H〈k〉 is irreducible. By (5.16) and (5.18), H〈k〉

is not of highest-weight type. The equation (5.3) follows from Theorem 3.1 and (5.2).

Assume n1 + 1 = n2 < n. By Theorem 3.2 and the paragraph below, the sl(n,F)-

singular vectors in H〈k〉 are those in (5.5)-(5.7). So the theorem holds. Suppose n1 <

n2 = n. By Theorems 3.1, 3.2 and the paragraph below them, the sl(n,F)-singular

vectors in H〈k〉 are those in (5.7). Expressions (5.13) and (5.19) imply the conclusions in

the theorem.

Recall

ζ1 = xn1−1yn1
− xn1

yn1−1, ζ2 = xn2+1yn2+2 − xn2+2yn2
. (5.20)

In the case n1 = n2 < n− 1, Theorem 4.1 tell us that the sl(n,F)-singular vectors in H〈k〉

are those in (5.5) and

x−k
n1
ζm+1
1 for m ∈ N, (5.21)



y−k
n1+1ζ

m+1
2 for m ∈ N. (5.22)

Again all the singular vectors have distinct weights. If N is a nonzero submodule of H〈k〉,

then N must contain one of the above sl(n,F)-singular vectors. If N contains a singular

vector in (5.5), then x−k
n1

∈ N by (5.9). Suppose x−k
n1
ζm+1
1 ∈ N for some m ∈ N. Note

(En1−1,n+n1
− En1,n+n1−1)|B = ∂xn1−1

∂yn1
− ∂xn1

∂yn1−1
(5.22)

by (1.15). Thus

(En1−1,n+n1
− En1,n+n1−1)

m+1(x−k
n1
ζm+1
1 )

=

[
m+1∑

r=0

(−1)r
(
m+ 1

r

)

(∂xn1−1
∂yn1

)m+1−r(∂xn1
∂yn1−1

)r

]

[
m+1∑

s=0

(−1)s
(
m+ 1

s

)

(xn1−1yn1
)m+1−sx−k+s

n1
ysn1−1

]

=

(
m+1∑

r=0

(
m+ 1

r

)2

[(m+ 1− r!)]2r![

r∏

i=1

(−k + i)]

)

x−k
n1

= [(m+ 1)!]2

(
m+1∑

r=0

(
−k + r

r

))

x−k
n1

∈ N. (5.23)

So we have x−k
n1

∈ N again. Symmetrically, it holds if y−k
n1+1ζ

m+1
2 ∈ N for some m ∈ N.

Therefore, we always have x−k
n1

∈ N .

According to (5.15), N contains all the singular vectors in (5.5). Observe

(En+n1−1,n1
− En+n1,n1−1)|B = ζ1, (En1+2,n+n1+1 − En1+1,n+n1+2)|B = ζ2 (5.24)

as multiplication operators on B by (1.15) and (1.16). Thus

(En+n1−1,n1
− En+n1,n1−1)

m+1(x−k
n1
) = x−k

n1
ζm+1
1 , (5.25)

(En1+2,n+n1+1 −En1+1,n+n1+2)
m+1(x−k

n1
) = x−k

n1
ζm+1
2 ∈ N. (5.26)

Thus N contains all the sl(n,F)-singular vectors in H〈k〉, which implies that it contains

all H〈ℓ1,ℓ2〉 ⊂ H〈k〉. So N = H〈k〉, that is, H〈k〉 is an irreducible o(2n,F)-module, which is

of (G,K)-type if n1 = n2 = n by (5.2). The basis (5.4) is obtained by (3.72) and (5.2).

2

Finally, we want to find an expression for H〈k〉 for 0 ≥ k ∈ Z when n1 = n2.

First we assume n1 = n2 = 1 and n ≥ 3. According to (4.26), (4.38) and (4.41)

H〈−k〉

= Span{[
n∏

r=2

y l̂rr ][
∏

2≤p<q≤n

(xpyq − xqyp)
k̂p,q ][

n∏

s=2

(x1xs − y1ys)
l̂s], xl1[

n∏

s=2

ykss ]

×[
n∏

s=2

(x1xs − y1ys)
ls ] | l, ks, ls, l̂, k̂p,q, l̂s ∈ N; l +

n∑

s=2

ks =
n∑

r=2

l̂r = k}. (5.27)



Next we consider the subcase 1 < n1 = n2 < n − 1. By (4.23), (4.38), (4.39) (note

H′
〈−m1−m2,m2〉

= H〈−m1−m2,m2〉) and (4.41), we have

H〈−k〉

= Span{[

n1∏

r=1

xl
′

r
r ][

∏

1≤p<q≤n1

(xpyq − xqyp)
k′p,q ][

n1∏

r=1

n∏

s=n1+1

(xrxs − yrys)
l′r,s ],

[
n−n1∏

r=1

y l̂rn1+r][
∏

n1+1≤p<q≤n

(xpyq − xqyp)
k̂p,q ][

n1∏

r=1

n∏

s=n1+1

(xrxs − yrys)
l̂r,s],

[

n1∏

r=1

xlrr ][

n−n1∏

s=1

yksn1+s][

n1∏

r=1

n−n1∏

s=1

(xrxn1+s − yryn1+s)
lr,s] | lr, ks, lr,s, l

′
r, k

′
p,q,

l′r,s, l̂r, k̂p,q, l̂r,s ∈ N;

n1∑

r=1

lr +

n−n1∑

s=1

ks =

n1∑

r=1

l′r =

n−n1∑

r=1

l̂r = k}. (5.28)

Consider the subcase n1 = n2 = n − 1 and n ≥ 3. By (4.28), (4.38) and (4.39) (note

H′
〈−m1−m2,m2〉

= H〈−m1−m2,m2〉), we obtain

H〈−k〉

= Span{[

n−1∏

r=1

xl
′

r
r ][

∏

1≤p<q≤n−1

(xpyq − xqyp)
k′p,q ][

n−1∏

r=1

(xrxn − yryn)
l̄′r ], [

n−1∏

r=1

xlrr ]y
k̂
n

×[

n−1∏

r=1

(xrxn − yryn)
l̄r ] | lr, k̂, l̄r, l

′
r, k

′
p,q, l̄

′
r ∈ N;

n−1∑

r=1

lr + k̂ =

n−1∑

r=1

l′r = k}. (5.29)

Suppose n1 = n2 = 1 and n = 2. According to (4.30) and (4.38),

H〈−k〉 = Span{[xr1y
s
2(x1x2 − y1y2)

l | r, s, l ∈ N; r + s = k}. (5.30)

Finally we assume n1 = n2 = n. By (4.32) and (4.39) (noteH′
〈−m1−m2,m2〉

= H〈−m1−m2,m2〉),

H〈−k〉 = Span{

n∏

r=1

xlrr ][
∏

1≤p<q≤n

(xpyq − xqyp)
kp,q ] | lr, kp,q ∈ N;

n∑

r=1

lr = k}, (5.31)

whose (G,K)-module structure is given byH〈−k〉 =
⊕∞

m=0H〈−k−m,m〉 withH〈−k−m,m〉 given

in (4.42).

6 The o(2n + 1,F)-Variation

Recall

o(2n+ 1,F) = o(2n,F)⊕

n⊕

i=1

[F(E0,i −En+i,0) + F(E0,n+i − Ei,0)] (6.1)

and B′ = F[x0, x1, ..., xn, y1, ..., yn].

Fix n1, n2 ∈ 1, n such that n1 ≤ n2. The representation of o(2n + 1,F) on B′ by

the differential operators in (1.14)-(1.16), (1.19) and (1.20). Recall B′
〈k〉 =

∑∞
i=0 B〈k−i〉x

i
0.

Then all B′
〈k〉 with k ∈ Z are o(2n + 1,F)-submodules and B′ =

⊕

k∈Z B
′
〈k〉 forms a Z-

graded algebra. Moreover, the variated Laplace operator D′ = ∂2x0
+2D by (1.21) and its

dual η′ = x20 + 2η by (1.22).



A straightforward verification shows

D′ξ = ξD′, ξη′ = η′ξ on B′ for ξ ∈ o(2n+ 1,F). (6.2)

As in the introduction, H′
〈k〉 = {f ∈ B′〈k〉 | D′(f) = 0}. According to (6.2), H′

〈k〉 is an

o(2n + 1,F)-submodule. By Lemma 2.1 with T1 = ∂2x0
, T−

1 =
∫ (2)

(x0)
(cf. (2.6) and (2.7))

and T2 = 2D, we obtain

H′
〈k〉 =

(
∞∑

i=0

(−2)ix2i0 D
i

(2i)!

)

(B〈k〉)⊕

(
∞∑

i=0

(−2)ix2i+1
0 Di

(2i+ 1)!

)

(B〈k−1〉). (6.3)

Recall K =
∑n

i,j=1 F(Ei,j − En+j,n+i).

Theorem 6.1. For any n1−n2+1−δn1,n2
≥ k ∈ Z, H′

〈k〉 is an irreducible o(2n+1,F)-

submodule and

B′
〈k〉 =

∞⊕

i=0

(η′)i(H′
〈k−2i〉) (6.4)

is an orthogonal decomposition of irreducible submodules. In particular, B′
〈k〉 = H′

〈k〉 ⊕

η′(B′
〈k−2〉). Moreover, the bilinear form (·|·) restricted to (η′)i(H′

〈k−2i〉) is nondegenerate.

Furthermore, H〈k〉 has a basis

{
∞∑

i=0

(−2)ix2i+ι
0 Di(xαyβ)

(2i+ ι)!
| α, β ∈ N

n; ι = 0, 1;

−

n1∑

i=1

αi +
n∑

r=n1+1

αr +

n2∑

i=1

βi −
n∑

r=n2+1

βr = k − ι
}
. (6.5)

The module H′
〈k〉 under the assumption is of highest-weight type only if n2 = n, in which

case x−k
n1

is a highest-weight vector with weight −kλn1−1 + (k − 1)λn1
+ [(k − 1)δn1,n−1 −

2kδn1,n]λn. When n1 = n2 = n, all the irreducible modules H〈k〉 with 0 ≥ k ∈ Z are of

(G,K)-type.

Proof. Observe that

(xr0x
αyβ|xs0x

α1yβ1) = δr,sδα,α1
δβ,β1

(−1)
∑n1

i=1
αi+

∑n
r=n2+1

βrr!α!β! (6.6)

for r, s ∈ N and α, β, α1, β1 ∈ N n. By (1.21) and (1.22),

(D′(f)|g) = (f |η′(g)) for f, g ∈ B′. (6.7)

Let n1 − n2 + 1 ≥ k ∈ Z. First by (5.3) and (6.3),

H′
〈k〉 =

∞⊕

r=0

(
∞∑

i=0

(−2)ix2i0 D
i

(2i)!

)

(ηr(H〈k−2r〉))⊕
∞⊕

s=0

(
∞∑

i=0

(−2)ix2i+1
0 Di

(2i+ 1)!

)

(ηs(H〈k−2s−1〉)).

(6.8)

Let N be a nonzero submodule of H′
〈k〉. By comparing weights and the arguments in

(5.5)-(5.13) and (5.21)-(5.23), we have

(
∞∑

i=0

(−2)ix2i0 D
i

(2i)!

)

(ηm1(x−k+2m1

n1
)) ∈ N (6.9)



for some m1 ∈ N or

(
∞∑

i=0

(−2)ix2i+1
0 Di

(2i+ 1)!

)

(ηm2(x−k+2m2+1
n1

)) ∈ N (6.10)

for some m2 ∈ N.

Note

(En1,0 − E0,n+n1
) = ∂x0

∂xn1
− x0∂yn1

(6.11)

by (1.19) and (1.20). Recall

D = −

n1∑

i=1

xi∂yi +

n2∑

r=n1+1

∂xr
∂yr −

n∑

s=n2+1

ys∂xs
(6.12)

and

η =

n1∑

i=1

yi∂xi
+

n2∑

r=n1+1

xryr +

n∑

s=n2+1

xs∂ys . (6.13)

Then (3.44) gives

(En1,0 −E0,n+n1
)

[(
∞∑

i=0

(−2)ix2i0 D
i

(2i)!

)

(ηm1(x−k+2m1

n1
))

]

=

(
∞∑

i=0

(i+ 1)m1(−k + 2m1)(−2)i+1x2i+1
0 Di

(2i+ 1)!

)

(ηm1−1(x−k+2m1−1
n1

))

+

(
∞∑

i=0

(−k + 2m1)(−2)i+1x2i+1
0 Di+1

(2i+ 1)!

)

(ηm1(x−k+2m1−1
n1

))

−m1(−k + 2m1)

(
∞∑

i=0

(−2)ix2i+1
0 Di

(2i)!

)

(ηm1−1(x−k+2m1−1
n1

))

= m1(−k + 2m1)

(
∞∑

i=0

(−2)ix2i+1
0 Di

(2i+ 1)!

)

(ηm1−1(x−k+2m1−1
n1

))

+m1(−k + 2m1)(m1 − k + n1 − n2)

(
∞∑

i=0

(−2)i+1x2i+1
0 Di

(2i+ 1)!

)

(ηm1−1(x−k+2m1−1
n1

))

= m1(−k + 2m1)(2m1 − 2k + 2n1 − 2n2 + 1)

×

(
∞∑

i=0

(−2)ix2i+1
0 Di

(2i+ 1)!

)

(ηm1−1(x−k+2m1−1
n1

)). (6.14)

Moreover,

(En1,0 −E0,n+n1
)

[(
∞∑

i=0

(−2)ix2i+1
0 Di

(2i+ 1)!

)

(ηm2(x−k+2m2+1
n1

))

]

=

(
∞∑

i=0

im2(−k + 2m2 + 1)(−2)ix2i0 D
i−1

(2i)!

)

(ηm2−1(x−k+2m2

n1
))

+

(
∞∑

i=0

(−k + 2m2 + 1)(−2)ix2i0 D
i

(2i)!

)

(ηm2(x−k+2m2

n1
))



−m2(−k + 2m2 + 1)

(
∞∑

i=0

(−2)ix2i+2
0 Di

(2i+ 1)!

)

(ηm2−1(x−k+2m2

n1
))

= (−k + 2m2 + 1)

(
∞∑

i=0

(−2)ix2i0 D
i

(2i)!

)

(ηm2(x−k+2m2

n1
)). (6.15)

Note k ≤ 0 by our assumption. Using (6.9), (6.10), (6.14), (6.15) and induction, we obtain

x−k
n1

∈ N .

Observe

(En+n1,0 −E0,n1
)|B′ = x0xn1

+ yn1
∂x0

(6.16)

by (1.19) and (1.20). Then

(En+n1,0 −E0,n1
)m(x−k

n1
) = xm0 x

−k+m
n1

+ Pm ∈ N, (6.17)

where the degree of Pm with respect to x0 is less than m. For any f ∈ H〈k−2m〉 and

g ∈ H〈k−2m−1〉 , (3.44) and (5.2) says that

(
∞∑

i=0

(−2)ix2i0 D
i

(2i)!

)

(ηm(f))

=
m∑

i=0

2ix2i0
∏i

r=1(m− r)(m− k + n1 − n2 + 1 + r)

(2i)!
ηm−i(f) (6.18)

and
(

∞∑

i=0

(−2)ix2i+1
0 Di

(2i)!

)

(ηm(g))

=

m∑

i=0

2ix2i+1
0

∏i
r=1(m− r)(m− k + n1 − n2 + 2 + r)

(2i+ 1)!
ηm−i(g). (6.19)

This shows that if xm0 is the highest x0-power of a nonzero element in H′
〈k〉, then its

coefficient must be in H〈k−m〉 by (6.8).

On the other hand, (6.17) implies that

the coefficients of xm0 in U(o(2n,F))[(En+n1,0 −E0,n1
)m(x−k

n1
)] = H〈k−m〉, (6.20)

because it is an irreducible o(2n,F)-module by Theorem 5.1. By induction on m, we can

prove

H′
〈k〉 ⊂

∞∑

m=0

U(o(2n,F))[(En+n1,0 − E0,n1
)m(x−k

n1
)] ⊂ N. (6.21)

Thus N = H′
〈k〉. This shows that H

′
〈k〉 is irreducible. Since the bilinear form (·|·) restricted

to H〈k〉 ⊂ H′
〈k〉 is nondegenerate, the irreducibility of H′

〈k〉 implies that the symmetric

bilinear form (·|·) restricted to H′
〈k〉 is nondegenerate.

Next want to prove

(
H′

〈k〉|H
′
〈k′〉

)
= {0} for n1 − n2 + 1− δn1,n2

≥ k, k′ ∈ Z such that k 6= k′. (6.22)



For any f ∈ H〈k−2m〉 and f
′ ∈ H〈k′−2m′〉, (3.64). (5.2), (6.6) and (6.18) yield

((
∞∑

i=0

(−2)ix2i0 D
i

(2i)!

)

(η2m(f))|

(
∞∑

r=0

(−2)rx2r0 Dr

(2r)!

)

(η2m
′

(f ′))

)

=
m∑

i=0

22i

(2i)!
[

i∏

s=1

(m− s)(m− k + n1 − n2 + 1 + s)]

×[
i∏

s′=1

(m′ − s′)(m′ − k′ + n1 − n2 + 1 + s′)](ηm−i(f)|ηm
′−i(f))

= 0 if (m, k − 2m) 6= (m′, k′ − 2m′). (6.23)

Let g ∈ H〈k−2m−1〉 and g
′ ∈ H〈k′−2m′−1〉. By (3.60). (5.2), (6.6) and (6.19), we have

((
∞∑

i=0

(−2)ix2i+1
0 Di

(2i+ 1)!

)

(η2m+1(g))|

(
∞∑

r=0

(−2)rx2r+1
0 Dr

(2r + 1)!

)

(η2m
′+1(g′))

)

=

m∑

i=0

22i

(2i+ 1)!
[

i∏

s=1

(m− s)(m− k + n1 − n2 + 2 + s)]

×[

i∏

s′=1

(m′ − s′)(m′ − k′ + n1 − n2 + 2 + s′)](ηm−i(g)|ηm
′−i(g′))

= 0 if (m, k − 2m− 1) 6= (m′, k′ − 2m′ − 1). (6.24)

Since (x2i0 |x
2i′+1
0 ) = 0 for i, i′ ∈ N, the elements of the form (6.18) are orthogonal to those

of the form (6.19). Hence (6.22) holds by (6.8).

For g ∈ H′
〈k〉 and m ∈ N+ 1,

D′[(η′)m(g)] = 2m[2(k + n2 − n1 +m− 1) + 1](η′)m−1(g) (6.25)

by (3.44) and the facts D′ = ∂2x0
− 2D and its dual η′ = x20 + 2η. This shows that

((η′)m(H′
〈k〉)|(η

′)m
′

(H′
〈k′〉)) = {0} if (m, k) 6= (m′, k′) (6.26)

for n1 − n2 + 1 − δn1,n2
≥ k, k′ ∈ Z and m,m′ ∈ N by (6.7). Moreover, the symmetric

bilinear form (·|·) restricted to (η′)m(H′
〈k〉) is nondegenerate.

Fix n1 − n2 + 1− δn1,n2
≥ k ∈ Z. Denote

B̂′
〈k〉 =

∞⊕

i=0

(η′)i(H′
〈k−2i〉) (6.27)

Then the symmetric bilinear form (·|·) restricted to B̂′
〈k〉 is nondegenerate. Thus

B′
〈k〉 = B̂′

〈k〉 ⊕ (B̂′
〈k〉)

⊥
⋂

B′
〈k〉. (6.28)

According to Lemma 3.2, (B̂′
〈k〉)

⊥
⋂

B′
〈k〉 is an o(2n+1,F)-module. Assume (B̂′

〈k〉)
⊥
⋂
B′
〈k〉 6=

{0}. By (5.2), (5.3), (5.8)-(5.13), (5.23) and (1.23), there exists a nonzero element in

(B̂′
〈k〉)

⊥
⋂
B′
〈k〉 of the form:

f =

m∑

i=0

aix
2i
0 (2η)

m−i(x−k+2m
n1

) (6.29)



or

g =
m∑

i=0

bix
2i+1
0 (2η)m−i(x−k+2m+1

n1
) (6.30)

for some m ∈ N+ 1. Moreover, we assume that the exponent of xn1
is minimal.

If (6.29) holds, then (6.11)) and (6.13) give

(En1,0 − E0,n+n1
)(f) = (∂x0

∂xn1
− x0∂yn1

)(f)

=
m∑

i=1

2i(−k + 2m)aix
2i−1
0 (2η)m−i(x−k+2m−1

n1
)

−
m−1∑

i=0

2(m− i)(−k + 2m)aix
2i+1
0 (2η)m−i−1(x−k+2m−1

n1
)

= 2(−k + 2m)

m−1∑

i=0

[(i+ 1)ai+1 − (m− i)ai]x
2i+1
0 (2η)m−i−1(x−k+2m−1

n1
)

= 0 (6.31)

by the minimality of the exponent of xn1
, equivalently

(i+ 1)ai+1 = (m− i)ai for i ∈ 0, m− 1. (6.32)

Thus

ai = a0

(
m

i

)

for i ∈ 0, m. (6.33)

So

f =

m∑

i=0

a0

(
m

i

)

x2i0 (2η)
m−i(x−k+2m

n1
) = a0(η

′)m(x−k+2m
n1

) ∈ B̂′
〈k〉, (6.34)

which contradicts (6.28).

Suppose that (6.30) holds. Note x0x
−k+2m+1
n1

∈ H′
〈k−2m〉 by (1.23). Expressions (6.11)

and (6.13) deduce

(En1,0 − E0,n+n1
)(g) = (∂x0

∂xn1
− x0∂yn1

)(g)

=
m∑

i=0

(2i+ 1)(−k + 2m+ 1)bix
2i
0 (2η)

m−i(x−k+2m
n1

)

−
m−1∑

i=0

2(m− i)(−k + 2m+ 1)bix
2i+2
0 (2η)m−i−1(x−k+2m

n1
)

= (−k + 2m+ 1)
{

m−1∑

i=0

[(2i+ 3)bi+1 − 2(m− i)bi]x
2i+2
0 (2η)m−i−1(x−k+2m

n1
)

+b0(2η)
m(x−k+2m

n1
)
}
= 0 (6.35)

by the minimality of the exponent of xn1
, equivalently

b0 = 0, (2i+ 3)bi+1 = 2(m− i)bi for i ∈ 0, m− 1. (6.36)

Thus bi = 0 for i ∈ 0, m, that is, g = 0. This contradicts our choice of nonzero element.

Hence (B̂′
〈k〉)

⊥
⋂

B′
〈k〉 = {0}. Then (6.28) gives (6.4). Furthermore, (6.5) is obtained by

Lemma 3.1 with T1 = ∂2x0
, T−

1 =
∫ (2)

(x0)
(cf. (2.6) and (2.7)) and T2 = 2D.



When n1 = n2, an expression of H′
〈k〉 can be obtained via (5.3), (5.27)-(5.31), (6.8),

(6.18) and (6.19). In particular, when n1 = n2 = n, the (G,K)-module structure is given

by

H′
〈−k〉 =

∞⊕

m,r=0

(
∞∑

i=0

(−2)ix2i0 D
i

(2i)!

)

(ηr(H〈−k−2r−m,m〉))

⊕

∞⊕

l,s=0

(
∞∑

i=0

(−2)ix2i+1
0 Di

(2i+ 1)!

)

(ηs(H〈−k−2s−1−l,l〉)), (6.37)

where H〈−m1−m2,m2〉 given in (4.42). 2

7 Noncanonical Representations of sp(2n,F)

In this section, we use the results in Sections 3 and 4 to study noncanonical polynomial

representation of sp(2n,F).

Recall the symplectic Lie algebra

sp(2n,F) =
n∑

i,j=1

F(Ei,j −En+j,n+i) +
n∑

i=1

(FEi,n+i + FEn+i,i)

+
∑

1≤i<j≤n

[F(Ei,n+j + En+j,i) + F(En+i,j + En+j,i)]. (7.1)

Again we take the Cartan subalgebra H =
∑n

i=1 F(Ei,i − En+i,n+i) and the subspace

spanned by positive root vectors

sp(2n,F)+ =
∑

1≤i<j≤n

[F(Ei,j −En+j,n+i) + F(Ei,n+j + En+j,i)] +
n∑

i=1

FEi,n+i. (7.2)

Fix 1 ≤ n1 ≤ n2 ≤ n. The noncanonical oscillator representation of sp(2n,F) on B =

F[x1, ..., xn, y1, ..., yn] is defined via (1.14)-(1.16). Recall K =
∑n

i,j=1 F(Ei,j − En+j,n+i).

Theorem 7.1. Let k ∈ Z. If n1 < n2 or k 6= 0, the subspace B〈k〉 (cf. (1.17)) is an

irreducible sp(2n,F)-module. Moreover, it is a highest-weight module only if n2 = n, in

which case for m ∈ N, x−m
n1

is a highest-weight vector of B〈−m〉 with weight −mλn1−1 +

(m − 1)λn1
, xm+1

n1+1 is a highest-weight vector of B〈m+1〉 with weight −(m + 2)λn1
+ (m +

1)λn1+1 + (m + 1)δn1,n−1λn if n1 < n and ym+1
n is a highest-weight vector of B〈m+1〉 with

weight (m+ 1)λn−1 − 2(m+ 1)λn when n1 = n.

When n1 = n2, the subspace B〈0〉 is a direct sum of two irreducible sp(2n,F)-submodules.

If n1 = n2 = n, they are highest-weight modules with a highest-weight vector 1 of weight

−2λn and with a highest-weight vector xn−1yn − xnyn−1 of weight δn,2λn−2 − 4λn, respec-

tively. If n1 = n2 = n, all the irreducible modules are of (G,K)-type.

Proof. Recall that we embed sl(n,F) into sp(2n,F) via Ei,j 7→ Ei,j−En+j,ni
. Moreover,

B is nilpotent with respect to sl(n,F)+ (cf. (2.30)) and

η =

n1∑

i=1

yi∂xi
+

n2∑

r=n1+1

xryr +
n∑

s=n2+1

xs∂ys . (7.3)



Note

(Ei,n+j + Ej,n+i)|B = ∂xi
∂yj + ∂xj

∂yi , (Ei,n+r + Er,n+i)|B = ∂xi
∂yr + xr∂yi , (7.4)

(Er,n+s + Es,n+r)|B = xr∂ys + xs∂yr (7.5)

for i, j ∈ 1, n1 and r, s ∈ n1 + 1, n2 by (1.15). Moreover,

(Ei,j − En+j,n+i)|B = −xj∂xi
− yj∂yi − δi,j (7.6)

and

(Ei,r −En+r,n+i)|B = ∂xi
∂xr

− yr∂yi (7.7)

for i, j ∈ 1, n1 and r ∈ n1 + 1, n2 by (1.7), (1.8) and (1.14). We will process our arguments

in two steps.

Step 1. n2 = n.

Under the assumption, B is nilpotent with respect to sp(2n,F)+ by (7.4)-(7.7).

First we assume n1 + 1 < n. According to (3.37), the nonzero weight vectors in

Span{ηm3(xm1

i ym2

n ) | mr ∈ N; i = n1, n1 + 1} (7.8)

are all the singular vectors of sl(n,F) in B. The singular vectors of sp(2n,F) in B must be

among them. Moreover, the subalgebra sp(2n,F)+ is generated by sl(n,F)+ and En,2n.

According to (7.5), En,2n|B = xn∂yn . Hence

En,2n(η
m3(xm1

i ym2

n )) = xn[m3xnη
m3−1(xm1

i ym2

n ) +m2η
m3(xm1

i ym2−1
n )] (7.9)

for i = n1, n1+1 by (7.3). Considering weights, we conclude that the vectors {xmn1
, xm+1

n1+1 |

m ∈ N are all the singular vectors of sp(2n,F) in B. Furthermore,

xmn1
∈ B〈−m〉 and xm+1

n1+1 ∈ B〈m+1〉 for m ∈ N. (7.10)

Thus each B〈k〉 has a unique non-isotropic singular vector for k ∈ Z. By Lemma 3.3, all

B〈k〉 with k ∈ Z are irreducible highest-weight sp(2n,F)-submodules.

Consider the case n1 + 1 = n. According to (3.112), the nonzero weight vectors in

Span{ηm2(xm1

n−1y
m3

n ), xm1

n ym2

n , ηm1+m2(xm2

n−1y
m3−m1

n ) | mi ∈ N} (7.11)

are all the singular vectors of sl(n,F) in B. Recall En,2n|B = xn∂yn . We have

En,2n(x
m1

n ym2

n ) = m2x
m1+1
n ym2−1

n . (7.12)

By (7.11) and considering weights, we again conclude that the vectors {xmn−1, x
m+1
n | m ∈ N

are all the singular vectors of sp(2n,F) in B. Again all B〈k〉 with k ∈ Z are irreducible

highest-weight sp(2n,F)-submodules.

Suppose n1 = n. By (7.4), we have En,2n = ∂xn
∂yn in this case. According to (4.31),

the nonzero weight vectors in

Span{xm1

n ym2

n ζm3

1 | mi ∈ N} (7.13)



are all the singular vectors of sl(n,F) in B, where ζ1 = xn−1yn − xnyn−1 in this case.

En,2n(x
m1

n ym2

n ζm3

1 )

= m1m2x
m1−1
n ym2−1

n ζm3

1 +m1m3xn−1x
m1−1
n ym2

n ζm3−1
1

−m2m3yn−1x
m1

n ym2−1
n ζm3−1

1 −m3(m3 − 1)xn−1yn−1x
m1

n ym2

n ζm3−2
1

= m1(m2 +m3)x
m1−1
n ym2−1

n ζm3

1 +m3(m1 −m2 −m3 + 1)yn−1x
m1

n ym2−1
n ζm3−1

1

−m3(m3 − 1)y2n−1x
m1+1
n ym2−1

n ζm3−2
1 . (7.14)

Considering weights, we again conclude that the vectors {xmn , y
m+1
n , ζ1 | m ∈ N} are all

the singular vectors of sp(2n,F) in B. Moreover,

xmn ∈ B〈−m〉, ζ1 ∈ B〈0〉 and ym+1
n ∈ B〈m+1〉 for m ∈ N. (7.15)

Thus each B〈k〉 with k 6= 0 has a unique non-isotropic singular vector for k ∈ Z. By

Lemma 3.3, all B〈k〉 with 0 6= k ∈ Z are irreducible highest-weight sp(2n,F)-submodules.

Set

B〈0,1〉 = Span{[
∏

1≤r≤s≤n

(xrys + xsyr)
lr,s ] | lr,s ∈ N} (7.18)

and

B〈0,2〉 = Span{[
∏

1≤r≤s≤n

(xrys + xsyr)
lr,s ](xpyq − xqyp) | lr,s ∈ N; 1 ≤ p < q ≤ n}. (7.19)

Let

G ′ =
∑

1≤r≤s≤n

F(En+s,r + En+r,s) (7.20)

and

Ĝ =

n∑

i,j=1

F(Ei,j − En+j,n+i) +
∑

1≤r≤s≤n

F(Er,n+s + Es,n+r). (7.21)

Then G ′ and Ĝ are Lie subalgebras of sp(2n,F) and sp(2n,F) = G ′⊕Ĝ. By PBW Theorem

U(sp(2n,F)) = U(G ′)U(Ĝ). (7.22)

Note

(En+s,r + En+r,s)B = −(xrys + xsyr) for r, s ∈ 1, n (7.23)

by (1.16). According to (7.4), (7.6) and (7.23),

B〈0,1〉 = U(G ′)(1) = U(sp(2n,F))(1) (7.24)

and

B〈0,2〉 =
∑

1≤p<q≤n

U(G ′)(xpyq − xqyp) = U(sp(2n,F))(ζ1) (7.25)

are sp(2n,F)-submodules.

It is obvious, 1 6∈ B〈0,2〉. On the other hand, (B〈0,1〉|xn−1yn − xnyn−1) = {0}. Hence

xn−1yn − xnyn−1 6∈ B〈0,1〉. Thus B〈0,1〉 and B〈0,0〉 have a unique non-isotropic singular



vector. By Lemma 3.3, they are irreducible. Since 1 and xn−1yn − xnyn−1 are the only

singular vectors in B〈0〉 which is nilpotent with respect to sp(2n,F)+, Lemma 2.3 yields

B〈0〉 = B〈0,1〉 ⊕ B〈0,2〉 (7.26)

by the similar arguments as those from (3.67) to (3.69).

Step 2. n2 < n.

We set

G1 =

n2∑

i,j=1

F(Ei,j − En+j,n+i) +

n2∑

i=1

(FEi,n+i + FEn+i,i)

+
∑

1≤i<j≤n2

[F(Ei,n+j + En+j,i) + F(En+i,j + En+j,i)] (7.27)

and

G2 =

n∑

i,j=n1+1

F(Ei,j −En+j,n+i) +

n∑

i=n1+1

(FEi,n+i + FEn+i,i)

+
∑

n1+1≤i<j≤n

[F(Ei,n+j + En+j,i) + F(En+i,j + En+j,i)]. (7.28)

Then G1 = sp(2n2,F) and G2
∼= sp(2(n− n1),F) are Lie subalgebras of sp(2n,F). Denote

M1 = F[x1, ..., xn2
, y1, ..., yn2

], M2 = F[xn1+1, ..., xn, yn1+1, ..., yn]. (7.29)

Observe that M1 is exactly the G1-module as B in Step 1 with n→ n2 and M2 is exactly

the G1-module as B in Step 1 with n1 = n2 and n→ n− n1. Moreover, we set

M3 = F[x1, ..., xn1
, y1, ..., yn1

], M4 = F[xn1+1, ..., xn2
, yn1+1, ..., yn2

]. (7.30)

Let

Mi
〈k〉 = Mi

⋂

B〈k〉 for i ∈ 1, 4, k ∈ Z. (7.31)

Then

M1
〈k〉 =

⊕

r∈Z

M3
〈r〉M

4
〈k−r〉 for k ∈ Z. (7.32)

Next we prove the theorem case by case.

Case 1. n1 + 1 < n2

According to (3.36), the nonzero weight vectors in

Span{ηm3(xm1

i ym2

j ) | mr ∈ N; i = n1, n1 + 1; j = n2, n2 + 1} (7.33)

are all the singular vectors of sl(n,F) in B. Fix k ∈ N. Then the singular vectors of

sl(n,F) in B〈−k〉 are

{ηm3(xk+m2+2m3

n1
ym2

n2
), ηm3(xm1

n1+1y
k+m1+2m3

n2+1 ),

ηm3(xm4

n1
ym5

n2+1) | mi ∈ N;m4 +m5 − 2m3 = k}. (7.34)



LetM be a nonzero sp(2n,F)-submodule of B〈−k〉. ThenM contains a singular of sl(n,F).

Suppose some ηm3(xk+m2+2m3

n1
ym2

n2
) ∈M . We have En1,n+n1

|B = ∂xn1
∂yn1

and

Em3

n1,n+n1
[ηm3(xk+m2+2m3

n1
ym2

n2
)] = m3![

2m3∏

r=1

(k +m2 + r)]xk+m2

n1
ym2

n2
∈M (7.35)

by (7.3) and (7.4). Moreover, (En1,n+n2
+ En2,n+n1

)|B = ∂xn1
∂yn2

+ xn2
∂yn1

and

(En1,n+n2
+ En2,n+n1

)m2(xk+m2

n1
ym2

n2
) = m2![

m2∏

r=1

(k + r)]xkn1
∈M (7.36)

by (7.4). Thus

xkn1
∈M. (7.37)

Assume some ηm3(xm1

n1+1y
k+m1+2m3

n2+1 ) ∈M . According to (1.16),

(En+i,j + En+j,i)|B = ∂xi
∂yj + ∂xj

∂yi for i ∈ n2 + 1, n. (7.38)

So

Em3

n+n2+1,n2+1[η
m3(xm1

n1+1y
k+m1+2m3

n2+1 )] = m3![

2m3∏

r=1

(k +m1 + r)]xm1

n1+1y
k+m1

n2+1 ∈M. (7.39)

Moreover,

(En+n2+1,n1+1 + En+n1+1,n2+1)|B = ∂xn1+1
∂yn2+1

+ yn1+1∂xn2+1
(7.40)

by (1.16). Hence

(En+n2+1,n1+1 + En+n1+1,n2+1)
m1(xm1

n1+1y
k+m1

n2+1 ) = m1![

m1∏

r=1

(k + r)]ykn2+1 ∈M. (7.41)

Furthermore,

(En+n2+1,n1
+ En+n1,n2+1)|B = −xn1

∂yn2+1
+ yn1

∂xn2+1
(7.42)

by (1.16). Thus

(En+n2+1,n1
+ En+n1,n2+1)

k(ykn2+1) = (−1)kk!xkn1
∈M. (7.43)

Thus (7.37) holds again.

Consider ηm3(xm4

n1
ym5

n2+1) for some m3, m3, m4 ∈ N such that m4+m5− 2m3 = k. Note

that En1+1,n+n1+1|B = xn1+1∂yn1+1
by (7.5) and

Em3

n1+1,n+n1+1[η
m3(xm4

n1
ym5

n2+1)] = m3!x
2m3

n1+1x
m4

n1
ym5

n2+1 ∈M. (7.44)

There exists r1, r2 ∈ N such that r1 + r2 = 2m3 and r1 ≤ m4, r2 ≤ m5. Moreover,

(En1,n1+1 −En+n1+1,n+n1
)|B = ∂xn1

∂xn1+1
− yn1+1∂yn1

(7.45)

by (1.7), (1.8) and (1.14). Moreover, (7.40) and (7.45) yield

(En1,n1+1 − En+n1+1,n+n1
)r1(En+n2+1,n1+1 + En+n1+1,n2+1)

r2(x2m3

n1+1x
m4

n1
ym5

n2+1)

= (2m3)![

r1−1∏

s1=0

(m4 − s1)][

r2−1∏

s2=0

(m5 − s2)]x
m4−r1
n1

ym5−r2
n2+1 ∈M. (7.46)



Furthermore, (7.42) yields

(En+n2+1,n1
+ En+n1,n2+1)

m5−r2(xm4−r1
n1

ym5−r2
n2+1 )

= (−1)m5−r2(m5 − r2)!x
k
n1

∈M. (7.47)

Thus we always have xkn1
∈ M .

Note that M1
〈−k〉 ∋ xkn1

is an irreducible G1-module (cf. (7.27) and (7.29)) by Step 1.

So

M1
〈−k〉 ⊂M. (7.48)

Let r ∈ Z. According to (7.32),

M3
〈r〉M

4
〈−k−r〉 ⊂ M1

〈−k〉 ⊂M. (7.49)

Moreover, M2
〈−k−r〉 ⊃ M4

〈−k−r〉 is an irreducible G2-module (cf. (7.28) and (7.29)) by Step

1. Thus

M3
〈r〉M

2
〈−k−r〉 = U(G2)(M

3
〈r〉M

4
〈−k−r〉) ⊂M. (7.50)

Then

B〈−k〉 =
⊕

r∈Z

M3
〈r〉M

2
〈−k−r〉 ⊂ M (7.51)

by (7.29) and (7.30). Therefore, M = B〈−k〉, that is, B〈−k〉 is an irreducible sp(2n,F)-

submodule.

Fix 0 < k ∈ N. Then the singular vectors of sl(n,F) in B〈k〉 are

{ηm2(xk+m1−2m2

n1+1 ym1

n2+1), η
m2(xm1

n1
yk+m1−2m2

n2
), ηm3(xm4

n1+1y
m5

n2
)

| mi ∈ N; 2m2 ≤ k +m1;m4 +m5 + 2m3 = k} (7.52)

by (7.33). Let M be a nonzero sp(2n,F)-submodule of B〈k〉. Then M contains a singular

of sl(n,F). Suppose some ηm2(xk+m1−2m2

n1+1 ym1

n2+1) ∈ M with 2m2 ≤ k + m1. We have

En1+1,n+n1+1|B = xn1+1∂yn1+1
and

Em2

n1+1,n+n1+1[η
m2(xk+m1−2m2

n1+1 ym1

n2
)] = m2!x

k+m1

n1+1 y
m1

n2+1 ∈M (7.53)

by (7.3) and (7.5). Moreover, (7.40) gives

(En+n2+1,n1+1 + En+n1+1,n2+1)
m1(xk+m1

n1+1 y
m1

n2+1) = m1![

m1∏

r=1

(k + r)]xkn1+1 ∈M. (7.54)

Thus

xkn1+1 ∈M. (7.55)

Assume some ηm2(xm1

n1
yk+m1−2m2

n2
) ∈ M with 2m2 ≤ k + m1. Observe En+n2,n2

=

yn2
∂xn2

by (1.16). So

Em2

n+n2,n2
[ηm2(xm1

n1
yk+m1−2m2

n2
)] = m2!x

m1

n1
yk+m1

n2
∈ M. (7.56)

Moreover, (7.4) gives that (En1,n+n2
+ En2,n+n1

)|B = ∂xn1
∂yn2

+ xn2
∂yn1

and

(En1,n+n2
+ En2,n+n1

)m1(xm1

n1
yk+m1

n2
) = m1![

m1∏

r=1

(k + r)]ykn2
∈M. (7.57)



Furthermore, (7.5) yields that (En1+1,n+n2
+ En2,n+n1+1)|B = xn1+1∂yn2

+ xn2
∂yn1+1

and

(En1+1,n+n2
+ En2,n+n1+1)

k(ykn2
) = k!xkn1+1 ∈M. (7.58)

Thus (7.55) holds again.

Consider ηm3(xm4

n1+1y
m5

n2
) for some m3, m3, m4 ∈ N such that m4+m5+2m3 = k. Note

En1+1,n+n1+1 = xn1+1∂yn1+1
by (7.5). So

Em3

n1+1,n+n1+1[η
m3(xm4

n1+1y
m5

n2
)] = m3!x

m4+2m3

n1+1 ym5

n2
∈M. (7.59)

According to (7.5),

(En1+1,n+n2
+ En2,n+n1+1)

m5(xm4+2m3

n1+1 ym5

n2
) = m5!x

k
n1+1 ∈M. (7.60)

Therefore, we always have xkn1+1 ∈M .

Observe that M2
〈k〉 ∋ xkn1+1 is an irreducible G2-module (cf. (7.28) and (7.29)) by Step

1. So

M2
〈k〉 ⊂ M. (7.61)

Let r ∈ Z. Denote

M5 = F[xn2+1, ..., xn, yn2+1, ..., yn], M5
〈k〉 = M5

⋂

B〈k〉, k ∈ Z. (7.62)

Then

M2
〈k〉 =

⊕

r∈Z

M4
〈r〉M

5
〈k−r〉 (7.63)

(cf. (7.30)). Fix r ∈ Z.

M4
〈r〉M

5
〈k−r〉 ⊂ M2

〈k〉 ⊂M. (7.64)

Moreover, M1
〈r〉 ⊃ M4

〈r〉 is an irreducible G1-module (cf. (7.27) and (7.29)) by Step 1.

Thus

M1
〈r〉M

5
〈k−r〉 = U(G1)(M

4
〈r〉M

5
〈k−r〉) ⊂M. (7.65)

Furthermore,

B〈k〉 =
⊕

r∈Z

M1
〈r〉M

5
〈k−r〉 ⊂ M (7.66)

by (7.27) and (7.65). Therefore, M = B〈k〉, that is, B〈k〉 is an irreducible sp(2n,F)-

submodule.

Case 2. n2 = n1 + 1.

According to (3.104), the nonzero weight vectors in

Span{ηm2(xm1

i ym3

j ), xm1

n1+1y
m2

n1+1, η
m1+m2(xm2

n1
ym3−m1

n1+1 ), ηm1+m2(ym2

n1+2x
m3−m1

n1+1 )

| mr ∈ N; (i, j) = (n1, n1 + 1), (n1, n1 + 2), (n1 + 1, n1 + 2)}. (7.67)

are all the singular vectors of sl(n,F) in B. Fix k ∈ N. Then the singular vectors of

sl(n,F) in B〈−k〉 are those in (7.34). According to the arguments in Case 1, B〈−k〉 is an



irreducible sp(2n,F)-submodule. Let 0 < k ∈ N. Then the singular vectors of sl(n,F) in

B〈k〉 are

{ηm2(xk+m1−2m2

n1+1 ym1

n1+2), η
m2(xm1

n1
yk+m1−2m2

n1+1 ), ηm5+m6(xm6

n1
ym7−m5

n1+1 ), ηm5+m6(ym6

n1+2x
m7−m5

n1+1 ),

xm3

n1+1y
m4

n1+1 | mi ∈ N; 2m2 ≤ k +m1;m3 +m4 = k = m5 +m5 +m7} (7.68)

by (7.67). Let M be a nonzero sp(2n,F)-submodule of B〈k〉. As an sl(n,F)-module, M

contains a singular of sl(n,F). If xm3

n1+1y
m4

n1+1 ∈M withm3+m4 = k, then En1+1,n+n1+1|B =

xn1+1∂yn1+1
and

Em4

n1+1,n+n1+1(x
m3

n1+1y
m4

n1+1) = m4!x
k
n1+1 ∈M =⇒ xkn1+1 ∈M (7.69)

by (7.5). Suppose some ηm5+m6(xm6

n1
ym7−m5

n1+1 ) ∈M with m5 +m5 +m7 = k. According to

(1.16), En+n1+1,n1+1 = yn1+1∂xn1+1
. So

Em5+m6

n+n1+1,n1+1[η
m5+m6(xm6

n1
ym7−m5

n1+1 )] = (m5 +m6)!x
m6

n1
yk+m6

n1+1 ∈M. (7.70)

Moreover, (7.4) yields that (En1,n+n1+1 + En1+1,n+n1
)|B = ∂xn1

∂yn1+1
+ xn1+1∂yn1

and

(En1,n+n1+1 + En1+1,n+n1
)m6(xm6

n1
yk+m6

n1+1 ) = m6![

m6∏

r=1

(k + r)]ykn1+1 ∈M. (7.71)

Assume some ηm5+m6(ym6

n1+2x
m7−m5

n1+1 ) ∈M with m5 +m5 +m7 = k. By (7.3) and (7.5),

Em5+m6

n1+1,n+n1+1[η
m5+m6(ym6

n1+2x
m7−m5

n1+1 )] = (m5 +m6)!y
m6

n1+2x
k+m6

n1+1 ∈M. (7.72)

Observe

(En+n1+2,n1+1 + En+n1+1,n1+2)|B = ∂xn1+1
∂yn1+2

+ yn1+1∂xn1+2
(7.73)

by (1.16). Hence

(En+n1+2,n1+1 + En+n1+1,n1+2)
m6(ym6

n1+2x
k+m6

n1+1 ) = m6![

m6∏

r=1

(k + r)]xkn1+1 ∈M. (7.74)

Expressions (7.53)-(7.60), (7.69), (7.71) and (7.74) show that we always have xkn1+1 ∈

M . Furthermore, (7.61)-(7.66) imply that B〈k〉 is an irreducible sp(2n,F)-module.

Case 3. n1 = n2.

In this case,

η =

n1∑

i=1

yi∂xi
+

n∑

s=n2+1

xs∂ys . (7.75)

First we consider the subcase 1 < n1 < n − 1. Expression (4.17) says that the nonzero

weight vectors in

Span{xm1

n1
ym2

n1
ζm3+1
1 , xm1

n1+1y
m2

n1+1ζ
m3+1
2 , ηm3(xm1

n1
ym2

n1+1) | mi ∈ N} (7.76)

are all the singular vectors of sl(n,F) in B, where

ζ1 = xn1−1yn1
− xn1

yn1−1, ζ2 = xn1+1yn1+2 − xn1+2yn1+1. (7.77)



Fix k ∈ N+ 1. Then the singular vectors of sl(n,F) in B〈−k〉 are

{xk+m1

n1
ym1

n1
ζm2+1
1 , xm1

n1+1y
k+m1

n1+1 ζ
m2+1
2 , ηm3(xm4

n1
ym5

n1+1)

| mi ∈ N;m4 +m5 − 2m3 = k}. (7.78)

Let M be a nonzero sp(2n,F)-submodule of B〈−k〉. As an sl(n,F)-module, M contains

a singular vector of sl(n,F). Suppose some xk+m1

n1
ym1

n1
ζm2+1
1 ∈ M . Note En1,n+n1

|B =

∂xn1
∂yn1

by (7.4), and so

En1,n+n1
(xk+m1

n1
ym1

n1
ζm2

1 )

= (k +m1)m1x
k+m1−1
n1

ym1−1
n1

ζm2

1 −m2(m2 − 1)xk+m1

n1
ym1

n1
xn1−1yn1−1ζ

m2−2
1

+(k +m1)m2x
k+m1−1
n1

ym1

n1
xn1−1ζ

m2−1
1 −m1m2x

k+m1

n1
ym1−1
n1

yn1−1ζ
m2−1
1 . (7.79)

Moreover,

(En1−1,n1
−En+n1,n+n1−1)|B = −(xn1

∂xn1−1
+ yn1

∂yn1−1
) (7.80)

by (1.7), (1.8) and (1.14). Thus

(En1−1,n1
− En+n1,n+n1−1)

2En1,n+n1
(xk+m1

n1
ym1

n1
ζm2

1 )

= −2m2(m2 − 1)xk+m1+1
n1

ym1+1
n1

ζm2−2
1 ∈M. (7.81)

Hence

xk+m1+1
n1

ym1+1
n1

ζm2−2
1 ∈M if m2 > 1. (7.82)

Furthermore,

(En1−1,n1
−En+n1,n+n1−1)En1,n+n1

(xk+m1

n1
ym1

n1
ζ1) = −kxk+m1

n1
ym1

n1
∈M. (7.83)

So we always have xk+m
n1

ymn1
∈M for some m ∈ N by induction on m2.

Observe

En1,n+n1
(xk+m

n1
ymn1

) = ∂xn1
∂yn1

(xk+m
n1

ymn1
) = m![

m∏

r=1

(k + r)]xkn1
(7.84)

by (7.4). Thus

xkn1
∈M. (7.85)

Symmetrically, if some xm1

n1+1y
k+m1

n1+1 ζ
m2+1
2 ∈M , we have ykn1+1 ∈M . But

(En+n1+1,n1
+ En+n1,n1+1)|B = −xn1

∂yn1+1
+ yn1

∂xn1+1
(7.86)

by (1.16), which gives

(En+n1+1,n1
+ En+n1,n1+1)

k(ykn1+1) = (−1)kk!xkn1
∈M. (7.87)

Thus (7.85) holds again.

Assume that some ηm3(xm4

n1
ym5

n1+1) ∈ M with m4 +m5 − 2m3 = k. Note there exists

r1, r2 ∈ N such that r1 + r2 = m3 and 2r1 ≤ m4, 2r2 ≤ m5. Moreover, En1,n+n1
|B =

∂xn1
∂yn1

by (7.4) and En+n1+1,n1+1|B = ∂xn1+1
∂yn1+1

by (1.16). Thus

Er1
n1,n+n1

Er2
n+n1+1,n1+1[η

m3(xm4

n1
ym5

n1+1)]

= m3![

2r1−1∏

s1=0

(m4 − s1)][

2r2−1∏

s2=0

(m5 − s2)]x
m4−2r1
n1

ym5−2r2
n1+1 ∈M. (7.88)



Furthermore, (1.16) gives (En+n1+1,n1
+ En+n1,n1+1)|B = −xn1

∂yn1+1
+ yn1

∂xn1+1
, and so

(En+n1+1,n1
+ En+n1,n1+1)

m5−2r2(xm4−2r1
n1

ym5−2r2
n1+1 )

= (−1)m5−2r2(m5 − 2r2)!x
k
n1

∈M. (7.89)

Thus we always have xkn1
∈ M .

Now

(En1,n+n1+1 + En1+1,n+n1
)|B = −yn1+1∂xn1

+ xn1+1∂yn1
(7.90)

by (7.4). For any r ∈ N+ 1,

(−1)r
∏r−1

s=0(k − r)
(En1,n+n1+1 + En1+1,n+n1

)r(xkn1
) = xk−r

n1
yrn1+1 ∈M. (7.91)

If k ≥ 2 and r ∈ 1, k − 1, then

M1
〈−k+r〉M

2
〈−r〉 = U(G1)U(G2)(x

k−r
n1

yrn1+1) ⊂M (7.92)

because M1
〈−k+r〉 is an irreducible G1-module and M2

〈−r〉 is an irreducible G2-module by

Step 1. Moreover,

M1
〈−k〉 = U(G1)(x

k
n1
), M2

〈−k〉 = U(G2)(y
k
n1+1) ⊂M. (7.93)

Furthermore,

M1
〈−k〉M

2
〈0〉 = U(G1)U(G2)(x

k
n1
) ⊂M if n1 = n− 1 (7.94)

and

M1
〈0〉M

2
〈−k〉 = U(G1)U(G2)(y

k
n1+1) ⊂M if n1 = 1. (7.95)

Note

(Er,i −En+i,n+r)|B = yiyr − xixr for i ∈ 1, n1, r ∈ n1 + 1, n (7.96)

by (1.7), (1.8) and (1.14). In particular, if k > 1 or n1 = 1, we have

(En1+1,n1
−En+n1,n+n1+1)(x

k
n1
) = yn1

xkn1
yn1+1 − xk+1

n1
xn1+1 ∈M. (7.97)

Since

yn1
xkn1

yn1+1 ∈ M1
〈−k+1〉M

2
〈−1〉 ⊂M, (7.98)

we get

xk+1
n1

xn1+1 ∈M. (7.99)

Suppose k = 1 and n1 > 1. By (7.93),

ζ1xn1
= (xn1−1yn1

− xn1
yn1−1)xn1

∈M. (7.100)

Observe

(En1+1,n+n1−1 + En1−1,n+n1+1)|B = xn1+1∂yn1−1
− yn1+1∂xn1−1

(7.101)

by (1.15). So

−(En1+1,n+n1−1 + En1−1,n+n1+1)(ζ1xn1
) = x2n1

xn1+1 − xn1
yn1

yn1+1 ∈M. (7.102)



On the other hand, (1.16) gives

(En+i,j + En+j,i)|B = −(xiyj + xjyi) for i, j ∈ 1, n1, (7.103)

which implies

−En+n1,n1
(yn1+1) = xn1

yn1
yn1+1 ∈M. (7.104)

By (7.102), we have x2n1
xn1+1 ∈M. So (7.99) always holds.

By Step 1,

M1
〈−k−1〉M

2
〈1〉 = U(G1)U(G2)(x

k+1
n1

xn1+1) ⊂ M. (7.105)

Suppose

M1
〈−k−i〉M

2
〈i〉 ⊂ M (7.106)

for 1 ≤ i ≤ m. Then

(En1+1,n1
− En+n1,n+n1+1)(x

k+m
n1

xmn1+1)

= yn1
xk+m
n1

xmn1+1yn1+1 − xk+m+1
n1

xm+1
n1+1 ∈M (7.107)

by (7.96). If m > 1, we have

yn1
xk+m
n1

xmn1+1yn1+1 ∈ M1
〈−k−(m−1)〉M

2
〈m−1〉 ⊂M. (7.108)

Note

(Er,n+s + Es,n+r)|B = −(xrys + xsyr) for r, s ∈ n1 + 1, n (7.109)

by (1.15). If m = 1, we have

yn1
xk+1
n1

xn1+1yn1+1 = −En1+1,n+n1+1(yn1
xk+1
n1

) ⊂ En1+1,n+n1+1(M
1
〈−k〉) ⊂M. (7.110)

Then (7.107), (7.108) and (7.110) give

xk+m+1
n1

xm+1
n1+1 ∈M. (7.111)

Furthermore,

M1
〈−k−m−1〉M

2
〈m+1〉 = U(G1)U(G2)(x

k+m+1
n1

xn1+m+1) ⊂M. (7.112)

Thus (7.106) holds for any i ∈ N+ 1. Symmetrically, we have

M1
〈i〉M

2
〈−k−i〉 ⊂ M for i ∈ N + 1. (7.113)

Suppose n1 < n− 1. Then xk+1
n1

xn1+1ζ2 ∈M by (7.105). Moreover,

(k + 1)yn1
xkn1

yn1+1ζ2 = −(k + 1)En+n1,n1
(xk−1

n1
yn1+1ζ2) ∈M (7.114)

by (7.92) and (7.103). According (1.7), (1.8) and (1.14),

(En1,n1+1 − En+n1+1,n+n1
)|B = ∂xn1

∂xn1+1
− ∂yn1

∂yn1+1
. (7.115)

Thus

(En1,n1+1 − En+n1+1,n+n1
)[(xk+1

n1
xn1+1 − (k + 1)yn1

xkn1
yn1+1)ζ2]

= 3(k + 1)xkn1
ζ2 ∈M (7.116)



by (7.77). Hence

M1
〈−k〉M

2
〈0〉 = U(G1)U(G2)(x

k
n1
) + U(G1)U(G2)(x

k
n1
ζ2) ⊂M (7.117)

by (7.26) and(7.85). Symmetrically,

M1
〈0〉M

2
〈−k〉 ⊂M. (7.118)

By (7.92)-(7.95), (7.106), (7.112), (7.113), (7.117) and (7.118),

M1
〈−k−r〉M

2
〈r〉 ⊂M for r ∈ Z. (7.119)

Therefore,

B〈−k〉 =
⊕

r∈Z

M1
〈−k−r〉M

2
〈r〉 ⊂M. (7.120)

We get M = B〈−k〉, that is, B〈−k〉 is an irreducible sp(2n,F)-module. We can similarly

prove that B〈k〉 is an irreducible sp(2n,F)-module.

Finally, we study B〈0〉. We first consider the generic case 1 < n1 < n− 1. Set

B〈0,1〉 = Span{[
∏

1≤r≤s≤n1 or n1+1≤r≤s≤n

(xrys + xsyr)
lr,s]

×[

n1∏

p=1

n∏

q=n1+1

(xpxq − ypyq)
kp,q ] | lr,s, kp,q ∈ N} (7.121)

and

B〈0,2〉 =
∑

1≤r<s≤n1 or n1+1≤r<s≤n

B〈0,1〉(xrys − xsyr) +

n1∑

p=1

n∑

q=n1+1

B〈0,1〉(xpxq + ypyq). (7.122)

We want to prove that B〈0,1〉 and B〈0,2〉 forms sp(2n,F)-submodules.

Let

G ′ =
∑

1≤r≤s≤n1

F(En+s,r + En+r,s) +
∑

n1+1≤p≤q≤n

F(Ep,n+q + Eq,n+p)

+

n1∑

r=1

n∑

p=n1+1

F(Ep,r − En+r,n+p) (7.123)

and

Ĝ =

n1∑

i,j=1

F(Ei,j − En+j,n+i) +

n∑

r,s=n1+1

F(Er,s − En+s,n+r) +
∑

1≤r≤s≤n1

F(Er,n+s + Es,n+r)

+
∑

n1+1≤p≤q≤n

F(En+q,p + En+p,q) +

n1∑

r=1

n∑

p=n1+1

[F(Er,p −En+p,n+r)

+F(Er,n+p + Ep,n+r) + F(En+r,p − En+p,r)]. (7.124)

Then G ′ and Ĝ are Lie subalgebras of sp(2n,F) and sp(2n,F) = G ′⊕Ĝ. By PBW Theorem

U(sp(2n,F)) = U(G ′)U(Ĝ).

By (7.96), (7.103) and (7.109),

U(G ′)|B = B〈0,1〉 as multiplication operators on B. (7.125)



Moreover,

(Er,s −En+s,n+r)|B = xr∂xs
+ yr∂ys + δr,s, (7.126)

(En+r,s + En+s,r)|B = ∂xr
∂ys + ∂xs

∂yr, (7.127)

(En+r,i + En+i,r)|B = −xi∂yr + yi∂xr, (7.128)

(Ei,n+r + Er,n+i)|B = −yr∂xi + xr∂yi, (7.129)

(Ei,r − En+r,n+i)|B = ∂xi
∂xr − ∂yi∂yr (7.130)

for i ∈ 1, n1 and r, s ∈ n1 + 1, n. According to (7.4), (7.6), (7.124) and (7.126)-(7.130),

U(Ĝ)(1) = F. Thus

B〈0,1〉 = U(G ′)(1) = U(sp(2n,F))(1) (7.131)

forms an sp(2n,F)-submodule.

Let

W =
∑

1≤r<s≤n1 or n1+1≤r<s≤n

F(xrys − xsyr) +

n1∑

p=1

n∑

q=n1+1

F(xpxq + ypyq). (7.132)

By (7.4), (7.6) and (7.126)-(7.130), we can verify thatW forms an irreducible Ĝ-submodule.

Hence

B〈0,2〉 = U(G ′)(W ) = U(sp(2n,F))(W ) (7.133)

forms an sp(2n,F)-submodule. Moreover,

B〈0,1〉

⋂

W = {0}. (7.134)

Next we want to prove that B〈0,1〉 and B〈0,2〉 are irreducible sp(2n,F)-submodules.

According to (7.78), the singular vectors of sl(n,F) in B〈0〉 are

{xm1

n1
ym1

n1
ζm2+1
1 , xm1

n1+1y
m1

n1+1ζ
m2+1
2 , ηm3(xm4

n1
ym5

n1+1)

| mi ∈ N;m4 +m5 = 2m3}. (7.135)

Let M be a nonzero submodule of B〈0,1〉. Then M contains a singular vector of sl(n,F).

Suppose some xm1

n1
ym1

n1
ζm2

1 ∈ M . By (7.79)-(7.82), we can assume m2 = 0, 1. If m2 = 0,

(7.84) yields 1 ∈M . ThenM = B〈0,1〉 by (7.131). Suppose m2 = 1. We have En1,n+n1
|B =

∂xn1
∂yn1

by (7.4), and

En1,n+n1
[xm1

n1
ym1

n1
ζ1] = m1(m1 + 1)xm1−1

n1
ym1−1
n1

ζ1 (7.136)

by (7.79). By induction on m1, we have ζ1 ∈M ⊂ B〈0,1〉, which contradicts (7.134). Sim-

ilarly, if some xm1

n1+1y
m1

n1+1ζ
m2+1
2 ∈ M , we have M = B〈0,1〉. Assume some ηm3(xm4

n1
ym5

n1+1) ∈

M with m4+m5 = 2m3. Note m4 andm5 are both even or odd. Ifm4 = 2r1 andm5 = 2r2

are even, then (7.88) gives 1 ∈ M , equivalently M = B〈0,1〉. Suppose that m4 = 2r1 + 1

and m5 = 2r2 + 1 are odd. Expression (7.75) yields

η(xn1
yn1+1) = xn1

xn1+1 + yn1
yn1+1 ∈M ⊂ B〈0,1〉, (7.137)

which contradicts (7.134) again. Thus we always have M = B〈0,1〉, that is, B〈0,1〉 is

irreducible. Similarly, we can prove that B〈0,2〉 is irreducible.



If n1 = 1 and n = 2, we let

B〈0,1〉 = Span{[

n∏

i=1

(xiyi)
mi ](x1x2 − y1y2)

m3 ] | mi ∈ N} (7.138)

and B〈0,2〉 = B〈0,1〉(x1x2 + y1y2). When n1 = 1 and n > 2, we set

B〈0,1〉 = Span{[(x1y1)
l
∏

2≤r≤s≤n

(xrys + xsyr)
lr,s ][

n∏

q=2

(x1xq − y1yq)
kq ] | l, lr,s, kq ∈ N} (7.139)

and

B〈0,2〉 =
∑

2≤r<s≤n

B〈0,1〉(xrys − xsyr) +
n∑

q=2

B〈0,1〉(x1xq + y1yq). (7.140)

In the case 1 < n1 = n− 1, we put

B〈0,1〉 = Span{(xnyn)
l[

∏

1≤r≤s≤n−1

(xrys + xsyr)
lr,s ]

×[

n−1∏

p=1

(xpxn − ypyn)
kp] | l, lr,s, kp ∈ N} (7.141)

and

B〈0,2〉 =
∑

1≤r<s≤n1

B〈0,1〉(xrys − xsyr) +

n1∑

p=1

B〈0,1〉(xpxn + ypyn). (7.142)

The above corresponding partial arguments show that B〈0,1〉 and B〈0,2〉 are irreducible in

the corresponding case.

Now 1 is a non-isotropic element in B〈0,1〉 and xn1
xn1+1 + yn1

yn1+1 a non-isotropic

element in B〈0,2〉 by (3.54). By Lemma 2.3, the symmetric bilinear form (·|·) restricted

to them are nondegenrate. Since (1|B〈0,2〉) = {0}, B〈0,1〉 is orthogonal to B〈0,2〉. Thus the

symmetric bilinear form (·|·) restricted B〈0,1〉 + B〈0,2〉 is nondegenerate. Then

B〈0〉 = (B〈0,1〉 + B〈0,2〉)⊕ (B〈0,1〉 + B〈0,2〉)
⊥
⋂

B〈0〉. (7.143)

If (B〈0,1〉 + B〈0,2〉)
⊥
⋂
B〈0〉 6= {0}, then it contains a singular vector of sl(n,F). Our above

arguments in proving the irreducibility of B〈0,1〉 show that it contains either B〈0,1〉 or

B〈0,2〉, which is absurd. Therefore, B〈0〉 = B〈0,1〉 ⊕B〈0,2〉 is an orthogonal decomposition of

irreducible sp(2n,F)-submodules.

Suppose n1 = n2 = n. For k ∈ N+ 1, (4.21) and (4.31) imply that

B〈k〉 =
∞⊕

m=0

∞⊕

r=J(k+1)/2K

ηr(H〈k−2r−m,m〉) (7.144)

and

B〈−k〉 =

∞⊕

m,r=0

ηr(H〈−k−2r−m,m〉) (7.145)

are (G,K)-structures, where H〈−m1−m2,m2〉 is given in (4.42). Moreover,

B〈0,1〉 =

∞⊕

m,r=0

ηr(H〈−2r−2m,2m〉) (7.146)



and

B〈0,2〉 =
∞⊕

m,r=0

ηr(H〈−2r−2m−1,2m+1〉) (7.147)

are (G,K)-structures by the arguments in (7.79)-(7.82), (7.84) and (7.136) (cf. (7.24),

(7.25)). 2
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