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Abstract

We study two-parameter oscillator variations of the classical theorem on har-
monic polynomials, associated with noncanonical oscillator representations of sl(n,F)
and o(n,F). We find the condition when the homogeneous solution spaces of the
variated Laplace equation are irreducible modules of the concerned algebras and
the homogeneous subspaces are direct sums of the images of these solution sub-
spaces under the powers of the dual differential operator. This establishes a local
(sl(2,F),sl(n,F)) and (sl(2,F),o(n,F)) Howe duality, respectively. In generic case,
the obtained irreducible o(n,F)-modules are infinite-dimensional non-unitary mod-
ules without highest-weight vectors. As an application, we determine the structure
of noncanonical oscillator representations of sp(2n,C). When both parameters are
equal to the maximal allowed value, we obtain an infinite family of explicit irre-
ducible (G, K)-modules for o(n,F) and sp(2n,C). Methodologically we have exten-
sively used partial differential equations to solve representation problems.

1 Introduction

Harmonic polynomials are important objects in analysis, differential geometry and physics.
A fundamental theorem in classical harmonic analysis says that the spaces of homoge-
neous harmonic polynomials (solutions of Laplace equation) are irreducible modules of
the corresponding orthogonal Lie group (algebra) and the whole polynomial algebra is a
free module over the invariant polynomials generated by harmonic polynomials. Bases of
these irreducible modules can be obtained easily (e.g., cf. [X]). The algebraic beauty of
the above theorem is that Laplace equation characterizes the irreducible submodules of
the polynomial algebra and the corresponding quadratic invariant gives a decomposition
of the polynomial algebra into a direct sum of irreducible submodules. This actually forms
an (sl(2,F),o(n,F)) Howe duality.

Lie algebras (Lie groups) serve as the symmetries in quantum physics (e.g., cf. [FC, L,
LF, G]). Their various representations provide distinct concrete practical physical mod-
els. Many important physical phenomena have been interpreted as the consequences of
symmetry breaking (e.g., cf. [LF]). Harmonic oscillators are basic objects in quantum
mechanics (e.g., cf. [FC, G]). Oscillator representations of finite-dimensional simple Lie
algebras are the most fundamental ones in quantum physics. Their infinite-dimensional
analogues are free field representations of affine Kac-Moody algebras.
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The aim of this work is to establish certain two-parameter oscillator variations of the
classical theorem on harmonic polynomials, associated with noncanonical oscillator repre-
sentations of special linear Lie algebras and orthogonal Lie algebras, which are obtained
by swapping differential operators and multiplication operators in the canonical oscillator
representations induced from the natural representations. The Howe duality does not
hold on the whole polynomial algebras. But we find the condition when the homogeneous
solution spaces of the variated Laplace equation are irreducible modules of the concerned
algebras and the homogeneous subspaces are direct sums of the images of these solution
subspaces under the powers of the dual differential operator. We may call this a local
(sl(2,F), sl(n,IF)) and (sl(2,F),o(n,F)) Howe duality, respectively. In particular, we ob-
tain explicit infinite-dimensional non-unitary modules of orthogonal Lie algebras that are
not of highest-weight type. As an application of our results on special linear Lie algebras,
we prove that the homogeneous subspaces in noncanonical oscillator representations of
symplectic Lie algebras are irreducible except some singular cases, in which the homoge-
neous subspaces are direct sums of exactly two explicitly given irreducible submodules.
Explicit bases of all the above irreducible modules in generic case are obtained.

Let G be a semisimple Lie algebra and let IC be a maximal proper reductive Lie sub-
algebra of G. An infinite-dimensional irreducible G-module is said of (G, K)-type if it is
a direct sum of finite-dimensional irreducible K-submodules. When both parameters are
equal to the maximal allowed value, we obtain an infinite family of explicit irreducible
(G, K)-modules for orthogonal Lie algebras and symplectic Lie algebras. Since our rep-
resentations are not unitary, the concerned modules are infinite-dimensional and we are
dealing with pairs of dual invariant differential operators, traditional methods fail to solve
our problems. In fact, we have extensively used the method of solving flag partial dif-
ferential equations developed in [X] by the second author. Below we give a technical
introduction.

For convenience, we will use the notion 7,4+ j = {4,i + 1,4+ 2,...,i + j} for integers
1 and j with ¢ < j. Denote by N the additive semigroup of nonnegative integers.

Let E, s be the square matrix with 1 as its (r, s)-entry and 0 as the others. The compact
orthogonal Lie algebra o(n,R) = ", .. R(E, s — E,), whose representation on the
polynomial algebra A = Rz, ..., z,] is determined by (Ers — Esy)la = 2,05, — ©50,,,
which we call the canonical oscillator representation of o(n,R) (e.g., cf. [FSS]). Denote by
Ay the subspace of homogeneous polynomials in A with degree k. Recall that the Laplace
operator A = @2 +---+02 and its corresponding invariant 7 = 7 +x3 +- - -+22. When
n > 3, it is well known that the subspace of harmonic polynomials

Hi ={f € A | A(f) = 0} (1.1)

forms an irreducible o(n, R)-module and Ay = H; & nAx_o, which is equivalent to that
Ap = @Ei/fﬂ N"Hp_o; is a direct sum of irreducible submodules. Since the space FA +
F[A,n] + Fn forms an operator Lie algebra isomorphic to sl(2,R), the above conclusion
gives an (sl(2,R), o(n,R)) Howe duality.

Below all the vector spaces are assumed over a field F with characteristic 0. Moreover,
we always assume that n > 2 is an integer. Let us reconsider the canonical oscillator



representation of sl(n,F):
Eijla=x0;  for i,je€TIn. (1.2)
Fix 1 <n; < n. Note
[8Ir>$r] =1= [_xraaxr]- (13)

Changing operators 0, — —z, and z, — 0, in (1.2) for r € 1, n;, we obtain the following
noncanonical oscillator representation of sl(n,F) determined by:

—Ijami — 52',]' lf Z,j - 1,n1;
Oy, 0, ifiel,ng, g€n +1,n;

Eijla= — 7 ifienm+1,n, jel,ng; (1.4)
70y, ifi,7 €ny+1,n.
For any k € 7Z, we denote
n ni
Apy = Span {z* |« € N™; Z . — ZO"' =k}. (1.5)
r=ni1+1 =1

It was presented by Howe in his work [Ho] that for m;,my € N with m; > 0, A,y is
an irreducible highest-weight sl(n,F)-submodule with highest weight miA,, 1 — (m; +
1)An, and Ay, is an irreducible highest-weight sl(n, F)-submodule with highest weight
—(mg + D)An, +ma(l — 0y n—1)Ang1-

Denote B = F[z1, ..., Tp, Y1, -, Yn). Fix ny,ny € 1,n with n; < ny. Changing operators
Oy, > —Typ, Tp > Oy, for r € 1,0y and 9y, — —ys, ys — 0, for s € ny + 1,n, we get
another noncanonical oscillator representation of sl(n,F) on B determined by

Eijls = Ef; — E]yz for i,57€1,n (1.6)
with )
_Ijﬁxi - 52',]' if Z,j c 1,77,1;
. Oz, 0y ifiel,ng, j€n +1,n;
.. p— g J
E”]|B — T T ifien +1,n, j€l ng; (1.7)
| 70y, ifi,7en +1,n
and )
YiOy, ifi,5 € 1,no;
Vg = —Y;iY; ifiel,ng, J€ny+1,m; (1.8)
0318 0y, 0y, ifi €enys+1,n, j €1, nsg; ’
| —Y;0y, — 0 ifi,j€ny+1,n.

The related variated Laplace operator becomes

leayﬁ Z Oy, Oy, — zn: YO, (1.9)

r=ni+1 s=no+1

and its dual

n= Zyza’cz + Z TrlYr + Z x50, " (110)

r=ni+1 s=no+1
Set

Bioy.sy = Span{z®y’ | a, B € N™; Z o, — Zal_AZ@ > 8=t} (111)

r=ni+1 i=1 r=ng+1



for 01,y € Z. Define
,H&fz {fEB&fz ‘ D( ) 0} (112>

The following is our first result:

Theorem 1. For any {y,{y € Z such that {1 +{y < ny —ng + 1 — 0y oy Hieya) 18
an irreducible highest-weight sl(n,F)-module and By, o,y = Do o 1™ (Hits—m ta—my) @S a
decomposition of irreducible submodules. In particular, By, o,y = He, 00y ® 1(Biey—1,05-1))-

When n; +1 < ng < n and ¢, + € > ny —ny + 1, H, 4, is not irreducible and
contains nonzero elements in 7(B, —1,6,-1y). Although the space FD +F[D, n] + Fn forms
an operator Lie algebra isomorphic to sl(2,R), we do not have an (sl(2,F), sl(n,F)) Howe
duality. We may call Theorem 1 an local (sl(2,T), sl(n,F)) Howe duality.

Consider the split

277' F Z F 1,7 n+j n—l—z) + Z [F(Ei,n+j - Ej,n+i) + F(En+j,i - En—l—i,j)] (113>
i,j=1 1<i<j<n

and define a noncanonical oscillator representation of o(2n,F) on B by

(Eij — Envjnti)ls = Eijls — Ej;ls, (1.14)

27.7 .]77/

&Eﬁyj ifi € 1,711, j S 1,712,
—y;0,, ifi€l,ng, jEny+1,n,

Eintjls = 20y, ifien +1,n, jeT n,, (1.15)
—T;Y; ifieni+1,n, jeEn+1,n
and
—T;Yi lfj € 1,77,1, 1€ 1,712,
' —Ijayi lfj S 1,77,1, 1E€ng+ 1,71,,
Entigls = Yi0y;, ifjeni+1,n, i€l ny, (1.16)
81,30% ifjeni+1,n, 1€n+1,n.
Set
By = @ B, ), Huy ={f € Buy | D(f) = 0}. (1.17)

01 ,02€7:01+la=k

Below we always take K =Y 7. | F(E;; — Entjnti). Our second results is:

i,7=1

Theorem 2. For any nq —ng+ 1 — 0y, 0, > k € Z, Hyy is an irreducible o(2n,F)-
submodule and By = @Zo ni(H<k_2i>) 18 a decomposition of irreducible submodules. In
particular, By = Hpy ® n(Bu—2y). The module Hyy under the assumption is of highest-
weight type only if ng = n. When ny = ny = n, all the irreducible modules H ,y with
0>keZ are of (G,K)-type.

We may view Theorem 2 as an local (sl(2,F),0(2n,F)) Howe duality.
Note the split

o(2n + 1,F) = o(2n,F) & @IF(Eo; — Enti0) + F(Eonsi — Eig)]- (1.18)

i=1



Let B = Flzo, 1, ..., Tn, Y1, ---, Yn). We define a noncanonical oscillator representation of
o(2n + 1,IF) on B’ by the differential operators in (1.14)-(1.16) and

(

—xox; ifi € 1,nq,
. Ioami ifi € ni + 1,71,,
Eoils = 20y, ifi€n+1,n+ no, (1.19)
| oy ifi€n+ny+1,2n
and )
89508%. if 7 c 1,77,1,
) %0, ifi€en+1,n,
Biols =9 0" iticnt o, (1.20)
OOy, ifi€n+mny+1,2n.

\

Now the variated Laplace operator becomes

= —2Zx,ayz+2 Z By, 0y, — 2 zn: Y5Oy (1.21)

r=ni+1 s=no+1

and its dual operator

n —xo—|—2Zy,8xl+2 Z Ty + 2 Z 250y, (1.22)

r=ni+1 s=no+1
Set
ZB 0Th, My ={f € By | D'(f) =0} (1.23)

The following is our third result.

Theorem 3. For any ni —nao+1—0nyn, > k € Z, Hyy, is an irreducible o(2n+1,F)-
submodule and Bj;, = D2, (1) (H’k 2y) is a decomposition of irreducible submodules. In
particular, Biyy = Hiyy ®1'(Bjy_o)). The module Hjyy under the assumption is of highest-
weight type only if no = n. When ny = ny = n, all the irreducible modules ’H’<k> with
0>keZ are of (G,K)-type.

Again Theorem 2 can be viewed as an local (sl(2,F),0(2n + 1,F)) Howe duality.
Define a noncanonical oscillator representation of sp(2n,F) on B by (1.14)-(1.16).
Using some results in the proof of Theorem 1, we prove:

Theorem 4. Let k € Z. If ny < ng or k # 0, the subspace By (cf. (1.17)) is
an irreducible sp(2n,F)-submodule. When ny = ng, the subspace By is a direct sum of
two irreducible sp(2n, F)-submodules. Moreover, each irreducible submodule is of highest-
weight module only if ng = n. When ny = ny = n, all the irreducible submodules are of

(g7 IC>_type

In addition, the explicit expressions for all the above irreducible modules are given.
In the case of highest-weight type, the highest-weight vector and its weight of the corre-
sponding irreducible modules are also presented. Since the representations with parame-
ters (ny, ny) are contragredient to those with parameters (n—nq, n—nq), the case ny < ny
has virtually been handled.



In Section 2, we present some preparatory works, in particular, the method of solving
flag partial differential equations found in [X] by the second author. In Section 3, we
prove Theorem 1 when n; < ny. Section 4 is devoted to the proof of Theorem 1 with
ny = ng. In Sections 5, 6 and 7, we prove Theorems 2, 3 and 4, respectively.

2 Preparation

It is very often that Lie group theorists characterize certain irreducible modules as kernels
of a set of differential operators. But how to solve the corresponding systems of partial
differential equations is in general unknown. It was realized by the second author that
these equations are of “flag type” when the modules are of highest-weight type. A linear
transformation (operator) 7" on a vector space V' is called locally nilpotent if for any v € V|
there exists a positive integer k such that T*(v) = 0. A partial differential equation of
flag type is the linear differential equation of the form:

(dy + fidy + fodz + - -+ + frady)(u) = 0, (2.1)

where dy,ds, ..., d, are certain commuting locally nilpotent differential operators on the
polynomial algebra Flxy, o, ..., x,] and fi, ..., f,—1 are polynomials satisfying d;(f;) = 0 if
i > j. Many variable-coefficient (generalized) Laplace equations, wave equations, Klein-
Gordon equations, Helmholtz equations are of this type. Solving such equations is also
important in finding invariant solutions of nonlinear partial differential equations (e.g., cf.
[I1, I2]). In representation theory, we are more interested in polynomial solutions of flag
partial differential equations. The second author [X] found an effective way of solving for
them. The following lemma is a slightly generalized form of Lemma 2.1 in [X].

Lemma 2.1 (Xu [X]). Let B be a commutative associative algebra and let A be a
free B-module generated by a filtrated subspace V = J,2,V; (i.e., V, C V,u1). Let Ty be
a linear operator on B & A with a right inverse T} such that

T(B,A), Ty (B, A) C (B, A), Ti(mnz) =Ti(m)nz, Ty (mme) =17 (m)nz (2.2)
form € B, ne € V, and let Ty be a linear operator on A such that
To(Viy1) € BV,, Ta(fC¢) = fT(C) for reN, feB, (€A (2.3)
Then we have
{9 Al (11 +1T3)(g) = 0}
= Span{i(—Tng)i(hg) | g€V, heB; Ti(h) =0} (2.4)

1=0

Set .
e =(0,...,0,1,0,..,0) € N™. (2.5)

For each i € 1,n, we define the linear operator f(w_) on A by:

xa—i—ei
/( )(za) =11 for ¢ € N™. (2.6)

Q;



Furthermore, we let

(0) (m) '
/ =1, / :/ / for O<meZ (2.7)
(i) (1) (i) (1)
and denote

(a) (1) p(az) (orn)
0% = 05,05y -+ Oy / / / / for o € N™. (2.8)
(z2) (n)

Obviously, [ @) i a right inverse of 9 for & € N™. We remark that S @) 9o £ 1if a # 0 due
to 0%(1) = 0. In this paper, our T}’s are of the type 0% and the right inverse T} = f(a).

Let my, my, ..., m, be positive integers. Taking T = 9)', T = 922 + -+ + ' and
T = f((g:)l), we find that the set

S ko + -+ ki ((k2A4--+kn)m1) ,
{ (—1)k=t +kn< ) / @)
kg,.§L: k2> sy kn (1)
X O (@) - Ok (2l | 6 €0 = 1, by, oy £y € N} (2.9)

forms a basis of the space of polynomial solutions for the equation
(O + 02 + -+ 4 07 (u) = 0, (2.10)

When all m; = 2, we get a basis of the space of harmonic polynomials.

Cao [C] used Lemma 2.1 to prove that the subspaces of homogeneous polynomial
vector solutions of the n-dimensional Navier equations in elasticity are exactly direct
sums of three explicitly given irreducible submodules when n # 4 and direct sums of
four explicitly given irreducible submodules if n = 4 of the corresponding orthogonal Lie
group (algebra), and the whole polynomial vector space is also a free module over the
invariant polynomials generated these solutions. The result can be viewed as a vector
generalization of the classical theorem on harmonic polynomials. Moreover, Cao solved
the initial value problem for the Navier equations based on the ideas in [X].

The idea of solving flag partial differential equation in [X] leads the second author to
find a family of special functions functions

> iAot Yy yim
Vet oo tm) = D (1 )( L2 om (2.11)

Zl7 Zm r _'_ Zs:l S/Ls>!

by which we can solve the initial value problem of the equation:

Z O fiDass s D)) (1) = 0, (2.12)

where f;(Oryy .oy Or,) € R[Ouyy vy O, |-
Let A = Fzy,...,2,] and let gl(n,F) act on A by (1.4). With the notion in (1.5),
A = Pz Ay is a Z graded algebra and each homogeneous subspace A is infinite-

Z xr Ty le ;- (213)

r=ni+1

dimensional. Set



Then
Awy ={f € Ab(f) =kf}. (2.14)

Moreover, we have
bE;; =E;» on A fori,je I, n. (2.15)
Thus A, forms a G-module for any subalgebra G of gl(n,F).
For « € N, we denote a! =[], ;! and define a symmetric bilinear form (-|-) on A
by
(2%]2%) = Gap(—1)=51%al  for o, 3 €N (2.16)

Then we have:
Lemma 2.2. For any A € gl(n,F) and f,g € A, we have (A(f)|g) = (f|A'(g)), where

At denote the transpose of the matriz A.
Proof. Let a, 8 € N". For 7,5 € 1,ny,

(Eij(a)]a”) = —ai(a* 7 ]2") = 8;5(2"|2”) (2.17)

and
(2] Eji(27)) = =B (a[27T979) = & ;(x*]2”) (2.18)

by (1.4). Note

i@ IN) = Bayeep(—1)Z % (0 + Dol
= Bibapreq(—1)=E1%al = Bi(a]a T (2.19)
by (2.16). Hence
(Bij(@)]a?) = (2] B a(2”))- (2.20)

If 7,5 € ny + 1,n, then (2.19) holds and so does (2.20).
Consider 7 € 1,n; and j € n; + 1, n.

(Big(2)]a”) = aiaj(a*=979a) = ~fa—c;me; p(—1) =1 "0l (2.21)

and
@ @ €;+€i\ __ A a;
(2] Bjs(2?)) = —(2%]aP ) = —60 prcire (~1) S0 %0l (2.22)

by (1.4) and (2.16). So (2.20) holds. Therefore, the lemma holds by the symmetry of the
form. O

Let G be simple Lie subalgebra of gl(n,F) such that A® € G if A € G. Let H be a
Cartan subalgebra of G and assume that A forms a weighted G-module with respect to
H. Fix the positivity of roots and denote by G, the sum of positive root subspaces. A
singular vector is a weight vector annihilated by positive root vectors.

From now on, we count the number of singular vectors up to a scalar multiple. More-
over, an element g € A is called nilpotent with respect to G, if there exist a positive integer
m such that

&1--&n(g) =0 for any &1, ...,&n € Gy (2.23)



A subspace V of A is called nilpotent with respect to G if all its elements are nilpotent
with respect to G,. If the elements of G, |4 are locally nilpotent and G, (A;) € S°L_, A,
for any i € N, then any element of A is nilpotent with respect to G, by Engel’s Theorem.

Lemma 2.3. If a submodule N of A is nilpotent with respect to G, N contains only
one singular vector v and (v|v) # 0, then N is an irreducible summand of A.

Proof. Under the nilpotent assumption, any nonzero submodule of N contains a sin-
gular vector. In particular, Ny = U(G)(v) is an irreducible submodule by the uniqueness
of singular vector. Set

Ni = {u € N|(ulw) =0 | w € N;}. (2.24)
and
R ={u € N|(u|Jw) =0 |w € N}. (2.25)

Note that Ni- and R are submodules of N by Lemma 2.2. If R # 0, it should contain
a nonzero singular vector, which is impossible according to the assumption (v|v) # 0.
Therefore R = {0}, and N = N; @ Ni-. But Ni- = 0 by the same argument, and so
N = Nj. The fact R = {0} implies that

A=Nao{feA|(flg)=0forge N} (2.26)
is a direct sum of G-submodules. O

Let Q@ =F(z1, ..., Tn, Y1, ..., Yn) be the space of rational functions in z1, ..., Ty, Y1, ---, Yn.
Define a representation of sl(n,F) on Q via

Ei,j|Q = LUZ‘&% - ?Jj&yi for ’L,j S 1,—n (227)
Set ¢ = >, x;y;. Then
£(¢)=0 for ¢ € sl(n,F). (2.28)
Take .
H == ZF(EZ,Z - Ei+1,i+1) (229)
i=1
as a Cartan subalgebra of sl(n,F) and the subspace spanned by positive root vectors:
siin,F). = > FE,;. (2.30)
1<i<j<

The following lemma was proved in [X], which will be used in next section.

Lemma 4. Any singular function in Q is a rational function in x1,yy,, .

3 The sl(n,F)-Variation I: n; < ny

Fix nq,ne € 1,n such that n; < ny. Recall that Q is the space of rational functions in
X1y ey Ty Y1, -y Yn- Define a representation of sl(n,F) on Q determined by

Eijlo = Ef; — EY, for i, €1,n (3.1)



with

—Z; Oxl
00,0,
—.CL’Z'.ZL’J'
ziﬁxj

— 5.
Ejlo =

and
yigyj
—YiY;
ayi ayj
\ _yj ayz‘

Eiy,ﬂQ:

— 0y
Recall b in (2.13) and define

b = i Yi0y;
i=1

ifi,j € 1,ny;
ifielng, j€n+1,n;
ifien +1,n, j€1,ng;
ifi,jeni+1,n

(3.2)

if i,j € 1, ny;

ifi € 1,ng, j €Eng+ 1,m;
ifieng+1,n, j€1,ng;
ifi,7 € nyg+1,n.

n

> vy,

r=no+1

(3.4)

Moreover, the deformed Laplace operator D in (1.9) and its dual 7 in (1.10). Then

TE;jlo = Ei;loT
In addition,
b, D] = ', D] = —D,
By (3.1)-(3.3), we find

Ei,r‘Q = _xrami

Ei7n1+S‘Q = 890i8:vn1+s - yn1+58yi
ET,S‘Q = xrams - ysﬁyr
19)

En27n2+1 = Tny

Eirlo = 0, + :0,,

—Yr 891‘

for T =0b,b".D,n; i,5€1,n. (3.5)
b, n] =D'nl=n (3.6)

for 1 <i<r<n, (3.7)

for i € 1,ny, s € 1,ny — ny, (3.8)

for ny <r < s < na, (3.9)

ey i1~ Oy Oy 1 (3.10)
for ng +1<i<r<n. (3.11)

The subalgebra si(n,F), in (2.30) is generated by the above E; ;.

Denote
ng
Cl = Tn1—1Yn; — TnyYni—-1, < = § TrYr, <2 = Tny+1Yno+2 — Lno+2Yno+1- (3'12)
r=ni+1

We will process according to three cases.

Case 1. n1 +1 < ny

Assume n; + 1 < ny < n. Suppose that f € Q is a singular vector. By Lemma 2.4, f

can be written as a rational function in

{xivyMClanCé | n2—|—27§Z€ 17n1+1Un2+17n7 ni _1%7”6 17n1Un27n}' (313)

Note
En 10, (f) = =%, 0p, 1 (f) =0 (3.14)
by (3.7) and
En2+1,n2+2(f) = yn2+18yn2+2 (f) =0 (3-15)



by (3.11). So f is independent of x,, 1 and y,,+2. For i € 1,n; — 2, we have

Ez',m—l(f) = _xnl—la:ci(f) - ym—layi(f)
= Ty 1 (0, () + 27, Y, Oy () + 27, 610y, (f) = 0 (3.16)
by (3.7). Since both 9,,(f) + ;' yn, 0y, (f) and x;,'¢10,, (f) are independent of x,,_1, we
have 0y, (f) = 0, which implies 0,,(f)=0 by (3.16). Thus f is independent of {z;,v; |
i € 1,n; — 1. Similarly, we can prove that f is independent of {z;,y; | i € ny +1,n.
Therefore, f only depends on

{xnl y Tny+1y Tno+1) Yniyr Yno s Yno+1, <17 gv CQ} (317)

According to (3.8) and (3.12), Ey, n,41|l0 = Oy, O

Tny Y Tnq+1

En1,n1+1(f) = f-’EnlwnlJrl + yn1+1(fmnlc — Ym—1fec — fynl - xm—lfgl) = 0. (3.18)

- ynl“l‘laynl and

Applying Ep,11m,]Q = Tny 410k, — YnyOy, ., to the above equation, we get

_fﬂﬁnlC + ynl—lfClC + fyn1 + xnl_lfCI =0 (3'19>

by (3.9). According to (3.12),

Tny 1 = Yoy G+ Ty Yy, Yy 1 (3.20)

Substituting it into (3.19), we get

Yni—1(ferc + Yy Ty fer) F Fyuy + Un Cifer = fomc = 0. (3.21)

Since f is independent of y,,_1, we have

fClC + y7:11IN1fC1 = 0. (3'22)

Thus

Jo = eTvmmmty (3.23)
for some function g in the variables of (3.17) except (, i.e., gc = 0. But f is a rational
function in the variables of (3.17) and so is f¢,. Hence (3.23) forces f;, = 0, that is, f

is independent of (;. Similarly, we can prove that f is independent of (;. Now f only
depends on

{l’nla Tni+1) Tno415 Ynas Ynas Yna+1, C} (324)

Since ¢ = Y12 L 2iyi, f € B=TFx1,...,20, 1, ..., yn] if and only if f is a polynomial in

the variables (3.24). Now (3.18) and (3.19) are equivalent to

fmnlxn1+1 =0, fmnlc - fynl =0. (325>

Similarly, we can prove

fynzyn2+1 =0, fyn2+1C - fxn2+1 = 0. (326)

Set
mi mz)

= y;l7,1 (amnl 8C)Z(xn1
)=2 il

d(my, mo for mq, my € N. (3.27)

1=0



By Lemma 2.1 with T = 9,,, , T} = f(y ) (cf. (2.6)) and Ty = —0,,, O, the polynomial
ny
solution space of (3.25) is

[F[xnl"rl? C] + Z Z F¢(m17 m2)] [F[l’n2+1, Ynas yn2+1]]' (328>
mi1=1mgo=0
Denote . 5 .
0 xt i, Ml ma
¢(m1’m2) _ Z n2+l( Yno+1 Z'C) (yn2+1< ) fOI' my, ms c N’ (329)
=0 ’

i 9522+1(ayn2+1a<)r(¢(m1, mz)yg;il)

¢(m17m27m3) -

|
—0 r.
0o i T % T i1 (,.m1 ms,, M3
o Z ynixng—l—lamnl ayn2+18< (xnl yng—l—l) (3 30)
n il ’ )
3,r=0

Solving (3.26) by Lemma 2.1 with T\ = 0,, ., T} = f(x o) (cf. (2.6)) and T, =
n2

—0y,. .,0¢, we find the polynomial solution space of the system (3.25) and (3.26) is

Yng+1

Fln,+1, Yno, ¢ + Z Zng(ml,mg,mg)

m1,m3=1mo=0

303 Flyaalélmr, ma) + Fln, ]t (ma, ma)). (3.31)

m1=1mo=0

According to (1.10),

Tt 1Uns ¢ = 0" (T 1Y), (3.32)

0" (@ Yy ) = (€4 Yni On, )™ (@7 0y ) = d(ma, ma)yyy? (3.33)

n" (yZlenmlSH) =(C+ xn2+18yn2+1)m2 (yiglﬁﬁil) = (m, m2)xnm13+1a (3.34)
N (@ Y1) = (€ + Yny O, + Ty 110y, )™ (@ Yl y) = @(my, ma,mg). (3.35)

It can be verified that {n™ (z{"*y["™) [ m1,ma, m3 € N;i = ny,ny + 155 = ng,ng + 1} are
singular vectors. By (3.31)-(3.35), the nonzero vectors in

{Fn] (@™ yi™) | mi,my € Nyi =ny,ny + 155 = ng,ny + 1} (3.36)

are all the singular vectors of sl(n,F) in B = F[z1, ..., Tn,, Y1, vy Yny)-
Similarly, when ny = n and ny < n — 2, the nonzero vectors in

{Fnl (" yy?) | ma,my € Nyi = ny,my + 13 (3.37)

are all the singular vectors of si(n,F) in B.
Denote

H={feB|D(f) =0} (3.38)
By (3.5), H forms an sl(n,F)-submodule. Recall By, ¢,y defined in (1.11). Then

B(£1752> = {f €B ‘ b(f) =1 f; b/(f) = £2f} (3.39)



by (2.13) and (3.4). Moreover, B = @, 4,z B 1,y becomes a Z*-graded algebra. Ac-
cording to (3.5), By, ¢,y forms an sl(n, F)-submodule, and so does

H@l la) — 51 L2) ﬂ H. (340)
Next (1.9) and (1.10) imply
[D,n] =ng —ny +b+b", D(ay;™) =0 (3.41)
for my,ms € N, i =nqy,ny + 1 and j = ng,ny + 1. Thus
n1+1ym2 € H (m1,ma) lell—i-lyg;z—i-l € H<m1,—m2>’ (342)

T Y € Hi—my mo) T Y € Hicmy,—mo)- (3.43)

For any g € H, ¢,yand 0 < m € N, we have n™(g) € Be, 1m,to+m and
D(n™(g)) = m(ng —ny + & + by +m — 1) (g). (3.44)
Thus
D(n™(g)) =0 if and only if 1 + ¢35 <ny —ny and m =ny —ny — 1 — b+ 1. (3.45)

If so,
nm(g) € %n1—n2—€2+1,n1—n2—£1+1~ (346)
Note

(nl—n2—€2+1)—|—(n1—n2—€1+1) = nl—n2+2—|—(n1—n2—€1—€2) Z nl—n2—|—2. (347)

Let fu, ) € H e,y be a singular vector in (3.42) and (3.43). Then the singular

vectors in H are nonzero weight vectors in
Span{ fie, e, 1™ T T2 (i) | 1, lo, 71,70 € iy + 5 <y — g} (3.48)
by (3.36), where
T (f ) € Hinona 1 v —na 41— (3.49)
Thus when n; + 1 < ny < n, we have
H (4, 4,) has a unique singular vector if ¢ + ¢, <ny —ny +1 (3.50)

and
H e, 05y has exactly two singular vectors if ¢ 4+ ¢y > ny —ny + 1. (3.51)

In the case ny +1 <mng =n, By, 0,y = 0if l, <0, and for ¢, € Z, {5 € N,
H e, 05y has a unique singular vector if ¢4 >n; —n+2orfl; +40, <ny —n+1. (3.52)

He, 0,+1y has exactly two singular vector if and ny —n+1—"0; </l <ny—n+1. (3.53)

Observe that the symmetric bilinear form (-|-) on B is determined by

(2°YP|2™1YP') = Gna 05,5, (—1) =21 5 FEr=n 1 70181 for o, B, o, 8 € N™.  (3.54)



When n; +1 < ny < n, Lemma 2.3 tells us that H, 4,y for {1,f, € Z is an irreducible
summand of By, 4, if and only if ¢; + ¢ < ny —ng + 1. It can be verified that

(D(ay?)|zy™) = (2%’ [n(z*y™)). (3.55)

Recall that fi, ¢,y € He, 1) 1s a singular vector in (3.42) and (3.43). Thus

(f(€1,€2>|f(€1,€2>) 7& 0 (356)

and
(fien o) fiy ) =0 if (6, 0y) # (€4, 6). (3.57)
Recall sl(n, F), in (2.30) and let sl(n,F)- =, ,_;<, FEj; be the subalgebra spanned by
the negative root vectors. Moreover, (sl(n,F)_)" = sl(n,F),. According to (3.7)-(3.11),
B is nilpotent with respect to sl(n,F),. Thus all H, ¢,y with €1 + ¢, < ny —ng + 1 are
irreducible sl(n, F)-submodules by Lemma 2.3 and (3.50), and so are 0™ (H 4, r,)) for any
m € N by (3.5).
We extend the transpose to an algebraic anti-isomorphism on U(sl(n,F)) by 1* = 1

and
(A1 Ay -+ -A,,)t = Af, . -AéA’i for A; € sl(n,F). (3.58)

By the irreducibility,
Hiereoy = U(sU(n, F) =) (frer02)) if 01+0y<ny—ng+1. (3.59)
Let 44,09, 0}, ty € Z such that 1 4 ly, 0} + 05 < ny —ng+1 and (41, ls) # (¢}, £5). Then
(w( fier) fier)) = (Fiev |0’ (frge)) =0 for w € U(sl(n,F)-)sl(n,F)-  (3.60)

by Lemma 2.2. Since fi, o,y is a weight vector, we have U(H)(fie, ) C Ffrey 0 (cf.
(2.29)). Thus for any wy,wy € U(sl(n,F)_),

(w1 (frer o)) w1 (fren ) = (wywi(Fier )| frer o)) = e(fren o)) e e)) (3.61)
for some ¢ € F by (3.60). Hence (3.59) implies
(Hier,e) [Hey.05)) = {0} (3.62)

For f € Hy, 0y, g € B and m, m; € N such that m < m,, we find

m—1

™ ()™ (9)) = (O™ 0" (£)|g) = Smymmd[[ [ (01 + €+ m2 —na +1))(flg)  (3.63)

r=0

by (3.44) and (3.55). In particular, the singular vectors n™ ~"2T1="1=72(f,. 1) for 1,79 €
Z with r{ + r9 < ny; — ng are isotropic polynomials. Moreover, for m,m; € N and
Uy, 05,0, 0, € Z such that €4 + 0o, 0} + 05 < nyg —ng + 1,

(" (Hier,e) ™ (Heeyy)) = {0} if (m, £y, £1) # (ma, €, £7) (3.64)

by (3.62) and (3.63). On the other hand,

m—1

(nm(f@l,b))|77m(f(51,52>>> = m'[H (6 +Lla+n2—ny + T)](f<51752>|f(51,52>) # 0 (3.65)

r=0



by (3.63). Since the radical of (-|-) on n™(H, ¢,)) is a proper submodule by Lemma 2.2,
the irreducibility of n™(H, ¢,y) implies that

(:|-) is nondegenerate rewtricted to 7™ (H, .))- (3.66)

Fix gl,gg € Z with 01 + 4¢3 <n; —ne + 1. Set

Bty = Y 0" (Mt —mitr—m))- (3.67)
m=0

By (3.64) and (3.66), the above sum is a direct sum and (-|-) is nondegenerate restricted
to B (01,62)- Hence

B<51752> = B<51752> Zl £2) m B (1, 52 (368)

If Bél,mmlg%,w # {0}, then it contains a singular vector, which must be of the
form 0™ ( fe, —my t2—myy) for some my; € N by (3.36). This contradicts (3.65). Thus
Bélvéﬂ N Biey ey = {0}, equivalently

Zl 52 @ 77 41 mlg—m)) (369)

is completely reducible. Applying (3.69) to B, —1,¢,-1), we have
Bgl,gz = 7‘[@1752) ) 77(8(51_1752_”) if fl + EQ S 1 — No + 1. (370)

Assume nq +1 < ny =n. For ¢; € Z and ¢, € N such that {; > ny—n+2or {; + /05 <
ny —n—+1, all Hy, 4, are irreducible submodules of By, s, by Lemma 2.3, (3.52) and (3.54).
When ¢ + 0, < ny —ny + 1, (3.64), (3.66), (3.69) and (3.70) also hold by the same
arguments as in the above. In summary, we have:

Theorem 3.1. Suppose ny +1 < ny. Forly,ly € Z with {1 +0ly <ny—no+1, He, 1)
is an irreducible highest-weight sl(n,F)-module and

51 L2) @ 77 61 m,ég—m)) (371)

is an orthogonal decomposition of irreducible submodules. In particular, B, ¢,y = H s, )P
(B, -1,6,-1y)- The symmetric bilinear form (-|-) restricted to 0™ (H s, —m,ea—m)) 5 non-
dengerate. If ng < n, all H, g,y for €1,y € Z with {1 +ly > ny —ny + 1 have ezactly two
singular vectors.

Assume ng = n. Then Boy = Ho) with { € Z are irreducible highest-weight sl(n,F)-
modules. All H, ) for €y € Z and {3 € N such that {{ > ny —n + 2 are also irreducible
highest-weight sl(n,F)-modules. Moreover, for lo € 1+ N andny —ns + 1+ 4y <l € Z,
the orthogonal decompositions in (3.71) also holds. Furthermore, H e, ¢,41y for {1 € Z and
ly € N such thatny —n+1—4{0y < l; <ny —n+1 have exactly two singular vectors.

Indeed, we have more detailed information. Suppose n1+1 < ny < n. For my,my € N
with my +mg > ng —ny — 1, H(_pm, —m,) has a highest-weight vector x7''y," | of weight
ml)\m_l (m1 + 1)>\n1 (m2 + 1))\n2 + mg(l — 5n2,n—1)>\n2+1- When my, Mo € N with



my —my > Ny — Ny — 1, Hymy,—my) has a highest-weight vector "', v, of weight
—(m1 + DAn, + madgs1 — (Mo + DAy + ma(l = 6y 1) Anprr. If Tnl,n12 € N with
my — mg > ng —ng — 1, H_p m,) is has a highest-weight vector 7
MiAn,—1 — (Mg + DA, + Mo, 1 — (mo+ 1)\,

Assume n; +1 < ny = n. When my,my € N, H,, m,) has a highest-weight vector

m2 of weight

n

oty of weight —(my + 1)A,, + midn, 41 + meX_1. If my,my € N with m; < n —
ny —2or my —my < ny —n+ 1, H_pm, m, has a highest-weight vector z)'y"? of weight

My, —1 — (mq + DAy, + maX,_1.
By Lemma 2.1 with T} = 0

-'En1+1

aynﬁl’ Iy = f(mmﬂ) f(ynlﬂ) and T = D_am”1+18y”1+1’

H e, 0,y has a basis

{ i Ty 1Yy 11)" (D — 8wn1+18yn1+1)i(xay6)

|, BENT;
i=0 Hr 1(Oén1+1 + T) (5711-‘1-1 + T)
O‘nl—i-lﬁnl-l—l 0 Z O — Z QG = Ela Z ﬁz Z 57’ = €2} (372)
r=ni1+1 r=no+1

Case 2. n1 +1=mny

In this case, ( = Zpn,+1Yn,+1. First we consider the subcase ny < n. Suppose that
f € Q is a singular vector. According to the arguments in (3.13)-(3.17), f is a rational

function in
{xn1axn1+17xn1+27yn1vyn1+2vgvclvc2}’ (373>

Moreover, (3.18) holds. Substituting (3.20) and y,,+1 = z,," ;¢ into (3.18), we still get
(3.22), which implies f;, = 0. Symmetrically, f,, = 0. Hence we can rewrite f as a

rational function in
{$n17$n1+173€n1+2’yn1,yn1+1,yn1+2}- (374)

Now f is a singular vector if and only if it is a weight vector satisfying the following
system of differential equations

(axnl axn1+1 yn1+1ayn1)(f) =0, (3.75)

(xn1+1axn1+2 - ayn1+1ayn1+2)(f) =0 (376)
by (3.8) and (3.10) with ny = ny + 1. Note

En1,n1+2|Q = [En1,n1+1‘Qv En1+1,n1+2‘Q] = arnl amnﬁz - 8yn1 8yn1+2 (3-77>
by (3.8) and (3.10) with ny =ny + 1. So

(amnl a95n1+2 - aynl 8yn1+2)(f> = 0. (378)

For our purpose of representation, we only consider f is a polynomial in {z;,y; | i =
niy,ny + 1,n; + 2}, Set

TR | (CTRES)) phciat S DR UAAD
mi,mz,m3 T
s=1 =0 Z'Hr 1(m1+7’)

= (yn18$n1 + xn1+28yn1+2>m2 (xml+m2yn1+2) (379)



and

_ (ml + mz)! HT:11 (ms + S) Z xnlxrnril—:;(aynlaynl+2) (yﬂ@:ﬁiz)
ml! =0 7’! Hr l(ml_'_T)

m1+ms3

_ f mo (ml +m2> xnlxrnnll-:_;ynlz Za;:lli_; (yn1+2 )
(mq +1)!

wml ,M2,Mm3

1
=0
m1+ms3

B f my Y\ (ma +ma)lh Y2 (2, 120Yn, 12)™" (Y )
— \m2 — 1 (mq +1)!

1=

i (my + ma) (Y, On,, )™ (272) (n420Yn+2) ™ T (5 ™)

P (mg —i)!(my +1)!
)ml—i-mg—r(y;ril_:émg)

i (ml + m2)!(ymamn1 )T(xnmlz>(xn1+2ayn1+2

r!(m1+m2—r)!

= (ym vy + T2y, )™ (@Y. (3.80)

By Lemma 2.1 with T} = 0,, s, .., Ty = f(xnl) f(me) (cf. (2.6)) and Ty = 0y, 0y, ..,

Tnq

the polynomial solution space of (3.78) is

SPAN{ By sma,ms Tty 1Yy 15 Crma+1,ma,ma Ty 1 Ynor | i € NE. (3.81)
Note
ma
Pt mz 08y 41 Ymy 41 = [H(ml + )] E Yt e Y for m; € N (3.82)
r=1
and
m3
Y s 0ms = (| [ (ma + D)y 2l gyntyy for m; €N (3.83)
i=1

In particular, all the polynomials in (3.83) are solutions of the equation (3.75). Now

ni n
n= Z yzaﬂcl + Tni+1Yni+1 + Z Isays- (384)

i=1 s=ni1+2

Write

mi+i, m3+i9i

. m1 + m2 f: xnlxnl—i-lynl—i-l 8yn1 (ynl )
=0 7’! Hr l(ml + T)

m2 mi+i, ma+i, mo—i
<m2) my + m2) xnlxnl-i-l ynl-l—l Yny

h'ml,mg,m:;

g

m 2):
i=0 ( 1 + )
ma2 mi+i, m3+i, mo—i
. meo ml + m2) xnlxru—i-lynl—i-l ynl
Zz—o my — (my +1)!

ma2 mi+i, m3—+i

_ Z (mq + m2) (ymamnl)mz_i(x?f)xmﬂymﬂ
P (ma — @)!(my + )

= pmtm (xm2ymasm) (3.85)




and calculate

m2 (mi1+ma), m3 _  _m2(,.mi+mz, M3
/)7 (xnl )ynl—l—l - /)7 (xnl ynl—l—l)

mo mo—1i

_ E | | 2—1t,.m1+%,.1 m3—+1i

- < ) [ (ml + ? _I_ T)]ynl xnl xn1+1yn1+1
im0 "2 TV

[Tmi(mi +5)

B o (RS e
{

i=0
ma ma ZL’ZH-’_Z’ZE; y;n?,-i-iai (yznz)
= ([T0m 4+ (3.86)
r=1 i=0 [ Tozi (ma + 5)]
Lemma 2.1 with Ty = 0Oy, Oy, .\, Ty = f(xnl)f(xnlﬂ) (cf. (2.6)) and T = —yp, 110,

tells us that Span{fm, my.ms 1™ (272 T™2)y,% 1 | m; € N} is the solution space of (3.75)

mi

in Span{z;tyr2x, ynty | mi € N} In particular, (3.85) and (3.86) can be viewed as
algorithms of solving the equation (3.75).

On the other hand,

Oz, (90.ma,ms) = M2V myms—1, (3.87)

O, (Prnymams) = (M1 + M2) Py ~1mgums i My > 0, (3.88)
Oy (Vs maims) = MWy 41m>—1ms -1, (3.89)

Oy, (Dmy ma,ms) = Ma (M1 + 1M2) Oy my—1,ms (3.90)

Oy, (Vs ma,ms) = MM+ M2) Vi, my—1,ms- (3.91)

Applying the algorithm (3.85) to (3.81), we get that gzgml,m%mgygjfl and lﬁml,m%msy:ﬁl are
the solutions of (3.75) by (3.87)-(3.91), where

o0
n mo .
Omamams = ( Z. )¢m1+i,m2_i,m3 T A C T P N G X 2)

=0

my
~ mq + mo :
¢m17m27m3 = Z ( : )wﬂn—i,M27m3+i(xn1+1yn1+l)l

]
=0

m2
my + Mo S——
+ E ¢M2—T7T7m1+m3 (Inﬁ-lym-i—l)
<\ M +r
r—=

pmtm2 (zp2 y,’ﬁfzm?’ ). (3.93)

Using the algorithm (3.86), we find that the solution space of (3.75) in (3.81) is

Span{xnmllﬂyzﬂrla??fwyﬁﬂ_% ngl,mz,mgy:ﬁip hm1,mz,m3>
Uyt 1ma+ LYoy 1. | i € N (3.94)
According to (3.84), (3.92) and (3.93),
axn1+2(qgm1,m27m3) = m2m3q§m1,m2—1,m3—1> (3-95)
Oy i1 (Bsmzima) = M2y 1 Prmy g —1,ms (3.96)

8yn1+2 (émhmz,ms) = m3$m17m2,m3—17 (397>



a’vn1+2 (,lvzmhmzm"ba) = (ml + m2)(m1 + m3)@£ﬂl1—l,m27m3’
8yn1+1 (Vi ma,ms) = (M1 +M2) Ty 41¥my —1,ma,ms+1,

ayn1+2 (Vrnymayms) = (M1 + M3) Yy my mg—1-

Put
[ mi+i, . m3+i i mo
(m1 + mg)' yn1+2yn1+l znﬁ—l a:cnl +2 (xn1+2)
Imi,ma,ms = E ;
I ’ ' . 7
my: i—0 i (ma +7)
_ mi+mz [, M2 ms—mi
- /)7 (yn1+2In1+1 )

and
_ f: [H;n:21 (m1 + 5)]y$$iy;1+1znm13:1ia;nl+2 (xnml2+2)
i=0 i [Ty (ma +7)

_ mz (, mi+ma, m3
= 7N (?/n1+2 517m+1)-

/
gm17m27m3

Symmetrically, Span{gm, my,ms: G, .

m2,m3
mi

Span{z;'t Y20t oynts | mi € N} by Lemma 2.1 with 77 = 9,

ny+1"Yny+27

(3.98)
(3.99)
(3.100)

(3.101)

(3.102)

| m; € N} is the solution space of (3.76) in

T]._ -

f(ynﬁl) f(yn1+2) (cf. (2.6)) and Ty = —p, 1105, ., Observe that {@m, mymsr Py mams;

hml ,1M2,M3

, A
Span{gm17m27m3a gnu,mz,mg’ hm1,m2,m3> ¢m1,m2,m3>

¢m1,m2,0yz§3+1a ¢m1+1,M2+17M3 | m; € N}

by (3.97) and (3.100).

m; € N} are solutions of (3.76). Thus the solution space of (3.76) in (3.94) is

(3.103)

Expressions (3.85), (3.92), (3.93), (3.101) and (3.102) imply that the solution space of

the singular vectors in B is
ms—mjq
| my € Na (Zaj) = (nlanl + 1)7 (nlanl + 2)a (nl + 1)”1 + 2)}

Remind that in this case,

ni n
D=— 20y +0a Oy — D YsOa..

i=1 s=ni1+2

We have

D[ﬁm1+m2 (1.2112 erlg—i-_lml )] _ (ml + m2)m3nm1 +mao—1 (Izzlz y:?lg—i-_lml)

by (3.44). Thus we find a singular

mi1+m2 (

n x:?lzyr:lr—rib—ll) € %<M1,m2>

ma (M1, m3 mi m2 mi+ma (,.m2 mi+ma(, M2 m3—mi
Spa’n{/r/ (xz y] )7 $n1+1yn1+17 /)7 (xnl ynl—l—l )’ 77 (yn1+2xn1+1

(3.104)

(3.105)

(3.106)

(3.107)

of new type if my,my > 1. Symmetrically, n™ "2 (y"* y2, ") € Himymy) 18 a singular

vector.

Recall the singular vectors

f(—mh—mz) = xnmlly:ﬁaﬁ S H(—ML—mz)v f(—ml,mz> = xnmllyrrz%l—l S ,H(—Tm,mz)v

(3.108)



f<m1,_m2) = :Enmll_i_lyzﬁ& c H(ml,_m2>. (3.109)

Moreover, we have the singular vectors
T (Frneny) € Hitsery  for €y, 0y € Z with €1 + €y < —1. (3.110)

Therefore, any singular vector in H (cf. (3.38)) is a nonzero weight vector in

/

Span{ fie, ey, 072 (Frep ey ) ™R @Ry ) ™R (Y )

| 6176276/1,6/2 S Z, mi, My € N+ 1,61 <O0Oor 62 < 0,6/1 +£/2 < —1} (3111)

Assume no = n. We similarly find that the solution space of the singular vectors in B
is
Span{n™ (" 1yp" ), @y, 0™ T (22 g ™) | mg € N} (3.112)

In particular, any singular vector in #H (cf. (3.38)) is a nonzero weight vector in

mi1 ,me ,m1 ,mi+1l/ mi+ma+l, ma
Span{xn—lyn ?xn ’n ($n—1 yn )’

R (e ) g, my € N} (3.113)
By the arguments of (3.55)-(3.70), we have:

Theorem 3.2. Suppose ny + 1 = ny. For l1,0y € Z with {1 + ¢y <0 or ng =n and
0 < ly <Ay, Hiey ey 15 an irreducible highest-weight sl(n,F)-module and

Bty = 1" (Mt —m.trm)) (3.114)
m=0

is an orthogonal decomposition of irreducible submodules. In particular, B, 0,y = H e, )@
N(Bie,~1,65-1y)- The symmetric bilinear form (-|-) restricted to 0™ (H e, —m ts—my) i nonde-
generate.

Assume ng < n. For my,my € N+ 1, Hypy my) has exactly three singular vectors. All
the submodules H g, ¢,y for l1,ly € Z such £y + ly > 0 and {10y, < 0 have two singular
vectors. Consider ng = n. For my,my € N with my < mg, Hm, m,) 5 also an irreducible
highest-weight sl(n,F)-module. All submodules H(_p, mi+mot1) With my,my € N have
have exactly two singular vectors.

Indeed, we have more detailed information. Suppose n, < n. For mi,ms € N,
g of weight myA,, 1 — (my +1)A,, — (mg+
DAni41 +ma(l = 0y n—2)Ani42. When my,my € N with my —my > 0, Hp, —m,) has a

highest-weight vector x,"" 1y, 5 of weight —(my + 1)\, + (my —mo — 1) Ay 41 +ma(1 —

H (—m1,—m») has a highest-weight vector 7'y

Onymn—2)Any42. If ma,my € N with my —mg > 0, H(_m, m,) is has a highest-weight vector
opy? ) of weight myA,, —1 4 (me —my — 1)y, — (M2 + 1)\ 41

Assume ny = n. For my, mo € N with mg < my, H(_m, m,) has a highest-weight vector
xpt ym? of weight myA,—o + (mg — my — 1)A,—1. Moreover, H, gy has a highest-weight
vector x| of weight mA,_s — (m + 1)\, for m € Z. For my,ma € N+ 1, Hp, ) has
m2

a highest-weight vector n™+™m2 (22, y~™) of weight maA,_2 + (M1 —mg — 1)\,_1. Again
H e, 05y has a basis of the form (3.72).



4 The sl(n,F)-Variation II: n; = ny

In this section, we continue the discussion from last section. Recall n > 2.

Case 3. ny = ns.

In this case, the variated Laplace operator
ni n
D= w0, — > yh, (4.1)
i=1 s=ni1+1

and its dual

=1

s=no+1
First we consider the subcase 1 < n; < n—1. Suppose that f € Q is a singular vector.
According to the arguments in (3.13)-(3.17), f is a rational function in

{xn1axn1+17yn17yn1+17<—17c2} (43)

(cf. (3.12)). Note

En1,n1+1|Q = amnl arn1+1 - 8yn1 8yn1+1 (4-4>
by (3.1)-(3.3). Now E,, »,+1(f) = 0 implies
(a’cnl a:cn1+1 - aynl 8yn1+1)(f) =0, (4'5)
equivalently,
(xm—lxm-l-? - yn1—1yn1+2)fC1C2 - ynl—lfﬁrnlﬂ - xm—lfClyan
+yn1+2fC2$n1 + xn1+2f<2yn1 + fﬂcnlmn1+1 - fynlyn1+1 = 0. (46>
According to (3.12),
Yni—1 = l’;llynll’nl—l - :L';llgla Yni+2 = $;11+1C2 + $;11+1yn1+1$n1+2~ (47)
Substituting (4.7) into (4.6), the coefficient of x,, _12,, +2 implies f, = 0. Thus
f =g +h with 9¢, = hCl =0. (48)

Now (4.6) becomes

~1 1 1
Ty C1YCran, 11 — (27, Yn19¢ian, 41 T gClyn1+1)xn1_1 + ($n1+1yn1+1h421‘n1 + hCzynl)xm—H

-1
+$n1+1<2h<2x7ll _I_ gl‘7l1xn1+1 - gynlyn1+1 + hl‘nlxn1+1 - h’ynlyn1+1 = 0’ (49)
which implies
-1 —1
Ly Yni19¢ian, 11 + 9Giyn 11 = 0, xm—l—lym-l-lh@rnl + hCzynl = 0. (4'1())

For the representation purpose, we assume that ¢ is polynomial in ¢; with g|;—0 =0
and h is polynomial in (5. Set

(3 = TnyYni+1 — Ty +1Yny - (4.11)



By (4.10),
g is a function in x,,, Yn,, (1, (3. (4.12)

Moreover, (4.9) says

_xr_zllyn1glgC1C3 T YniGzn, ¢s T TnaGyn, s = 0. (4'13>

Again we can assume that ¢ = ¢ + ¢ is polynomial in z,,, yn,, (3 With §|s—0 = 0 and
Ge; = 0. Then (4.13) is equivalent to

Yni1 G196 + TnyYny Jon, + :):fllgynl = 0. (4.14)

2

This shows that g is a function in ¢;/z,,, 7},

—y2 ,C3. If g is a polynomial, then g = 0. So
the polynomial solution of g must be a polynomial in z,,,, yn,, ¢; with g, # 0. Similarly, if
h¢, # 0 and h|¢,—o = 0, the polynomial solution of A must be a polynomial in 41, Yn+1, Co.
Assume h¢, = 0. Then

~0 (4.15)

TnyTny4+1 hyn1 Ynqi+1

by (4.9).
By Lemma 2.1, (3.78)-(3.80) and (4.2), the polynomial solution of ~ must be in

Span{n"* (' Y2 1) | M1, mg,ms € N} (4.16)

Therefore, a singular vector in B must be a nonzero weight vector in

+1 +1
Span{x, Yy, 2T ety G ™ (o ynt) | ma € N (4.17)
Note
+1
xnm;yz”;zclms € B(—ml—m3—17m2+M3+1)7 (418>
+1
lell—i-lyg;z—i—lggm € B<m1+m3+17—m2—m3—1>' (419)
Moreover,
D(:L’Z"”llyzll%f““) = —mgxz"f“y,’ff_l {”3+1 =0<=my =0 (4.20)
and
1 -1 1 1
D(xy 1 yni 5”3+ ) = —myx,t y;’"ffl Tt =0 <= m; =0 (4.21)

by (3.12) and (4.1). Furthermore,

mi+ma ~m3+1

ma (gmatma et mat1 0T (Y™™ T)

n
M2 m3+1 — mnl ’ xrm m2 — = 4.21
n1 Iny Cl Hrjl(ml + 7,) ni+Yni+162 Hr:ll (m2 + 7«) ( )
by (4.2). Indeed,
M @ ) = (g ) =0 for my,my € N, (4.22)

Since 27y, 1 € H—my,—my), (3.45) says that 0™ (z y, ;) with m > 0 is a singular
vector only if m = my +my+ 1. But n™ ™24 (g71y2 ) = 0 by (4.2). Thus any singular
vector in H (cf. (3.38)) is a nonzero weight vector in

ma+1 ma+1  mq

Span{z?ll 1 >yrrﬁl+1gz » Ty y:?fﬂ | my, my € N}. (4.23)



Since B is nilpotent with respect to sli(n,F), (cf. (2.30)), any nonzero submodule of 13 has
a singular vector. The above fact implies H, ¢,y = {0} for ¢y, ¢, € Z such that ¢, 4 ¢, > 0.
Observe that

(2 G2 | ™)
m2
_ ma i mo—1i,_ . mi+i, i mo—1i 2 mz v mi+i, 10 mo—1i
- (Z 7/ (_1) xnl 1xn1 ynl lynl ‘Z n1 1xn1 ynl lynl )
=0

— (_1)m1+m2m2! Z (ﬂ;bg) (ml + Z)'(’/ﬂg _ Z))' £0 (424)

by (3.55). Similarly, (" 1¢" [yn¢y™) # 0.
Next we assume n; = ny = 1 and n > 3. By the arguments in the above, a singular

vector in B must be a nonzero weight vector in

Span{ay Ly G 0™ @y | me € N} (4.25)

Thus any singular vector in #H (cf. (3.38)) is a nonzero weight vector in
Span{ynl—l—l m2+17 n1 ynl—l—l ‘ my, Mg € N} (426>

The above fact implies H, ¢,y = {0} for {1, ¢, € Z such that ¢, + €, > 0 or ¢, > 0.
Consider the subcase n;y = ny = n — 1 and n > 3. A singular vector in B must be a

nonzero weight vector in
Span{zym2 ¢t g™ (a2, ) | m; € N (4.27)
Thus any singular vector in #H (cf. (3.38)) is a nonzero weight vector in

Span{z (7> 2y, | ma,mo € N} (4.28)

The above fact implies H s, ¢,y = {0} for {1, ¢, € Z such that ¢; + ¢, > 0 or ¢; > 0.
Suppose n; = ny = 1 and n = 2. A singular vector in B must be a nonzero weight

vector in
Span{n"(z{"y5"*) | m; € N}. (4.29)

Thus any singular vector in H (cf. (3.38)) is a nonzero weight vector in
Span{z]"y5"? | my, mg € N}. (4.30)

The above fact implies H, ¢,y = {0} for {1, ¢, € Z such that ¢; > 0 or ¢ > 0.
Finally, we assume n; = ny = n. A singular vector in B must be a nonzero weight

vector in
Span{x"'y"2({" | m; € N} (4.31)

ni ynl

Thus any singular vector in H (cf. (3.38)) is a nonzero weight vector in
Span{z,"* (;"* | mi,my € N}. (4.32)

The above fact implies H, 4,y = {0} for 41,0, € Z such that ¢; + ¢, > 0. Indeed, all
By msy With my,my € N are finite-dimensional and completely reducible by Weyl’s



Theorem of complete reducibility. Moreover, their irreducible summands are completely
determined by (4.31).
By the arguments of (3.55)-(3.70), we obtain:

Theorem 4.1. Suppose ny = nsy. Let 1,0y € Z such that {5 > 0 when n; = n.
Assume 1 + 0y < 0 and: (a) bo <0 ifny =1 andn >3; (b) 1 <0ifny =n—1 and
n>3; (c)li,ly <0 whenny =1 andn = 2. Then H, g,y is an irreducible highest-weight
sl(n,F)-module and

Bty = 1" (Mt tr—m)) (4.33)
m=0

is an orthogonal decomposition of irreducible submodules. The symmetric bilinear form
restricted to 0™ (H (e, —m ea—my)- In particular, By, ey = Hiey ) S n(Bey—1,0,-1y)- If the
conditions fails, H, ey = {0}. When ny = ny = n, all the above irreducible modules are
of finite-dimensional.

Suppose n; < n — 1. Let my,mo € N. The subspace H(_,, —m,) has a highest-
weight vector a7ty of weight my(1 — 010, ) An—1 — (M1 + Mg + 2) A, + Moy 1. If
ny > 2, the subspace H(_m; —m,—1,m,+1y has a highest-weight vector x! C{”ZH of weight
(Ma+1)An 2 =My Ay, -1 — (M +ma+3) A, . The subspace H m, +1,—mg—m, 1) has a highest-
weight vector "% (5" of weight —(m1+ma+3) A, +m2 A, 11— (M1 +1) (1=8n, 5—2) Any 2.

Consider n; = n — 1. The subspace H(_n, —m,) has a highest-weight vector z7'1y"% |
of weight my (1 — d,.2) An—2 — (M1 +mo +2)A\,—1. If n > 3, the subspace H(_m,—ms—1,ma+1)
has a highest-weight vector z;" C{”ZH of weight (mg + 1)(1 — d,.3) Az — My A2 — (Mq +
mao + 3) A1

Assume n; = n. The subspace H(_p, —ms,m.) has a highest-weight vector z;"1 ("> of

Welght m2(1 — (Smg))\n_g + ml)\n_l.
Now we want to find an explicit expression for H, s,y when it is irreducible. Set

g/:Zl > FEj. (4.34)

i=1 j=ni+1

r,s€l,ny OI rseni+1,n;r#s =1 j=ni1+1

Then G’ and G are Lie subalgebras of sl(n,F) and sl(n,F) = G’ & G. By PBW Theorem,

~

U(sl(n,F)) =U(G")U(G). According to (1.6)-(1.8),
Er,s|B = —xsamr — ysayr, Ep’q|3 = Sl?pamq -+ ypﬁyq, (436)

E,plp = 00,05, — 0,0y, E, B = —2,2, + y:Yp (4.37)

forr,s € 1,n; and p,q € ny + 1, n.



First we assume n; < n. For my, my € N, we have

Hi-mi-msy = Ulsl(n, F))(xz"fyiﬁil)Z U(GU(G) (i yma)

n—ni niy n—ni

= Span{ Hl'lr H ynl-i-s H H $r$n1+8 yryn1+8)lré]

r=1 s=1
n—mi

| 1, kg, 1 € N; Zz _thk = my} (4.38)

by (4.36) and (4.37). Furthermore, we assume n; > 1. We let

H/<—m1—m2,m2>
n1 ni n—mi
= Span{[H ]| H (2pyq — qup)kp’q][H H (T s = YrYmis) ]
r=1 1<p<q<ni r=1 s=1
| L kp gy lrs €N Zz =my; Y kpg=ma}. (4.39)
1<p<qg<ni
By (3.38), (3.40) and (4.1), we have H|_ . C H(m;—msm,). Moreover, (4.37) and

(4.38) yield
Hcma—mama) = U (1, F)) (277 ¢72) = UGV (G) @ (") € H s —mpmaye (4:40)

Thus H?_ml_mz’m) = H(—m1—ma,mo)- Symmetrically, if ny =no <n —1,

H (1mz,—m1—m3) = Span{] H (2pYq — qup)kp’q][H H (s — yryS)lT’S]

n1+1<p<q<n r=1s=n1+1
n—mi ni
H Ul [l kg s €N2Y Lo=myy Y kg =ma}. (4.41)
r=1 n1+1<p<g<n

When n; = ny = n, by the arguments between (4.39) and(4.40),

H(—M1—M2,M2) = Span{[Hl’?.H H (xpyq_qup)kp’q]
r=1

1<p<g<n

[l kpg €N:Y Lo=my; Y kg =mal, (4.42)
r=1

1<p<g<n

which is of finite-dimensional.

5 The o(2n,F)-Variation

Recall that B = F[zy, ..., zp, Y1, ..., Yn| and the representation of o(2n,F) on B defined by
(1.14)-(1.16). It is easy to verify

TE=ET on B for € € o(2n,F); T =b,b",D,n (5.1)

by (1.9), (1.10), (2.13) and (3.4). Recall the notions B and H defined in (1.17). The
B =, ., By forms a Z-graded algebra and

H<k> = @ H(51,52>' (5'2>

01 Lo €01 +la=k



Moreover, By and Hy are o(2n, F)-submodules. Recall K =7 F(Ei; — Enyjnti)-

Theorem 5.1. For any ny —ng + 1 — 6y, 0, > k € Z, Hyy is an irreducible o(2n,F)-

submodule and
EBn h2i)) (5.3)

is an orthogonal decomposition of irreducible submodules. In particular, Byy = Hy @
N(Bg—2y). Moreover, the bilinear form (-|-) restricted to n'(Hp—2:y) is nondegenerate.
Furthermore, Hqy has a basis

=0 HT’ 1(an1+1 + T) (57114—1 + T) ’ ’
n no n
s 41 B 41 =0;—Zai+ Yoo+ Bi— > B=k} (5.4)
i=1 r=ni+1 =1 r=no+1

when ny < ny. The module Hpy under the assumption is of highest-weight type only if
ny = n, i which case ;" is a hzghest weight vector with weight —kX,,—1 + (k — 1)\, +
(k= 1)0p, n-1 — 21{5”1,”])\”. When ny = ny = n, all the irreducible modules H gy with
0>k €Z are of (G, K)-type.

Proof. Let ny —ny+1 > k € Z. Note sl(n,F)|z is a subalgebra of o(2n,F)|z. Suppose
ny + 1 < ny < n. By (5.2), Theorem 3.1 and the paragraph below, the sl(n,F)-singular

vectors in H gy are: for my,my € N,

Ty Ypoyr  with — (my +my) = k, (5.5)
nm11+1yn2+1 with mip — Mg = ]{Z, (56)
aplyn with —my +my = k. (5.7)
Note
(En-l—nz-l—l,m - En+n1,n2+1>|3 = _xnlayanrl - ynlamanrl (58)
by (1.16). So
(Entnsttm = Bngmymor) ™ (@pynd ) = (1) myla, (5.9)

for the vectors in (5.5). Moreover,

(En-‘rnz—l-l,m-i-l - En+n1+17n2+1)|l3 = a:cn1+1ayn2+1 - yn1+18xn2+1 (5'10)

again by (1.16), which implies

mi1—1

(En+n2+1,n1+1 - En+n1—‘:-1,nz—|—1)m2 (xnmllﬂyﬁiﬁ = ml![ H (m2 - T)]?/r:f—i—l (5'11>
r=0

for the vectors in (5.6). Furthermore,

(Enyntny = By nin)|B arnl 8yn2 xn28yn1 (5.12)



by (1.15), which implies

mo—1
(En1,n+n2 - Enz,n-i—ru)mz (Izly:?;) = m2'[ H (ml - ,r)]l,;lk (513)
r=0
for the vectors in (5.7).
On the other hand,
(Em,n-i-nz-i-l - En2+1,n+n1)|l3 = _ynz-i-la:cnl - xnz-l-laynl (5'14)
by (1.15), which implies
mo—1
(En17n+n2+l - En2+l,n+n1)m2 (x;f) = (_1)m2[ H (_k - T)]l’:?llyzzz-i-l (515)
r=0
for the vectors in (5.5). Moreover,
(En1+1,n+n2+1 - En2+1,n+n1+1)‘3 = —Tni+1Yno+1 — xn2+18y7ll+l (516>
by (1.15), which implies
(En1+1,n+n2+l - En2+l,n+n1+1)m2 (y;2k+1) = (_l)mzxz?y;f;il (517)
for the vectors in (5.6). Furthermore,
(Entnan — Entning) B = —Tn Yny — ?/maﬂcnz (5.18)
by (1.16), which implies
(En—l-m,nl - En+n1,n2)m2 (Iglk> = (‘UmQ?CZT?JZ;Q (519>

for the vectors in (5.7). Thus for any two vectors in (5.5)-(5.7), there exists an element in
the universal enveloping algebra U(o(2n,F)) which carries one to another. On the other
hand, the vectors in (5.5)-(5.7) have distinct weights (see the paragraph below Theorem
3.1). Thus any nonzero submodule of H 4y must contain one of the vectors in (5.5)-(5.7).
Hence all the vectors in (5.5)-(5.7) are in the submodule by (5.8)-(5.19). Therefore, the
submodule must be equal to Hy, that is, Hy is irreducible. By (5.16) and (5.18), H
is not of highest-weight type. The equation (5.3) follows from Theorem 3.1 and (5.2).

Assume ny + 1 = ny < n. By Theorem 3.2 and the paragraph below, the si(n,[F)-
singular vectors in Hy are those in (5.5)-(5.7). So the theorem holds. Suppose n; <
ny = n. By Theorems 3.1, 3.2 and the paragraph below them, the si(n,F)-singular
vectors in H are those in (5.7). Expressions (5.13) and (5.19) imply the conclusions in
the theorem.

Recall

Cl = Tn1—1Yn; — TnyYni-1, C2 = Tno4+1Yna+2 = Tno42Yns- (520)

In the case ny = ny < n—1, Theorem 4.1 tell us that the si(n,F)-singular vectors in Hy

are those in (5.5) and

k¢t for meN, (5.21)



Y1 G for m € N. (5.22)

Again all the singular vectors have distinct weights. If N is a nonzero submodule of H 4y,
then N must contain one of the above sl(n, F)-singular vectors. If N contains a singular
vector in (5.5), then z,* € N by (5.9). Suppose z,*¢{"*" € N for some m € N. Note

(Em—l,n-i-m - En1,n+n1—1)|l3 = a:cnlﬂaynl - 8xnl 8yn171 (5'22)

by (1.15). Thus

(Em—l,n-i-m - En1,n+n1—1)m+1(a7_k m+1)

_ _ii(—w (" )@, 0, >m<a ayml)f]
:,:Zt(l)s (m : 1) (xm_lym)m+1_sx;f+syzl_1]
_ nf; (m: 1)2[(m +1- r!)]zr![}ill(—k +z’>]> Tk
= [(m+ 1)1 (ni (‘kf )) ) € N. (5:23)

So we have :1:;1’g € N again. Symmetrically, it holds if y;l’“ﬂg;”“ € N for some m € N.
Therefore, we always have z,,F € N.

According to (5.15), N contains all the singular vectors in (5.5). Observe

(En—l—m—l,m - En+n1,n1—1>|l3 = Clu (En1+2,n+n1+1 - En1+1,n+n1+2>|8 = C2 (5'24>

as multiplication operators on B by (1.15) and (1.16). Thus

(Entni—1,n — En+n17n1—l)m+l(a7_k) = @, ¢ (5.25)

ni ny S1 )

(Bnyt2nim1 = Bnygingn 2)"H (2,) = 2,7 G e N (5.26)

Thus N contains all the sl(n, F)-singular vectors in H ), which implies that it contains
all ", 00y C Higy. So N = Hyy, that is, Hyy is an irreducible o(2n, F)-module, which is

of (G, K)-type if ny = ny = n by (5.2). The basis (5.4) is obtained by (3.72) and (5.2).
O

Finally, we want to find an expression for H ) for 0 > k € Z when n; = n,.
First we assume ny; = ny = 1 and n > 3. According to (4.26), (4.38) and (4.41)

Hi-ry
= Span{[H ol H (2pyq — qup)kp’q][H(xlxs — 11ys)"], 7 [H Y]
r=2 2<p<q<n s=2 s=2
<[ [@rae = iy ]| ko Loy L g, s € N T+ ke =Y =k} (5.27)

s=2 s=2 r=2



Next we consider the subcase 1 < ny = ny < n — 1. By (4.23), (4.38), (4.39) (note

H oy —mzmz) = H (—my—mams)y) and (4.41), we have
Hi-ky
ni
= Span{[H ]| H (€pyq — Tqyp)" H H (@ @s = YrYs) ]>
r=1 1<p<q<ni r=1s=n1+1
n—ni . ny n .
H yn1+7’ H (Tpyq — qup)kp,q][H H (@25 = ypys)"™],
n1+1<p<q<n r=1s=n1+1
n—mni ny n—ni
Hxlr H yn1+s H H (xrxn1+s - yrynl—l—s)lr’s] S5 Ts,l;, ]{Z;q,
r=1 s=1
n—ni n—ni

gl gy brs € N; Zz + Zk —Zz' > =k} (5.28)
r=1

Consider the subcase ny = ny = n — 1 and n > 3. By (4.28), (4.38) and (4.39) (note

H’<_m1_m2,m2> = H{(—m;—ma,ms)), We obtain
Hik
n—1 n—1 ~ n—1 A
= Span{[H ]| H (@pyq — zqyp)k HH(I’T[L’” — Yin)'"], [H v lyn
r=1 1<p<g<n—1 r=1 r=1
n—1
<[[[@ran = yoya)"] | 1y b 1o 1 K 1L €N Zz k= Zz' = k}. (5.29)
r=1

Suppose n; = ng = 1 and n = 2. According to (4.30) and (4.38),
H ) = Span{[ziys(x1205 — 1y2)" | 75,0 € N7+ 5 = k}. (5.30)

Finally we assume n; = ny = n. By (4.32) and (4.39) (note H)_,,, .. v = H(—mi—ma,ma));

Hir = Span{HmH[ H (€pYq = Tq¥p) "] | Ly hpg €N Z I, =k}, (5.31)
r=1 1<p<g<n r=1
whose (G, K)-module structure is given by H(_xy = @,r_o H(—k—m,m) With H(_j_pm m given
1 (4.42).

6 The o(2n + 1, F)-Variation

Recall .
o(2n + 1,F) = o(2n,F) & @[F(Eo; — Entio) + F(Eonsi — Eio)] (6.1)
i=1
and B = Flzg, T1, ..., Tn, Y1y vy Yn-

Fix ni,ny € 1,n such that n; < my. The representation of o(2n + 1,F) on B’ by
the differential operators in (1.14)-(1.16), (1.19) and (1.20). Recall B, = >3 Bi— VT
Then all Bj,, with k € Z are o(2n + 1,F)-submodules and B' = @, By, forms a Z-
graded algebra. Moreover, the variated Laplace operator D’ = 92 , 2D by (1.21) and its
dual ' = 22 + 2n by (1.22).



A straightforward verification shows
DE=¢D, &nf =n'éon B for £ €o0(2n+1,F). (6.2)

As in the introduction, H,, = {f € B'(k) | D'(f) = 0}. According to (6.2), H,, is an
o(2n + 1,F)-submodule. By Lemma 2.1 with T3 = 82, T} = f((;o)) (cf. (2.6) and (2.7))
and Ty = 2D, we obtain

Hiy = (Zo %) (By) @ (ZO %) (B—1y)- (6.3)

Recall K = Zzy 1 ( i,j En-l—j,”-l-i)'

Theorem 6.1. For any ni—na+1—0n, 0, > k € Z, H); is an irreducible o(2n+1,F)-

submodule and .

Biyy = @(n/)i(ﬂ/(k—%)) (6.4)

i=0

1s an orthogonal decomposition of irreducible submodules. In particular, Bg,ﬁ = 7-['<,€> S
1 (Bjj_y). Moreover, the bilinear form (-|-) restricted to (U/)i(H?k—zn) is nondegenerate.
Furthermore, Huy has a basis

{Z ;;D:(x ) | a,BeNmi=0,1;
n no n
—ZamL YooartY Bi— Y, B=k—1}. (6.5)
i=1 r=ni1+1 =1 r=no+1

The module ’H’ under the assumption is of highest-weight type only if ny = n, in which
case x,* is a hzghest weight vector with weight —kX,,—1 + (k — 1)\, + [(k — 1)6py n—1 —
2k5n1,n])\n~ When ny = ny = n, all the irreducible modules Hyy with 0 > k € Z are of
(G, K)-type.

Proof. Observe that

(w5°Y° |55 Y7 ) = 00000, 05,5, (—1) =01 STz Pl 81 (6.6)
for r;s € Nand o, 8,04, 1 € N™ By (1.21) and (1.22),

(D'(Nlg) = (fln'(g))  for fgeB. (6.7)

Let ny —ng + 1>k € Z. First by (5.3) and (6.3),

A [ (D AT
Hipy = TG_% (; T) (" (Hg—2ry)) @ @ (Z Tl)) (7° (H k—25-1)))-
o (6.8)
Let N be a nonzero submodule of ’H’<k>. By comparing weights and the arguments in
(5.5)-(5.13) and (5.21)-(5.23), we have

(Z %) (™ (2, T2™)) € N (6.9)

=0



for some m; € N or

(Z ¢ DZ) (™2 (2, 224 ) € N (6.10)

2z+1

for some my € N.
Note
(EnLO - EO,n-i-m) = axoaxnl - xoaynl (6'11)

by (1.19) and (1.20). Recall

leayz—i_ Z Oz, Oy, — Zn: Y5O, (6.12)

r=ni+1 s=no+1

and

H—Zyzé‘xﬁ Z Ty + Z 250, (6.13)

r=ni+1 s=no+1

Then (3.44) gives

(Enio = Bopen) [(Z (_2()2793,1)) <nm1<x;f+2ml>>]

=

_ (Z (i + V(= + 2mi)(=2) D") (i gty

— (20 +1)! m
I (g (—k+ 2m1()2(i—f)1i;1x3i+12)i+1> (1 (x;erzml_l))
—my(—k + 2my) <i (—2)(i;gzg)i:r11)i> (=L (g 2mty)
i=0 '
— ma(—k + 2my) (i (—é)zgjrgz;pi> (7= (a2 1)
i=0 '

= (_2)i+1x3i+1pi m1—1 —k+2m1—1
i=0 '

= ml(—k + le)(2m1 — 2k + 2n1 — 271,2 -+ 1)
N iy 2 W,
X (Z %> (™ l(xan =), (6.14)
1=0

(204 1)!
Moreover,
- (_2)7/:1;3744‘1D1 mo —k+2mo+1
(Enio — Eontna) ZW (0™ (2, )
i=0 ’
— ima(—k 4 2my + 1)(=2)2¥ D1\ o,
_ (Z 2 2(21.)' 0 (,r] l(xmk—l—2 ))
i=0 ’

. (Z (—k + 2m, (Zi;!)(—zm’pl) (e ()



_mz(_k + 2m2 + 1) (Z W) (an_l(x;f+2m2))

—~  (2i+1)
S (_2)11.(2)11)2 mo (. —k+2mo
= (k+2my+1) (> —a (™2 (2 FH2mz)). (6.15)
i=0 '
Note k < 0 by our assumption. Using (6.9), (6.10), (6.14), (6.15) and induction, we obtain
z,FeN.
Observe

(ETL+TL1,0 - EO,n1)|B’ =TTy, + yn18x0 (616)
by (1.19) and (1.20). Then

(Bntnro — Eopy)™(@,7) = 2z, "™ + P, € N, (6.17)

ni

where the degree of P, with respect to xg is less than m. For any f € Hgy_om) and
9 € Hig—o2m-1y , (3.44) and (5.2) says that

(Z (‘2()27),”) (i (F))

B i?x%i _m—=—r)(m—k+n —ny+1+r)

el ") (615)

i=0
and
o (_2)@'1,22'4-11)2' .
(Z (2—;), (n™(9))
i=0 ’
T2 (m =) (m — k1 —ng +247)

= ; 2T 1" (g)- (6.19)

This shows that if z7" is the highest xy-power of a nonzero element in 7—[’<k>, then its
coefficient must be in H_., by (6.8).
On the other hand, (6.17) implies that

the coefficients of 2" in U(0(2n, F))[(Entny0 — Eony)™(@,")] = Higemy, (6.20)

ni

because it is an irreducible o(2n, F)-module by Theorem 5.1. By induction on m, we can

prove

Higy €O U020, F)[(Ernsnyo — Eoy)"(z,F)] C N. (6.21)

Thus N = HJ;,. This shows that #,, is irreducible. Since the bilinear form (-|) restricted
to Hpy C Hj, is nondegenerate, the irreducibility of 7, implies that the symmetric
bilinear form (-|-) restricted to HJ,, is nondegenerate.

Next want to prove

(M) = {0} for ny —ng+1 = 0n,, >k k' € Zsuch that k#k.  (6.22)



For any f € H—om) and [’ € Hur—onyy, (3.64). (5.2), (6.6) and (6.18) yield

((Z 7(‘2();;{”) P (1)) (Z 7(‘2();;{”) <n2m’<f/>>>

_ Z%[H(m—s)(m—k‘—l—nl—n2+1—|-$)]

X[TL' = s =K 40y —ng + 1+ )]0 ()ln™ 7 (f))

s'=1

= 0 if (m,k—2m)# (m' K —2m). (6.23)

Let g € Hpp—om—1y and ¢’ € Hyr—om—1y. By (3.60). (5.2), (6.6) and (6.19), we have

((Z ol DZ) o ) <Z %) <n2m’+1<g'>>)

7 r=0

’i (2

= > 2z+1 ([ [(m—s)(m =k +n1—ny +2+5)]

=0 s=1

X [H(m =)' =K 4= e+ 2+ 80" (9)ln™ ()

s'=1

= 0 if (mk—2m—1)# (m' k' —2m' —1). (6.24)

Since (22|22 +1) = 0 for i,i' € N, the elements of the form (6.18) are orthogonal to those
of the form (6.19). Hence (6.22) holds by (6.8).
For g € ")y, and m € N+ 1,

D'[(n)™(9)] = 2m[2(k + 12 — ny +m — 1) + 1](n)" " (g) (6.25)
by (3.44) and the facts D’ = 92 — 2D and its dual 5 = x§ + 2n. This shows that
()™ ()| )™ () = {0} i (m, k) # (m/ K) (6.26)

for ny —ma+1—0p, 0, > k,k' € Z and m,m’ € N by (6.7). Moreover, the symmetric
bilinear form (-|-) restricted to (n)"(#{;) is nondegenerate.
Fix ny —ng +1 — 0p, n, > k € Z. Denote

By = D) (M) (6.27)

=0

Then the symmetric bilinear form (-|-) restricted to BEM is nondegenerate. Thus

Bl = By @ (Bjy)* ﬂ By (6.28)

According to Lemma 3.2, ( ) (1 Biyy is an o(2n+1, F)-module. Assume (l§2k>)l N By #
{0}. By (5.2), (5.3), (5.8)- (5 13), (5 23) and (1.23), there exists a nonzero element in
(BQM)L By, of the form:

f= Z a;a? (g rom) (6.29)



or

g= Z b $2Z+1 — ( ;f+2m+1) (630)

for some m € N+ 1. Moreover, we assume that the exponent of z,,, is minimal.
If (6.29) holds, then (6.11)) and (6.13) give

(B0 = Bonany)(f) = (8xoaﬂcn1 - leannl )(f)

= ZQi(—k—l—Qm a;wZ 1 (2m) ™ (AL

nl

=Y 2(m —i)(—k + 2m)a;zd T (2n)" T (@, A

7

3)—‘

Il
=)
—

= 2(—]{3 + 2m) [(z —+ 1)0'1'-1-1 — (m _ Z)al]l’gH—l(Qn)m_i_l(x_k+2m_l)

ni

3

Il
o

i

~ 0 (6.31)

by the minimality of the exponent of z,,, equivalently

(i+1)aj1=(m—i)a;  for i €0,m—1. (6.32)
Thus
m —
a; = ag ( . ) for i € 0,m. (6.33)
So .
f= Z ao (T) xg (2n)™ (a,FP) = ag(n )™ (2, F TP € B/ (6.34)
i=0

which contradicts (6.28).
Suppose that (6.30) holds. Note zoxz, F**"+! € Hj, v by (1.23). Expressions (6.11)
and (6.13) deduce

(B0 — Eoniny)(g9) = (8xoaﬂcn1 - anynl)(g)

m

= 2(22 + 1) (—k + 2m + )b (2n)™ " (x, 7 2m)

ni

=0
m—1
2(m —k + 2m + 1)bg 2 (2n)" (@, M)
=0
m—1
= (—k+2m+1){ Z[(?z + 3)bip1 — 2(m — i)bi]IgHz(QU)m_i_l(xglka)
=0
+bo(20)" (2, } =0 (63

by the minimality of the exponent of x,,, equivalently
bo =0, (2i+3)bir1 =2(m—1)b; for 1 € 0,m — 1. (6.36)

Thus b; = 0 for ¢ € 0, m, that is, g = 0. This contradicts our choice of nonzero element.
Hence (l;’zm)lﬂl’)” = {0}. Then (6.28) gives (6.4). Furthermore, (6.5) is obtained by
Lemma 3.1 with T} = 92, Ty = f((fo)) (cf. (2.6) and (2.7)) and T, = 2D.



When n; = na, an expression of HJ;, can be obtained via (5.3), (5.27)-(5.31), (6.8),
(6.18) and (6.19). In particular, when n; = ny = n, the (G, K)-module structure is given

Hiwy = D (Z %) (" (H(—k—2r-m,m)))

m,r=0 \ =0
z 2Z+1'Dz
@16390 ZO Tl) (0°(H—k—25-1-1))); (6.37)
where H(_m, —ma.mo) given in (4.42). O

7 Noncanonical Representations of sp(2n,F)

In this section, we use the results in Sections 3 and 4 to study noncanonical polynomial
representation of sp(2n,F).
Recall the symplectic Lie algebra

p(2n,F) Z F(E;j — Entjnsi) + Z(FEZTL—FZ +FE, 1)
i,7=1 i=1
+ Z E; ntj T En+J 2) + F(Enﬂ',j + En+j,i>]' (7’1>
1<i<j<n

Again we take the Cartan subalgebra H = > " F(E;; — E,1in+;) and the subspace
spanned by positive root vectors

sp(2n,F)y = > [F(Eij = Enyjnei) + F(Bingj + Engji)l + Y FEiny  (7.2)

1<i<j<n i=1

Fix 1 < n; < ny < n. The noncanonical oscillator representation of sp(2n,F) on B =
Fl21, ooy @y Y1y ey Y] I8 defined via (1.14)-(1.16). Recall K = 377", | F(Eij — Enyjnyi)-

Theorem 7.1. Let k € Z. If ny < ny or k # 0, the subspace By (cf. (1.17)) is an
irreducible sp(2n,F)-module. Moreover, it is a highest-weight module only if ny = n, in
which case for m € N, x,™ is a highest-weight vector of B(_p with weight —mM,, _1 +
(m — D) An,, 2 s a highest-weight vector of Biyt1y with weight —(m + 2)A\,, + (m +
DAnys1 + (m 4 100 ne1An if m < noand y2* is a highest-weight vector of Byny1y with
weight (m + 1)\,—1 — 2(m + 1)\, when ny = n.

When n, = ng, the subspace By is a direct sum of two irreducible sp(2n, F)-submodules.
If ny = ny = n, they are highest-weight modules with a highest-weight vector 1 of weight
—2\,, and with a highest-weight vector x,_1y, — TnYn—1 of weight 0, 2N,—2 — 4N, Tespec-
tively. If ny = ny = n, all the irreducible modules are of (G, KC)-type.

Proof. Recall that we embed sl(n, F) into sp(2n,F) via E; ; — E; ;— E,4j,,. Moreover,
B is nilpotent with respect to sl(n,F); (cf. (2.30)) and

n—zyzamz+ Z TrYr + Z Jfas (73)

r=ni+1 s=no+1



Note
(Ei,n-‘rj + Ej,n+i)|l3 = a:ciayj + 8xjayia (Ei,n-‘rr + Er,n+i)|l3 = 8901-8@/7- + xraym (74)

(Er,n—i-s + Es,n+r)|l3’ = Irays + xgayr. (75)

fori,j € 1,ny and r, s € ny + 1,ny by (1.15). Moreover,
(Bij — Enijnyi)ls = =202, — y;0,, — i (7.6)

and
(Ez',r - En+r,n+i)|B - 89010:07 - yrayi (77)

fori,j € 1,ny and r € ny + 1, ny by (1.7), (1.8) and (1.14). We will process our arguments
in two steps.

Step 1. no = n.

Under the assumption, B is nilpotent with respect to sp(2n,F), by (7.4)-(7.7).
First we assume n; + 1 < n. According to (3.37), the nonzero weight vectors in

Span{n"®(z!"y"?) | m, € Nyi =nq,n; + 1} (7.8)

are all the singular vectors of sl(n,F) in B. The singular vectors of sp(2n,F) in B must be
among them. Moreover, the subalgebra sp(2n,F), is generated by sl(n,F); and E, o.
According to (7.5), E, 24|58 = ©,0,,. Hence

En72n(77m3 (ZE?“ y:;%z)) = Tn [m?»xnnmg_l(a?;m erz) + man™? (ﬁ“y:fz_l)] (7.9)

for i = ny,n1+1 by (7.3). Considering weights, we conclude that the vectors {7}, :)sz"ﬁll

m € N are all the singular vectors of sp(2n,F) in B. Furthermore,

2 € Bi_yy and 2'tY € By for m € N. (7.10)
Thus each By has a unique non-isotropic singular vector for & € Z. By Lemma 3.3, all
By with k € Z are irreducible highest-weight sp(2n, F)-submodules.
Consider the case n; + 1 = n. According to (3.112), the nonzero weight vectors in
) [ €N (T

n

Span{n"*(z;21yn"*), T, Y * s n
are all the singular vectors of sl(n,F) in B. Recall E, »,|g = ©,,0,,. We have

Epon(w yn?) = moay Tyt (7.12)

By (7.11) and considering weights, we again conclude that the vectors {z™ ,, 2™ | m € N
are all the singular vectors of sp(2n,F) in B. Again all By with k& € Z are irreducible
highest-weight sp(2n, F)-submodules.

Suppose ny = n. By (7.4), we have E,, 5, = 0,,0,, in this case. According to (4.31),

the nonzero weight vectors in

Span{x)"ty2 (" | m; € N} (7.13)



are all the singular vectors of sl(n,F) in B, where (; = z,,_1Yn — Tpyn_1 in this case.

B on (3 2 (1)
= mamart Ty T+ mamgm, 2t (e
_m2m3yn—1xnmly7772_1 {713_1 - m3(m3 - 1)xn—1yn—1xnmly;n2CIn3_2
= my(mg + m3)55;n1_1y7?2_1 1"+ mg(my —mg —ms + 1)yn—1$;nly;n2_l {ng_l
—mg(mg — D)y iy, (7.14)

Considering weights, we again conclude that the vectors {z™,y™ ™, (; | m € N} are all
the singular vectors of sp(2n,F) in B. Moreover,

xnm S B<_m), (1 € B<0) and yzﬂ—l € B<m+1> for m € N. (7.15)

Thus each By with £ # 0 has a unique non-isotropic singular vector for k € Z. By
Lemma 3.3, all By with 0 # k € Z are irreducible highest-weight sp(2n,F)-submodules.
Set

By =Span{[ [[ (zeys +2eye)]

1<r<s<n

l.s € N} (7.18)

1<r<s<n
Let
G'= Y F(Enpsr+ Enirs) (7.20)
1<r<s<n
and .
G=> F(Ei;— Buyjnsid) + Y F(Ernis+ Bopnir): (7.21)
i,7=1 1<r<s<n

Then G’ and G are Lie subalgebras of sp(2n,F) and sp(2n,F) = G'®G. By PBW Theorem
U(sp(2n,F)) = U(G)U(G). (7.22)

Note
(En-i-s,r + En-i—r,s)B = _(xrys + xsyr) for r,s e L—n (723)

by (1.16). According to (7.4), (7.6) and (7.23),

By =U(G')(1) = U(sp(2n,F))(1) (7.24)
and
Bogy = Y, UG @y — w4yp) = Ulsp(2n. F))(G1) (7.25)

are sp(2n,F)-submodules.
It is obvious, 1 & By2. On the other hand, (B 1y|Zn—1Yn — Znyn—1) = {0}. Hence
Tpn_1Yn — Tn¥n—1 & Bioy)- Thus By and By have a unique non-isotropic singular



vector. By Lemma 3.3, they are irreducible. Since 1 and x,_1y, — ,yn_1 are the only
singular vectors in B which is nilpotent with respect to sp(2n,F),, Lemma 2.3 yields

By = Bio1y ® B ) (7.26)
by the similar arguments as those from (3.67) to (3.69).
Step 2. ny < n.

We set

n2

n2
Gi = > F(Eiy—Eujuri) + Y (FEinpi +FEup)

ij=1 i=1

+ Y [F(Einsj + Enssi) + F(Engig + Boso)] (7.27)
1<i<j<ns

and
Gy = Z F(Ei; — Entjnti) + Z (FEinyi +FEn i)

i, j=n1+1 i=ni+1

+ Y [F(Bintg+ Engi) + F(Bugij + Ensyi))- (7.28)
n1+1<i<j<n

Then G; = sp(2ns, F) and Gy = sp(2(n — ny),F) are Lie subalgebras of sp(2n,F). Denote
MY =TF[z1, o, Ty Yty oy Y M2 =TT, 15 s Tty Yny 15 s Y- (7.29)

Observe that M! is exactly the G;-module as B in Step 1 with n — ny and M? is exactly
the Gi-module as B in Step 1 with n; = ny and n — n — ny. Moreover, we set

M3 :F[zla"'7$n17y1a"'7yn1]7 M4 :F[xn1+1>"'7xn2>yn1+la~-'>yn2]' (730)
Let
My =M (\Byy  for i€ T4, ke (7.31)
Then
My =P MM, for ke (7.32)
reZ

Next we prove the theorem case by case.
Case 1. n1 +1 < ny
According to (3.36), the nonzero weight vectors in
Span{n™* (" y;**) | m, € N;i = ny,ny + 1;j = ng,ny + 1} (7.33)

are all the singular vectors of sl(n,F) in B. Fix k € N. Then the singular vectors of
sl(n,IF) in B(_y are

(g™ (g Fmetma ey oy (n y ),

0" (T Ynasr) | M € Nymag +ms — 2mg = k}. (7.34)



Let M be a nonzero sp(2n, F)-submodule of B(_y). Then M contains a singular of si(n,[F).
Suppose some 78 (zy M2 t2msym2) e M. We have Ey, nin, |8 = Op,, 0y, and

Tng
2ms
B, I (ki mat2msymay ) — g\ [T [ (k + ma + )] ™y € M (7.35)
r=1
by (7.3) and (7.4). Moreover, (Ep, niny + Engniny)|s = Or, Oy, + Tn,0,, and
ma
(Em,n—i-nz + Eng,n+n1>m2 (xlrf:m2y:g2> = m2'[H(k + T)]SL’I;“ € M (736>
r=1
by (7.4). Thus
ah € M. (7.37)
Assume some 7™ (2 k™) € M. According to (1.16),
(En+i,j + En+j7i)|l3’ = &Ciayj + ijayi for 7 € No + ]., n. (738)
So
2ms
ErT—En2+1,n2+1[77m3 (lei1+1y7]§?/:_ﬁ1+2m3)] = m3![H(k +my + 7“)]$Z?+1y5jﬂl cM. (7.39)
r=1
Moreover,
(En+n2+1,n1+1 + En+n1+17n2+1)|l3 = a:cn1+1ayn2+1 + yn1+18xn2+1 (7'40)
by (1.16). Hence
my
(En+n2+1,n1+1 + En+n1—‘:-1,nz—i-1)m1 (xnm11+1yﬁ:ﬂ1) = ml![H(k + T)]yﬁgﬂ € M. (7'41>
r=1
Furthermore,
(En—i-nz-i-l,m + En+n1,n2+1>|3 = _xnlayanrl + ynlamn2+1 (742>
by (1.16). Thus
(En—i-nz—l-l,m + En+n1,n2+1>k(yﬁz+1> = (—1)“{:!:{:’21 € M. (7'43>

Thus (7.37) holds again.
Consider 1™ (x'4y,>, 1) for some m3, ms, my € N such that my4+ms — 2ms = k. Note
that En1+1,n+n1+1|3 = xn1+18yn1+1 by (75) and

m3 m ma , M5 _ 2ms  _.mg , ms
En1+1,n+n1+1[n S(xn;lyng—l-l)] - m3!xn1+1xn14yn2+1 S M (744>

There exists 1,75 € N such that r; + ro = 2mg and r; < my, ro < ms. Moreover,

(Enl,nl—i-l - En+n1+1,n+n1)‘8 = amnl 890n1+1 - yn1+18yn1 (745>
by (1.7), (1.8) and (1.14). Moreover, (7.40) and (7.45) yield

r1 ro( _2ms _my4 , mMms
(En17n1+1 - En+n1+1,n+n1) (En+n2+1,n1+1 + En+n1+1,n2+1) (xnl-i-lxnl yn;-i-l)

ri—1 ro—1

= @mg)/[J] (ma — sOI[ ] (ms — sa)]aie "y € M. (7.46)

s1=0 s2=0



Furthermore, (7.42) yields

ms—r2

(En+n2+l,n1 + En-l—m,nz—i-l)ms_r2 (1':714_7,1%12-1-1 )
= (=1)™7"(ms —ro)lak € M. (7.47)
Thus we always have xfbl € M.
Note that M%_M > zF is an irreducible Gi-module (cf. (7.27) and (7.29)) by Step 1.

So
My C M. (7.48)

Let r € Z. According to (7.32),
MOy M4y © My C M. (7.49)

Moreover, M%_k_r> D M?_k_r> is an irreducible Go-module (cf. (7.28) and (7.29)) by Step
1. Thus

MMy = U(Ga) (MM ) € M. (7.50)
Then
By =P MM, M (7.51)
reZ

by (7.29) and (7.30). Therefore, M = B, that is, B(_y) is an irreducible sp(2n,F)-
submodule.
Fix 0 < k € N. Then the singular vectors of sl(n,F) in B, are

{02 (i 22yt ), " (e ™) g ()
|m2- EN;2m2 §k+m1;m4+m5—i—2m3:k} (752)

by (7.33). Let M be a nonzero sp(2n,F)-submodule of Byy. Then M contains a singular

of sl(n,FF). Suppose some 71" (zﬁjﬂl_mzygﬂrl) € M with 2my < k + m;. We have
Enl—l—l,n—l-nl—l—l‘l? = xn1+18y7ll+1 and
k-+m1—2 k+
Bt 72 (30 )] = malay Ty € M (7.53)

by (7.3) and (7.5). Moreover, (7.40) gives

my
(Brntnot 11+ Bngnyp1moen) ™ (@n Tyt ) = ml![H(k + )|, € M. (7.54)
r=1
Thus
ah . € M. (7.55)

Assume some n™2 (i yktmi=2m2) e M owith 2my < k4 my. Observe Eyn,n, =
YnyOs,,, Dy (1.16). So

B2y o [0 (@ ™ 2] = malagyp € M. (7.56)
Moreover, (7.4) gives that (En, nyny + Enyniny )58 = O, Oy, + Tny0y,, and
my
(Enyntns + Enginny )™ (Izlyfzjml) = ml![H(k + T)]ylriz cM. (7.57)

r=1



Furthermore, (7.5) yields that (E,,+1.n4ns + Eng ntna+1)|8 = Tny+10,

g + Tz Oy, and

(En1+1,n+n2 + En27n+n1+1)k(yrl§2> = k!xle—i-l e M. (758>

Thus (7.55) holds again.

ms
n2

Eniiinim1 = In1+1ayn1+1 by (7'5)' So

Consider 1™ (x,'* 1 y;*) for some mg, ms, my € N such that my +ms+ 2ms = k. Note

Eﬁ%,wmﬂ[ﬁm (xzh;4+1y$5)] = mslxz"i‘ffmyflls € M. (7.59)
According to (7.5),
(Em-i-l,n-i-nz + Enzm-i—m—i-l)ms (Inm14:12m3yg;5) = m5!xlr€z1+1 € M. (7'60)

Therefore, we always have z¥ |, € M.
Observe that ./\/l%,€> > aF . is an irreducible Go-module (cf. (7.28) and (7.29)) by Step
1. So

My C M. (7.61)
Let r € Z. Denote
M5 = F[$n2+la ooy Ty Yno+1y -5 yn]a ‘M?k;> = M5 ﬂBUf)? k€ Z. (762)
Then
2 _ 4 5
Miy =D MM (7.63)
reZ
(cf. (7.30)). Fix r € Z.
Mg M3y C My C M. (7.64)

Moreover, M%ﬂ D /\/l‘ér> is an irreducible G;-module (cf. (7.27) and (7.29)) by Step 1.
Thus

Furthermore,
By =P MM, c M (7.66)
reZ

by (7.27) and (7.65). Therefore, M = By, that is, By, is an irreducible sp(2n,TF)-
submodule.

Case 2. ng =nq + 1.

According to (3.104), the nonzero weight vectors in

Span{nm (I;nl y;ng)’ "L’Zﬁ-lygila nm1+m2 (:L,z"blz yz";a_i_—fnl)’ nm1+m2 (y:;ﬁ—za?zg-:lml)
| m, € N; (i,7) = (n1,n1 + 1), (n1,n1 + 2), (ny + 1,07 + 2)}. (7.67)

are all the singular vectors of sl(n,F) in B. Fix k € N. Then the singular vectors of
sl(n,IF) in B(_yy are those in (7.34). According to the arguments in Case 1, B(_y is an



irreducible sp(2n, F)-submodule. Let 0 < k € N. Then the singular vectors of si(n,F) in
B<k> are

k+mi—2ma, m1 ma ( .m1,,k+mi—2mso ms+me ( ,.me ,,V7T—M5 ms+me (, M6, M7—Ms5
m2 2 1 5 6 6 5 6
{n (Inl—}—l yn1+2>7 n (xnl ynl—l—l )7 n (xnl ynl—l—l )7 n (yn1+2xn1+1 )7

m3

ot Yty | mi € Nj2my <k +mysmg +my =k =ms +ms +mz} (7.68)

by (7.67). Let M be a nonzero sp(2n,F)-submodule of Byy. As an sl(n,F)-module, M
contains a singular of sl(n,F). If 2%,y |, € M with mg+my = k, then Ey, 11 nyni+1]5 =

xn1+1ayvll+1 and

m4 m3 M4 — k k
n1+l,n+n1+1(xn1+lyn1+l) - m4!xn1+l ceM—= Tpy+1 eM (769>

m7—ms

by (7.5). Suppose some 5>t (g 0y ") € M with ms 4+ ms + m7 = k. According to

(116), En+n1+1,n1+l = yn1+18xn1+1' So

ERailts o [0 (e yn ™)) = (ms + me) 2ty T € M. (7.70)
Moreover, (7.4) yields that (En, niny 11 + Enyyinin) |58 = Or,, Oy, oy + Tny 110y, and
me
(Enyntni+1 + By ingng )™ (x:?lﬁyfzjﬂts) = mb’![H(k + T)]yrlil-i-l cM. (7.71)
r=1

Assume some 7>+ (y "0 o™ ) € M owith ms +ms +mg = k. By (7.3) and (7.5),

B I (YT "0)] = (s + me) a1 € M. (7.72)
Observe
(Bntni+2m+1 + Engnyim12)18 = Or, 10y, 1o + Uni 1102, 4 (7.73)
by (1.16). Hence
me
(Bntni+2m+1 + Engngsin+2)™ (Z/ﬁiﬁﬁjﬁ(j) = m6![H(k + )|y, € M. (7.74)
r=1

Expressions (7.53)-(7.60), (7.69), (7.71) and (7.74) show that we always have % ., €
M. Furthermore, (7.61)-(7.66) imply that By is an irreducible sp(2n, F)-module.

Case 3. ny = nao.

In this case,

n= i:yié‘xi + ) 2.0, (7.75)
i=1

s=no+1
First we consider the subcase 1 < ny < n — 1. Expression (4.17) says that the nonzero

weight vectors in
Span{ayy? (T eyt G ™ () [ me € N} (7.76)
are all the singular vectors of si(n,F) in B, where

gl = Tni-1Yny — TniYni-1, C2 = Tny+1Yni1+2 — Tny+2Yni+1- (777>



Fix k € N+ 1. Then the singular vectors of sl(n,F) in B_) are

{ k-Hmyn1 Cm2+1’ nm11+1ysj-ﬁ1 m2+1’nm3 (552114?/:;;54-1)
| m; € Nymy +ms —2mg = k}. (7.78)

Let M be a nonzero sp(2n,F)-submodule of B_j. As an sl(n,F)-module, M contains
a singular vector of sl(n,F). Suppose some xk+m1yn11§m2+1 € M. Note Enpinls =

Oz, Oy, by (7.4), and so
Em,n-i-m( k+m1yn1€ )
= (k+m)maltm-tym-ter: — m2(m2 — DMy, Y, 1
+(k + ml)mgxk+m1 Ly, (T — mlmngmlyZZl Y1 (721 (7.79)
Moreover,
(Enl—lml - En+n1,n+n1—1)|5 = _(xmamnlﬂ + ynlaynlfl) (78())
by (1.7), (1.8) and (1.14). Thus
(Em—l n1 — Eninymang— 1)2En1,n+n1( k+m1yn1 g )
= —2my(my — L)affmitlymticre=2 ¢ £ (7.81)
Hence
ghtmitlymitleme=2 ¢ if my > 1. (7.82)
Furthermore,
(Em—l,m - En+n1,n+n1—1>En1,n+n1( k+mlyn1 C ) k+m1ynll € M. (7-83>
So we always have x“myg; € M for some m € N by induction on ms.
Observe
Eny o (290 ) = O Oy (@™ yi) = ml ([ [ (k4 )], (7.84)
r=1
by (7.4). Thus
zh € M. (7.85)

Symmetrically, if some )" +1y§fﬂ1 2l e M. we have yfh 41 € M. But

(Entni+1m t Bngng 1)l = _Imaynlﬂ + ynlaxn1+1 (7.86)

by (1.16), which gives

(En+n1+17n1 + En-i—m,m—l—l)k(yﬁl—i-l) = (_1)19]{;!%1:“ € M. (7'87)

Thus (7.85) holds again.

Assume that some 0™ (z]y,"° ) € M with my + ms — 2ms = k. Note there exists
r1,72 € N such that r + 7o = mg3 and 2r; < my, 2ry < my. Moreover, E,, pin, |5 =
Oz, Oy, by (7.4) and By iy 11my41]58 = Or,y 10y, Dy (1.16). Thus

-Tnl

T1 T2 ms3 m. 5
Enl,n-l—nl n+ni+1n1+1 [n (xnl ynf—l—l)]
2r1—1 2ro—1

= mg![ [T (ma—s)][ J] (ms — so)]apa >y € M. (7.88)

s1=0 s2=0



Furthermore, (1.16) gives (Epnin+1n, + Entngmi+1)|58 = =200y, 1y + Yn; Os, 4, » and so
(Entnitim + En—l—m,m+1)m5_2r2 (xnm14—2r1y77;115_i_—127’2)
= (=1)"7%"2(my — 2ry)lak € M. (7.89)
Thus we always have xﬁl e M.
Now
(Em,n-i-m-i-l + En1+1,n+n1)|l3 = _yn1+1055n1 + xm-l-laynl (7'90)
by (7.4). For any r € N+ 1,
(_1)T E E rie kN . k—r r M 791
m( ettt + Engstngn) (@n,) = 5 Yn 0 € M. (7.91)
s=0 -
Ifk>2andrel,k—1, then
My My = U(G)U(Go) (] Y1) € M (7.92)

because M%_k ) is an irreducible G;-module and M%—m is an irreducible Go-module by
Step 1. Moreover,

M%—k) = U(gl)(szl), M%—m = U(g2)(yfu+l) C M. (7.93)
Furthermore,
M| yMiy =U(G)U(Go)(zh ) C M if ny =n—1 (7.94)
and
MMy = UGNU(Ga)(yh 1) € M if ny = 1. (7.95)
Note
(Eri — Entintr)|B = Yiyr — 22y for tel,ny, r€ni+1,n (7.96)

by (1.7), (1.8) and (1.14). In particular, if £ > 1 or n; = 1, we have

(En1+17n1 - En+n1,n+n1+1)(a721) = ymxleym-i-l - xf:lxm-i-l € M. (7'97)
Since
yN1I21yN1+1 € M%—k-}-l)M%—l) - Ma (798)
we get
i g, 1 € M. (7.99)
Suppose k = 1 and n; > 1. By (7.93),
Gy = (Tny—1Yny — TnyYny—1)Tn, € M. (7.100)
Observe
(Bnyttntn—1 + Eny1ngny11) |8 = In1+1ayn171 - ym-i-laxnlq (7.101)
by (1.15). So

—(Enys1n4m-1 + Eny 1040 41) (G0 ) = Iilxnﬁ-l = ZTny Y Yn+1 € M. (7.102)



On the other hand, (1.16) gives
(Entij + Envja)ls = —(iy; + xy9:)  for i,j € 1,
which implies
_En-i-m,m (ym-l—l) = TniYni1Yni+1 e M.

By (7.102), we have 22 x,, 1 € M. So (7.99) always holds.
By Step 1,
My My = U(G)U(Go) (k1) C M.
Suppose
MMy < M

for 1 <7 <m. Then

k+m _m
(Enl—i—l n1 En—i—m,n—l-m—l-l)(x xnl—l-l)
. k—l—m m k+m+1 m+1
- ynl ni n1+1yn1+1 - xnl TL1+1 S M

by (7.96). If m > 1, we have

Yna Tt T Yy 41 € M%—k—(m—l»M%m—l) C M.

Note
(Ernis + Esnir)ls = —(2:ys + 5yy) for r,seni +1,n

by (1.15). If m = 1, we have

k+1 k+ 1
ymznj Ty +1Yn1+1 = —Eny 1 nm+1 (Y, T, Y C Enn n+n1+1(M< k)) C M.

Then (7.107), (7.108) and (7.110) give

xk-i—m-i—l m+1 c M.

ni n1+1

Furthermore,
M%—k—m—l)M%m-i-l U(G)U(Go) (™ iy pmen) € M.
Thus (7.106) holds for any ¢ € N+ 1. Symmetrically, we have
M%@M%_k_@ CM for ie N+1.
Suppose n; < n — 1. Then 2%*'z, 11(; € M by (7.105). Moreover,
(k4 1)y, Yy 416G = = (8 + 1) By (2] Yy 11G2) € M
by (7.92) and (7.103). According (1.7), (1.8) and (1.14),

(Em,m—irl - En+n1+1,n+n1>| arnl &vn1+1 - aynlayn1+1-

Thus

(Em,m—l—l - En+n1+1,n+n1)[(xf:1xn1+l - (k + 1)yn1xﬁlyn1+1)§2]
= 3(k+1)af (eM

(7.103)

(7.104)

(7.105)

(7.106)

(7.107)

(7.108)

(7.109)

(7.110)

(7.111)

(7.112)

(7.113)

(7.114)

(7.115)

(7.116)



by (7.77). Hence
M{_yMiyy = UG)U(G2)(y,) + U(G)U(Ga)(ay,, o) € M (7.117)
by (7.26) and(7.85). Symmetrically,
Mgy M7 4y C M. (7.118)

By (7.92)-(7.95), (7.106), (7.112), (7.113), (7.117) and (7.118),

M pyMiy M for e (7.119)
Therefore,
Bk = @M%—k—mM%r) C M. (7.120)
reZ

We get M = B_y, that is, Bi_y is an irreducible sp(2n,F)-module. We can similarly
prove that By, is an irreducible sp(2n,F)-module.
Finally, we study Byg. We first consider the generic case 1 <n; <n — 1. Set

Bpiy = Span{| H (22Ys + 25y )]
1<r<s<ni OI n1+1<r<s<n
ni n
X[H H (:L'patq - ypyq)kp’q] | lr,s, kp,q S N} (7‘121)
p=1g=n1+1
and
ni n
B = > By (s —zan) + > Y B (@7 + yp0g). (7.122)
1<r<s<ni O n1+1<r<s<n s R ——

We want to prove that By 1y and Bg gy forms sp(2n,F)-submodules.
Let

g/ — Z ]F(En—i-s,r + En+7’,8) + Z ]F(Ep,n-i-q —I— Eq,n-i—p)
1<r<s<m n1+1<p<q<n
ni n
+ Z Z F(Epﬂ“ - En-i—r,n-i—p) (7123)
r=1 p=ni1+1

n

ni
g = Z F(Ei,j - En—l—j,n—l—i) + Z IE‘(Ejr,s - En—l—s,n—l—r) + Z F(Er,n—l-s + Es,n—l—r)

i,j=1 r,s=ni+1 1<r<s<ni
n1 n
+ Z F(En-i-qm + En—irp,q) + Z Z [F(Ehp - En+p,n+r)
n1+1<p<qg<n r=1 p=ni+1
“'F(Ennﬁ-p + Ep,n—irr) + F(En—irr,p - En-i—pﬂ“)]' (7-124)

Then G’ and G are Lie subalgebras of sp(2n,F) and sp(2n,F) = G'®G. By PBW Theorem
U(sp(2n.F)) = U(GU(G).
By (7.96), (7.103) and (7.109),

U(G")|s = B,y as multiplication operators on B. (7.125)



Moreover,

(Ers — Engsmir)|B = 2000, + 40y, + 6r.s, (7.126)
(Bnirs + Enisy)|B = 05,05 + 02,0y, (7.127)
(Engri + Engiy) | = =20y, + 4,02, (7.128)
(Einir + Ernyi)ls = —y-0x; + 2,0y, (7.129)
(Eir — Entrnti)|ls = 0,01, — 0,0y, (7.130)

fori € 1,ny and r,s € ny + 1,n. According to (7.4), (7.6), (7.124) and (7.126)-(7.130),
U(G)(1) = F. Thus
By = U(G")(1) = U(sp(2n,F))(1) (7.131)
forms an sp(2n, F)-submodule.
Let

n1 n
W = Z F(z,ys — xsy,) + Z Z F(xpz, + ypyq)- (7.132)
1<r<s<ng O n1+1<r<s<n p=1 qg=n1+1

By (7.4), (7.6) and (7.126)-(7.130), we can verify that 1¥ forms an irreducible G-submodule.
Hence
Biooy = U(G")(W) = U(sp(2n,F))(W) (7.133)

forms an sp(2n, F)-submodule. Moreover,
By (W = {0}. (7.134)

Next we want to prove that By, and B are irreducible sp(2n,F)-submodules.
According to (7.78), the singular vectors of sli(n,F) in B are

{xnl ynl m2+17 Tnn;1+1yn1+1 2m2+1’,r]m3(x;n;4y;fi5_l_1)
| m; € Nymy +ms = 2mg}. (7.135)

Let M be a nonzero submodule of By 1y. Then M contains a singular vector of si(n,[F).
Suppose some z; y (" € M. By (7.79)-(7.82), we can assume my = 0,1. If my = 0,
(7.84) yields 1 € M. Then M = By by (7.131). Suppose my = 1. We have E,, nyn, |5 =
Op, Oy, by (7.4), and

Tny ~Ynq

Eny e [Ty G = ma (my + D) "ty =G (7.136)

by (7.79). By induction on my, we have (; € M C By 1y, which contradicts (7.134). Sim-
ilarly, if some @',y (32" € M, we have M = By ). Assume some 5™ (z4y"° ) €
M with m4+ms = 2ms. Note my and ms are both even or odd. If my = 2r; and ms = 2ry
are even, then (7.88) gives 1 € M, equivalently M = B 1y. Suppose that my = 2r; +1
and ms = 2ry + 1 are odd. Expression (7.75) yields

n(xn1yn1+1) = Tpy Tny+1 + YniYni+1 € M C B<0,1>7 (7137>

which contradicts (7.134) again. Thus we always have M = By, that is, By is
irreducible. Similarly, we can prove that By is irreducible.



If ny =1 and n =2, we let

n

B,y = Span{[H(miyi)mi](xlm —y1y2)"™] | m; € N} (7.138)

=1
and Bg) = B<0,1>(x13:2 + y192). When ny = 1 and n > 2, we set

n

By = Span{[(z1y1)' [ (@ows +290) [ [(@12g — v19g)™] | 1, Ls kg € N} (7.139)

2<r<s<n q=2
and .
B<0,2> = Z B(O,l) (xrys - Isyr) + Z B<0,1> (Zlﬁ'll'q + ylyq). (7140)
2<r<s<n q=2

In the case 1 < ny =n — 1, we put

Boy = Span{(z,y.)'[ H (@rys + Toyr)™]

1<r<s<n—1
n—1
<[] @pan = o)) | 1 1rs by € N} (7.141)
p=1
and .
Bozy = Y. Bon (s —zae) + Y By (@pn + Ypn)- (7.142)
1<r<s<ng p=1

The above corresponding partial arguments show that By and By are irreducible in
the corresponding case.

Now 1 is a non-isotropic element in By and x,, 2y, 11 + Yn,Yn,+1 @ nDonN-isotropic
element in Bz by (3.54). By Lemma 2.3, the symmetric bilinear form (-|-) restricted
to them are nondegenrate. Since (1|Bo2)) = {0}, Byo,1y is orthogonal to By qy. Thus the
symmetric bilinear form (-|-) restricted By + Bjo,2y is nondegenerate. Then

By = (Bio.y + Boz) © (B + Bioay)* ﬂB(m. (7.143)

If (Bio,1) + Bo,2))™ (N Bioy # {0}, then it contains a singular vector of sl(n,F). Our above
arguments in proving the irreducibility of By show that it contains either By or
Bio,2y, which is absurd. Therefore, By = Bo,1) @ Bjo,2) is an orthogonal decomposition of
irreducible sp(2n, F)-submodules.

Suppose ny = ng =n. For k € N+ 1, (4.21) and (4.31) imply that

B<k>=@ EB N (H(k—2r—m,m)) (7.144)

m=0r=[(k+1)/2]

and

o0

B(_k> = @ nr(H<—k—2r—m,m>) (7145)

m,r=0
are (G, K)-structures, where H_,,, —ym,.m,) i given in (4.42). Moreover,

o0

Bo,1y = @ N (H(—2r—2m.2m)) (7.146)

m,r=0



and
o

B2 = @ nT(H(—2T’—2m—1,2m+1>) (7.147)

m,r=0
are (G, K)-structures by the arguments in (7.79)-(7.82), (7.84) and (7.136) (cf. (7.24),
(7.25)). O
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