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Abstract. We study the Yablonskii—Vorob’ev polynomials, which are special polynomials
used to represent rational solutions of the second Painlevé equation. Divisibility proper-
ties of the coefficients of these polynomials, concerning powers of 4, are obtained and we
prove that the nonzero roots of the Yablonskii—Vorob’ev polynomials are irrational. Fur-
thermore, relations between the roots of these polynomials for consecutive degree are found
by considering power series expansions of rational solutions of the second Painlevé equation.
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1 Introduction

In this paper we study the Yablonskii—Vorob’ev polynomials @Q,,, with a special interest in their
roots. These polynomials were derived by Yablonskii and Vorob’ev, while examining the hierar-
chy of rational solutions of the second Painlevé equation. The Yablonskii—Vorob’ev polynomials
are defined by the differential-difference equation

Qn—i—lQn—l = ZQEL - 4(QnQZ - (Q;L)z)a (1)

with Q9 = 1 and @1 = z. From the recurrence relation, it is clear that the functions @),, are
rational, though it is far from obvious that they are polynomials, since in every iteration one
divides by @,—1. The Yablonskii—-Vorob’ev polynomials @,, are monic polynomials of degree
sn(n + 1), with integer coefficients. The first few are given in Table [II

Yablonskii [I] and Vorob’ev [2] expressed the rational solutions of the second Painlevé equa-
tion,

Piu(a): w'(2) = 2w(2)? + 2w(z) + o,

with complex parameter «, in terms of the Yablonskii—Vorob’ev polynomials, as summerized in
the following theorem:

Theorem 1. Pii(«) has a rational solution iff « = n € Z. For n € Z the rational solution is
unique and if n > 1, then it is equal to

/
P — n—1 Q;L
n = —_—.
QTL—I Qn

The other rational solutions are given by wg =0 and forn > 1, w_, = —w,.
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Table 1.
Yablonskii—Vorob’ev polynomials

Qa=4+23

Q3=—80+ 2023 + 26

Q4= 2(11200 + 6025 + 29)

Q5 = —6272000 — 313600023 4 784002° + 28002° + 1402'? + 21°

Qg = —38635520000 + 193177600002 + 14488320002% — 172480002° + 62720022
+18480215 + 280218 4 22!

Q7 = 2(—3093932441600000 — 497239142400002° — 828731904000z° + 1303948800022
+6209280021% + 517440028 + 7560022 + 504224 + 227)

Qs = —991048439693312000000 — 7432863297699840000002>
+3716431648849920000025 + 17697293565952000002° + 126696533483520000212
+4077360967680002° — 6629855232000 + 12430978560022' + 201801600022
+327712002%7 + 240240230 4 840233 + 236

The rational solutions of Py can also be determined, using the Béacklund transformations,
first given by Gambier [3], of the second Painlevé equation, by

2n+1

Wpt1 = —Wp — —5—————
nr 2wk 42wl 42

W—p = —Wnp,
with “seed solution” wy = 0; see also Lukashevich [4] and Noumi [5].

We note that the Yablonskii—Vorob’ev polynomials find many applications in physics. For
instance, solutions of the Korteweg—de Vries equation (Airault, McKean and Moser [6]) and the
Boussinesq equation (Clarkson [7]) can be expressed in terms of these polynomials. Clarkson
and Mansfield [8] studied the structure of the roots of the Yablonskii—Vorob’ev polynomials Q,,
and observed that the roots, of each of these polynomials, form a highly regular triangular-like
pattern, for n < 7, suggesting that they have interesting properties. This further motivates
studying the zeros of the Yablonskii—Vorob’ev polynomials.

In Section [2] the divisibility of the coefficients of the Yablonskii—Vorob’ev polynomials by
powers of 4 is examined. From the divisibility properties found, we conclude that nonzero
roots of the Yablonskii—Vorob’ev polynomials are irrational. In Section [3] we study power series
expansions of (functions related to) the rational solution w,, of Pi(n), around poles of w,. This
leads to relations between the roots of @,,—1 and @,,. These relations suggest deeper connections
between the zeros of @,—1 and @,,. Similarly, we look at power series expansions of (functions
related to) the rational solution w, of Pi(n) around 0, in Section @l We obtain polynomial
expressions in n, with rational coefficients, for sums of fixed negative powers of the nonzero
roots of @Q,.

2 Nonzero roots are irrational
The Yablonskii—Vorob’ev polynomials (), are monic polynomials of degree %n(n + 1), and
Taneda [9] proved:
e if n =1 (mod 3), then % € Z[23;
e if n # 1 (mod 3), then Q,, € Z[23].
Therefore, we have

Qp = 0D | gnodn(nr)=3 | on dn(nin)—6 o _|_a?%n(n_‘rl)]Z%n(n+1)—3[%n(n+l)]7 (2)

for certain a} € Z, with convention af = 1, where [-] denotes the floor function.
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Lemma 1. For every 0 < m < [#n(n + 1)], we have 4™ | a,.

Proof. We proceed by proving the following statement, by induction, for all M € N:
For every 1 < m < M, for all n € N, whenever m < [%n(n + 1)], we have 4™ | a)!,, and

M M M
4% T a1, 4% a0, ce 4 \a?%n(nﬂ)].

Observe that the case M = 0 is trivial. Now suppose the statement is true for M € N. Then
there are b7 € Z, such that for every n € N,

Q, = Z%n(n-ﬁ-l) +4b?zén(n+l)—3 +42bgzén(n+l)—6 N _|_4Mb7]‘z/lz%n(n+1)—3M _|_4MPm

where P, € Z[2] is zero or has degree less or equal to $n(n+1)—3(M+1), and if m > [in(n + 1)],
then b)), = 0.

To complete the induction, we need to show that for every n € N, 4 | P,. We prove this
by induction with respect to n. Observe that Py = 0 and P, = 0, therefore, indeed 4 | Py and
4| P. Assume 4 | P,_; and 4 | P,. Then 4P, = 0 (mod 4M*1), therefore, modulo 4™+ we
have:

Zmax(O,n(n—l—l)—i’)M—}—l) | ZQ2 zmax(O,n(n-‘,—l)—?»M—',—l) |4QnQ”
n’ n?
Zmax(O,n(n—l—l)—i’:M—}—l) | 4(@/ )2
n)
By the definition of @Q,+1 (),

Qn+1Qn-1 = 2Q5 — 4(QnQ — (Q1)?).
SO
LaxOn)=8M+1) | o 0 (mod 4M+1), (3)
Let us consider Q,,+1Qpn—1. Since 4 | P,_1, we have
4MPp, 1 =0 (mod 4MT1),

therefore, modulo 4M+1,

Qnr1Quo1 = Q122" Y 4 Qi (46123703
+42b3—12%n(n—1)—6 +H‘+4Mb7]‘z/[—12%n(n—1)_3]\/[)' (1)
Since
Qi1 = L3+ (n42) | 4b’f+1z%("+1)("+2>—3
+42bg+12%(n+1)(m-2)—6 T +4Mby1zé(n+1)(n+2)_3M L aMp,

we have, modulo 4M+1,

Zmax(O,n(n+1)—3M—|—1) ‘ Qn—i—l (4b711—1zén(n—1)—3 + 421)3_12%”(”_1)_6
4ot 4Mb7]‘z/[—12%n(n—1)—3M)'
Hence, by @) and @),

Zmax(O,n(n+1)—3M+1) ‘ Qn+12%n(n—1) (mod 4M—|—1)7
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which implies
Zmax(O,%(n+1)(n+2)—3M) | Qnit (mod 4M+1)‘

Since

Oyt = 22 HDE+2) 4 4b111+1zé(n+1)(n+2)—3

+ 42bg+lzé(n+1)(n+2)—6 NI 4MbnM+1Z%(n+1)(n+2)—3M + 4MPn+1,

we have, therefore, 4 | P,,11. Hence, by induction, for all n € N, 4 | P,.

The lemma follows by induction on M.

Let us denote the coefficient of the lowest degree term in @, by

Tn = Al (gn)]

i.e. x, is the constant coefficient in @, if n # 1 (mod 3), and z,, is the coefficient of z in @, if
n =1 (mod 3). Fukutani, Okamoto, and Umemura [I0] proved that the roots of the Yablonskii-
Vorob’ev polynomials are simple, hence z,, is nonzero. Let p, be the multiplicity of 2 in the
prime factorization of z,,. As a consequence of Lemma [Il we obtain that p, > 2 [%n(n + 1)]

We prove

- En(n 4 1)] .

Observe that x, = Q,(0) if n # 1 (mod 3), and =, = Q,(0) if n = 1 (mod 3). Fuku-
tani, Okamoto, and Umemura [I0] derived the following identity for the Yablonskii—Vorob’ev

polynomials:

Q1Qn1 =~ Q1 @y = (20 + 1)Q5.
Using this identity at 0, we obtain

(2n + 1)22 ifn=0 (mod 3),
Tpt1Tp_1 =
e —(2n+ 122 ifn=2 (mod 3).

By evaluating equation (Il at 0,
Tpa1Tpn_1 = 4:E$L, ifn=1 (mod 3).

Therefore, we have the following recursion for (z,,),:

Trog = 1, Tr1 = 1 and
(2n + 1)z? ifn=0 (mod 3),
Tp41Tn—1 = { 4a? ifn=1 (mod 3),

—2n+ 122 ifn=2 (mod 3).
So, we obtain the following recursion for (py,)y:

po = 0, pr=0  and

Cf2%u—paa iEn#1 (mod 3),
Pnt1 = 2+42p, —pp—1 ifn=1 (mod 3).

Using this recursion, the formula p,, = [%n(n + 1)], can be proven directly, by induction.
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Remark 1. Kaneko and Ochiai [II] found an explicit expression for the coefficients z,. But
deriving the formula p,, = [%n(n + 1)] directly from this expression seems to be a difficult task.

Theorem 2. The nonzero roots of the Yablonskii—Vorob’ev polynomials are irrational.

Proof. Let n # 1 (mod 3). Suppose x is a rational root of @,. Since @,, € Z[z] is monic, by
Gauss’s lemma, x € Z. By Lemma[I],

z2n(ntD) (mod 4),

@n

so z is even. Let y := 3, then, by equation (2,

1 1 _ 1 _
0= (29) 2" 4 af(29) 2" 4 af(2y) 2O L 20)

By Lemmal[] for every m < in(n + 1), we have 4™ | a?,. Hence

Q%n(n—l—l) ’ (2y)%n(n+1) 2%n(n+1)—1 ’ a?(2y)%n(n+1)—3

) )

2%n(n+1)—2 | ag(2y)%n(n+1)—6 2%n(n+1)—%n(n+1)+1 la 3

) ey %n(n+1)—l(2y)

So

1
gn(n+1)+1 n _
2 | a%n(n—l—l) Tns

which implies

W =

But p, = %n(n + 1), a contradiction, hence roots of @, are irrational.

If n =1 (mod 3), we can apply the same reasoning to QZ”, and show that roots of % are

irrational. Therefore, nonzero roots of (J,, are irrational. [ |

This result raises the question whether the Yablonskii—Vorob’ev polynomials, excluding the
trivial factor z in case n = 1 (mod 3), are irreducible in Q[z]. Kametaka [I2] showed that for
n < 23, the Yablonskii—Vorob’ev polynomials @), are indeed irreducible.

3 Relations between roots of the Yablonskii—Vorob’ev
polynomials

By Theorem [I] for n > 1, the unique rational solution of Pii(n) is given by
Wy, = -1 - Q—;‘
Qn—l Qn

Fukutani, Okamoto, and Umemura [I0] proved that the roots of the Yablonskii-Vorob’ev poly-
nomials are simple, hence

%n(n—l) 1 %”(”‘1'1) 1
wy = — : 5
" kZ::l 2= Zn_Lk kZ::l Z— Znik ©)

where the z,, ; are the roots of @,,. From equation (Bl) and the fact that w, is the rational
solution of Pir(n), we obtain relations between the zeros of @Q,—1 and @,.
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Theorem 3. For 1 <j < in(n—1):
In(n-1) %

5 1 n(n+1)
Yy e

Zn—1,7 — An—1,k

1kt =
anln ) 1 in(n+1) !

_ . Zn_Lj
o ; (2n—1, — Znk)? 6
e 1 2y 1 +1

n
e ; (-1 —2p)® 47
ey 1 g 1 +1 1
n

- pr— Z _17 . . .

k=1, k#j (-1 = Zn-1)° = (a1 = 2k) A < 24 36>

For1<j<in(n+1):

%n(n—l) 1 %”(”‘1'1) 1
_ _ _*ng
kzzl (Zn,j Zn—l,k)2 k:%;ﬁj ( J Zn,k)2 6’
%n(n—l) 1 %n(n—l—l) 1 1
/”L —_—
; (#nj = zn-14) kT, kot (znj — 2nk)® 47
%n(n—l) 1 %n(n—i—l) 1 1 1
n J—
- o - 5:Z"’j<24 +%>'
1 (Zn,j Zn—l,k) k=1, k£ (2n,] Zn,k)

Proof. Let 1<j< %n(n—l) and define w := 2,1 j and u := wn—ﬁ. Since ged(Qp—1,@Qn) = 1,
see Fukutani, Okamoto, and Umemura [10], equation (&) shows that u is holomorphic in a neigh-
bourhood of w. Hence u has a power series expansion, say

[ee]
Z am(z —w)™
m=0

which converges in an open disc centered at w.
Since wy, is a solution of Pi(n), u satisfies
(z—w)?u” = 6u+6(z —wu? +2(z —w)?ud + (N4 1)(z — w)? + w(z — w)
+ (2 — w)u + w(z — w)?u.

Hence we have the following identity in an open disc centered at w:
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Zamz— m"tw(z—w Zamz—

By considering coefficients of (2 —w)", n = 0,1,2,4, it is easy to deduce that ag =0, a1 = —§,
as = —"TH and a4 = w (”2—4;11 — %) Note that ag does not follow from considering coefficients
of (z —w)3.

By Taylor’s theorem and equation (),

™ (2,1 m 1
angz(_l) Z . )m+1_ Z(

m! Zn— _
k:1,k7ﬁj( n—1,j n—1,k =1

1

Zn—1,7 — “n,k

)m—i—l

The first half of the theorem follows, the second half is proved analogously. |

Note that countably many nontrivial relations can be found between the a,, in the above
proof, by considering the coefficient of (z — w)™, for n € N.

In Kudryashov and Demina [I3] similar relations for the roots of @, are obtained using
the Korteweg—de Vries equation. In particular, the following results are presented in [I3] for
1<j<in(n+1):

n(n+1)

1 Zn,j
T N9 _—’7 = 07
(Z”J - zn,k)z 12 k 127:7&] Zn — Zn k)

(SIS

From these relations and Theorem [3] we obtain the following corollary:

Corollary 1. For1 <j < %n(n —1):

Ln(n+1) $n(n+1)
: 1 Y, : 1 _n+tl
1 (Zn—l,y ka) 4 7 1 (Zn 1,5 — #n k) 4 7
sn(n+1
g 1 <n +1 1 )
L -
= (zn-15 — Znk) I 24 48

For1<j<in(n+1):

Z 1 Zn,j 1 o _Tl —1
= (g —zn1k)? 47 = (g = 2mo1k)? 47
Inn-1
e 1 n-1 1
= Znj — .
= (g —zok)® 7\ 24 48

In Theorem [3] we have obtained 4 times $n(n — 1) plus 4 times $n(n + 1) equations satisfied

by the %n(n—i— 1) roots of @y, suggesting that these equations can be used to determine the roots
of the polynomials @),, recursively. If so, then these equations may be of use to derive properties
of the roots of the Yablonskii—Vorob’ev polynomials. We shall not pursue this issue further here.
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4 Sums of negative powers of roots

In Section [2 the rational solutions w, of Pi(n) were studied around roots of the Yablonskii—
Vorob’ev polynomials. In this section, we consider w,, at 0.

Let n = 0 (mod 3), then 0 is not a root of @,,—1 or @Q,. Therefore, by equation (B, w, is
holomorphic in a neighbourhood of 0. So w,, has a power series expansion, say

o0
E amz™,
m=0

which converges on an open disc centered at 0.
By Taylor’s theorem and equation ([fl), we have

In(n-1) In(n41)
e 1 : 1
== > oA > Jm+T
k=1 n—1,k k=1 n,k

s}

Let w := e5. Sincen =0 (mod 3), Q,, € Z[z3]. Therefore, the roots of Q,, are invariant under
multiplication by w. Hence

$n(n+1) ) $n(n+1) ) ) 3n(n+1) )
kzzl W - ; (Wen )™ L wm ] kZZI Z:f?7
therefore, if m # 2 (mod 3),
$n(n+1) )
> i =0 (6)
k=1 “nk

By the same reason, if m # 2 (mod 3),

in(n-1)

: 1
Z m+1 0.
k=1 Zn—l,k

So ay, =0, if m # 2 (mod 3), and in an open disc centered at 0,

o0
wp(z) = Z ag3ma22 M2,

m=0

Since w,, is a solution of Pir(n), we have the following identity in an open disc centered at 0:

o o0 3 [e.9]
> (Bm+1)(3m + 2)agm 22" =2 (Z a3m+2Z3m+2> + ) agmy22® T 4,

m=0 m=0 m=0

Comparing coefficients gives agy = %n, as = %n and ag = ﬁn + ﬁng. We have obtained the
following relations for n = 0 (mod 3):

1 1 1 1
sn(n—1) sn(n+1) sn(n—1) sn(n+1)
’ 1 ’ 1 n ’ 1 ’ 1 n
3 o 2: 3T 9 2: 6 - §: 6 T a0
k=1 Zn—l,k k=1 Zn,k 2 k=1 Zn—l,k k=1 Zn,k 40
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in(n—-1 Lnm+1
2 2"(2": ' 1 1
— - = =N — =N
R A 2240 224

If n=1 (mod 3), then u := w,, + 2 is holomorphic at 0 and satisfies

220" = 6u — 62u% + 22%u® + Bu+ (n — 1)2%

By considering the power series expansion of v = w, + % around 0, the following relations are
found:

n(n—1) %n(n—l—l)

1
2 1 11
DY = =401,

z z
k=1 n=Lk =1 z, ,#0 Tk

%n(n—l) 1 %n(n—i—l) 1 3
. = D) 1),

P 25_1 4 kzl;k#) 20, 56 112
1 1
sn(n—1) sn(n+1)

1 1 1 9 1
LI e D)t (=12 4+ —(n— 1),
2 k:g:m Loy 2800 5600 448

If n =2 (mod 3), then u := w,, — 2 is holomorphic at 0 and satisfies
220" = 6u — 62u% + 22%u® 4 Bu+ (n+ 1)22

By considering the power series expansion of u = w, — % around 0, the following relations are
found:

%n(n—l) 1 %n(n-‘,—l) 1 )
Z >3 - e Z(n +1),
k=1, anl,kﬁéo n—1k k=1 n,k
) et (1) — > (n 4 1)?
_ LS 3 |
k=1, 21 50 21 =z, 56 112
an(n=-1 $n(nt1
2n§:) 1 In(n+1) 1 1 (n+1) 9 (nt 1)+ 1( L1y
9 o 9— = Sonn\ - n —(n X
k)=17 anl,kﬁéo Zn_lvk k=1 zn,k; 2800 5600 448

Remark 2. Considering higher order coefficients, we see that for every threefold m > 3,
polynomial expressions in n, with rational coefficients, depending on n (mod 3), exist for

%n(n—l) %n(n—i—l)

> o Y

zZm zm
k=1, 2y 1,70 MTLE k=1, 2, x£0 TR

As a corollary of these relations, by induction, we obtain:

n ifn=0 (mod 3),
In(n+1) . 4
Z —— =10 ifn=1 (mod 3),
k=1, z, 170 Z"vk n+1

ifn=2 (mod 3),
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(1 1
2 : _
—n‘+ —n ifn=0 (mod 3),
— =2+ ifn=1 d3
k:z: ook 560" 560" 280 (mod 3),
— — — in= m
20" T80" TR0 " 042
2+ 10n3
no et Ion ifn=0 (mod 3),
in(n+1) 4480
PR el Fn=1 (mod3)
5 =\ — itn= mo ,
1 20 Zp i 22400
’ —20 — 85n — 115n% — 50n°
{ n22400n " ifp=2 (mod 3).

By Remark 2] for every threefold m > 3, polynomial expressions in n, with rational coefficients,
depending on n (mod 3), exist for

sn(n+1
n(n+1) 1

—.
h=1, 20 b
If m #0 (mod 3), see equation (@), then

%n(n—l—l) 1
m =0
k=1, 2, j#0 TF

So, for all n,m € N,

%n(n-‘,—l)

> —~ eq,

z
k=1, 2, x#0 "~k

even though the nonzero roots of the Yablonskii—Vorob’ev polynomials are irrational.
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