
ar
X

iv
:1

01
2.

29
41

v1
  [

m
at

h.
A

P]
  1

4 
D

ec
 2

01
0

Quasilinear parabolic equations and the Ricci flow on manifolds

with boundary

Artem Pulemotov

Department of Mathematics

The University of Chicago

5734 S. University Ave., Chicago, IL 60637-1514, USA

Email: artem@math.uchicago.edu

Abstract

The first part of the paper discusses a second-order quasilinear parabolic equation in a vector bundle

over a compact manifold M with boundary ∂M . We establish a short-time existence theorem for this

equation. The second part of the paper is devoted to the investigation of the Ricci flow on M . We

propose a new boundary condition for the flow and prove two short-time existence results.

1 Introduction

The present paper is motivated by the desire to investigate geometric evolutions on a compact manifold M
with boundary ∂M . Our first goal is to study a second-order quasilinear parabolic equation in a vector
bundle over M . We then apply the obtained results to the analysis of the Ricci flow on M . Let us explain
the essence and the history of the problems to be considered.

A significant step in the investigation of geometric evolutions on M is to acquire information about
second-order quasilinear parabolic equations in vector bundles over M . Particularly, it is important to
have a short-time existence theorem that would cover a wide range of boundary conditions and produce a
solution with ample differentiability properties. Until now, such a theorem was not available. Even in the
case where M is the closure of a domain in R

n, there was no result that would meet the demands of the
applications to geometric evolutions. In Section 2 of the present paper, we make an effort to remedy this
situation. We establish a short-time existence theorem for a second-order quasilinear parabolic equation in
a vector bundle over M . No assumptions are imposed on the geometry of M . Yet even in the the case
where M is the closure of a domain in R

n, our result appears to be new. We will now describe it in more
detail.

Fix a Riemannian metric on M . Let E be a vector bundle over M . Suppose E is equipped with a fiber
metric and a connection ∇. We focus on the equation

∂

∂t
u(x, t)−Hij(u(x, t), t)∇i∇ju(x, t) = F (u(x, t),∇u(x, t), t) (1.1)

for a section u of E depending on t ≥ 0. Here, H is a smooth map from E× [0,∞) to the space of symmetric
(2,0)-tensors over M , and F is a smooth map from E × (T ∗M ⊗ E) × [0,∞) to E. The meaning of the
rest of the notation should be easy to infer from the context. In the beginning of Section 2, we explain it
pedantically. Suppose now that E∂M is the restriction of the bundle E to ∂M andW is a subbundle of E∂M .
We supplement equation (1.1) with the boundary conditions

PrW u(x, t) = o(x),

PrW⊥

(

Hij(u(x, t), t)νi(x)∇ju(x, t)
)

= Ψ(u(x, t), t). (1.2)

1

http://arxiv.org/abs/1012.2941v1


Here, o is the zero section of E, and ν is the outward unit normal covector field on ∂M . The smooth map Ψ
acts fromE∂M×[0,∞) toW⊥. The first line in (1.2) should be thought of as the Dirichlet boundary condition.
It is imposed on u inside W . The second line in (1.2) may be looked at as a nonlinear nonhomogeneous
Neumann condition. It is imposed inside W⊥. Finally, we supplement (1.1) with the initial condition

u(x, 0) = u0(x). (1.3)

In this formula, u0 is a smooth section of E. The main result of Section 2 requires two additional assumptions.
First, we demand that equation (1.1) be parabolic. Second, we impose a compatibility condition near ∂M
when t = 0. If these assumptions are satisfied, the main result of Section 2 tells us that problem (1.1)–(1.2)–
(1.3) has a solution on M × [0, T ) for some T > 0. This result appears below as Theorem 2.1. We point out
that the solution it produces is smooth on M × (0, T ). A problem akin to (1.1)–(1.2)–(1.3) was studied in
W.-X. Shi’s paper [24]. That work, however, only allowed Dirichlet-type boundary conditions. It turns out
that the nonlinearities in second line of (1.2) contribute substantially to the difficulty of the question of the
existence of solutions to (1.1)–(1.2)–(1.3).

Let us assume for a moment that the manifold M is the closure of a domain in R
n and E is the product

M × R
d carrying the standard fiber metric and connection. Suppose also W = ∂M × R with R being

the space of all (e1, . . . , ed) ∈ R
d such that ed′+1 = . . . = ed = 0 for a fixed d′ between 0 and d. In

this case, equation (1.1) may be viewed as a second-order quasilinear system. The section u takes the
form u = (u1, . . . , ud) with each um real-valued. Formulas (1.2) become Dirichlet boundary conditions on
u1, . . . , ud

′

and nonlinear nonhomogeneous Neumann conditions on ud
′+1, . . . , ud. In the case where M is

the closure of a domain in R
n, E = M × R

d, and W = ∂M × R, problems similar to (1.1)–(1.2)–(1.3)
were extensively studied. Several different methods were proposed to prove the existence of solutions. For
example, the papers [2, 3] by H. Amann used an abstract functional-analytic approach. The work [30] by
P. Weidemaier employed a more straightforward fixed-point argument in a Sobolev-type space. The reader
should see [15, 12, 1] for other approaches and results.

No major restrictions are imposed on the geometry of M , E, or W in Section 2. But even in the case
where M is the closure of a domain in R

n, E = M × R
d, and W = ∂M × R, our Theorem 2.1 is new. In

this geometrically trivial situation, some of the results of the papers [3, 30] are rather similar to the results
of Section 2. Yet they do not imply Theorem 2.1. They require slightly different assumptions.

As we previously declared, our investigation of second-order quasilinear parabolic equations was motivated
by the desire to study geometric evolutions on manifolds with boundary. Let us say a few words about the
specific applications of Theorem 2.1. In Section 3, we establish two short-time existence results for the Ricci
flow on a manifold with boundary. Theorem 2.1 is a crucial ingredient in our considerations. The paper [6]
studies the Yang-Mills heat flow on 2- and 3-dimensional manifolds with boundary and utilizes it for the
purposes of quantum field theory. Among other things, the authors of [6] prove the existence of solutions
to the flow; see also [20]. We speculate that Theorem 2.1 can be used to simplify their arguments. More
applications of this nature may emerge in the near future. Theorem 2.1 seems to be a convenient tool for
proving the existence of solutions to various geometric evolutions.

Section 3 of the present paper focuses on the Ricci flow on the manifold M . Our goal is to introduce a
new boundary condition for the flow and establish two short-time existence results. More precisely, consider
the equation

∂

∂t
g(x, t) = −2Ricg(x, t) (1.4)

for a Riemannian metric g on M depending on the parameter t ≥ 0. We supplement (1.4) with the initial
condition

g(x, 0) = ĝ(x). (1.5)

Here, ĝ is a smooth Riemannian metric on M . Equation (1.4) is the Ricci flow equation on M . To learn
about its history, intuitive meaning, technical peculiarities, and geometric applications, the reader should
refer to the many quality books on the subject such as, for example, [8, 9, 29, 17]. Examples of how it
comes up in mathematical physics may be found in [13, 18, 14, 19] and other papers. One more interesting
application is to the regularization of non-smooth Riemannian metrics; see, e.g., [25, 26].
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The Ricci flow on manifolds with boundary is not yet deeply understood. The root of all evil lies in the
fact that equation (1.4) is not parabolic. For this reason, it is difficult to find geometrically meaningful and
analytically appealing boundary conditions for solutions of (1.4)–(1.5). It would be natural to demand, for
example, that the metric induced by g on ∂M always coincide with the metric induced by ĝ. But so far,
nobody knows how to prove the short-time existence of solutions under such a requirement. Progress towards
finding boundary conditions to go with (1.4)–(1.5) was made by Y. Shen in his dissertation [22]. Those results
were also published in the paper [23]. Y. Shen considered the case where the second fundamental form ÎI
of the boundary with respect to ĝ satisfied the equality ÎI(x) = τ ĝ(x) with τ ∈ R for all x ∈ ∂M . In other
words, he assumed that ∂M was umbilic1 when t = 0. He was then able to prove the existence of T > 0
and a solution g to problem (1.4)–(1.5) on M × [0, T ) such that the second fundamental form II of ∂M with
respect to g satisfied the equality

II(x, t) = τg(x, t) (1.6)

for all x ∈ ∂M and t ∈ [0, T ). Not much is known about the behavior of g for large t. This question was
addressed in [11] under additional assumptions. We should point out that the case where τ = 0 is somewhat
special. If τ = 0, then ∂M is totally geodesic with respect to ĝ. In this situation, one can say a few things
about how the solution g produced in [22] behaves for large t; see [22, 23, 7].

No new boundary conditions for the Ricci flow in dimensions higher than 2 have been proposed in the
literature since the publication of Y. Shen’s dissertation. A certain amount of work, however, has been
done on surfaces. The list of relevant texts includes [16, 5, 10]. While not much is known today about the
Ricci flow on manifolds with boundary, it is clear that results in this area would have significant geometric
applications. They would also be useful to mathematical physicists; see [13, 14].

In section 3, we propose a new boundary condition on the solutions of the Ricci flow and prove two
short-time existence results. Let Ĥ be the mean curvature of ∂M with respect to ĝ. Our first theorem
assumes that Ĥ is equal to a constant H0 ∈ R everywhere on ∂M . It then claims that there exist T > 0 and
a solution g to problem (1.4)–(1.5) on M × [0, T ) such that the boundary condition

H(x, t) = µ(t)H0

holds for all x ∈ ∂M and t ∈ [0, T ). Here, µ is a function that should be thought of as a normalization factor,
and H is the mean curvature of ∂M with respect to g. Our second theorem addresses the question of the
behavior of the Ricci flow on manifolds with convex boundary. This question is natural, and it is related to
some of the material in [22, 23, 11, 4]. Our second theorem asserts that, if ∂M is convex with respect to ĝ,
we can find T > 0 and a solution g of (1.4)–(1.5) on M × [0, T ) such that ∂M remains convex with respect
to g.

The results in Section 3 constitute a step towards understanding the Ricci flow on manifolds with bound-
ary. We suspect they can also be used for the purposes of regularizing non-smooth Riemannian metrics on
such manifolds. It is worth mentioning that the proofs of the results in Section 3 are based on the method
commonly known as DeTurck’s trick. These proofs rely substantially on Theorem 2.1.

2 Parabolic equations in vector bundles

Suppose M is a smooth n-dimensional (n ≥ 2) manifold with boundary. We assume that M is compact,
connected, and oriented. The notations M◦ and ∂M will be used for the interior and the boundary of M .
Consider a smooth vector bundle E over M with projection π and standard fiber R

d. We will discuss
second-order quasilinear parabolic equations for sections of E subject to nonlinear nonhomogeneous boundary
conditions. Our goal will be to establish the short-time existence of solutions. This result will later help us
investigate the Ricci flow.

Throughout Section 2, we fix a smooth Riemannian metric on M . The tangent bundle TM is equipped
with the Levi-Civita connection. The letter ν will stand for the outward unit normal covector field on ∂M .
Let us also fix a smooth fiber metric in E and a smooth connection in E compatible with this metric.

1There is ambiguity in the literature as to the use of the term “umbilic” in this context. See the discussion in [11].
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Our arguments will involve tensor products of the form E = E1 ⊗ · · · ⊗ Ek with Ei equal to TM , T ∗M ,
or E for each i = 1, . . . , k. Here, T ∗M designates the cotangent bundle, and k is a natural number. The
Riemannian metric on M and the fiber metric in E generate a fiber metric in every such E. Given η ∈ E,
we write |η| for its norm. The Levi-Civita connection in TM and the fixed connection in E give rise to a
connection in E. We write ∇f for the covariant derivative of a section f of E. Our considerations will also
involve second-order differential operators. In particular, ∇∇f stands for the second covariant derivative
of f .

We will sometimes employ local coordinates on the manifold M . Let us introduce the corresponding
notation. In what follows, we implicitly assume that a coordinate system {x1, . . . , xn} is chosen in a neigh-
borhood of every point x ∈ M . If T is a (k, l)-tensor at x, we write T i1...ik

j1...jl
for its components in this

coordinate system. Given a section f of the bundle E, the notation ∇if stands for its covariant derivative in
the direction of ∂

∂xi
. Analogous shorthand is used for second-order operators. Namely, ∇i∇jf means ∇∇f

applied to ∂
∂xi

and ∂
∂xj

. The Einstein summation convention is in effect.

2.1 Formulation of the existence theorem

Our purpose is to study the solvability of second-order quasilinear parabolic equations for sections of E
subject to nonlinear nonhomogeneous boundary conditions. To begin with, consider a smooth mapping

H : E × [0,∞) → TM ⊗ TM.

We assume that H(η, t) is a symmetric tensor over π(η) for all η and t. It will be necessary to impose
one more requirement on H , but we postpone this until a little later. Meanwhile, consider another smooth
mapping

F : E × (T ∗M ⊗ E)× [0,∞) → E.

We demand that π(F (η, θ, t)) = π(η) for all values of η, θ, and t. Our attention will be focused on the
equation

∂

∂t
u(x, t)−Hij(u(x, t), t)∇i∇ju(x, t) = F (u(x, t),∇u(x, t), t), x ∈M◦, t ∈ (0, T ), (2.1)

for a section u of E depending on the parameter t ∈ [0, T ) with T > 0. The first step is to supplement (2.1)
with boundary conditions.

Let E∂M denote the set of all η ∈ E such that π(η) ∈ ∂M . This set has the structure of a vector bundle
over ∂M induced by the structure of E. Also, E∂M inherits the fiber metric from E. Suppose W is a
subbundle of E∂M . Let W⊥ be the orthogonal complement of W in E∂M . Introduce a smooth mapping

Ψ : E∂M × [0,∞) →W⊥.

It is assumed that π(Ψ(η, t)) = π(η) for all values of η and t. We impose the boundary conditions

PrW u(x, t) = o(x),

PrW⊥

(

Hij(u(x, t), t)νi(x)∇ju(x, t)
)

= Ψ(u(x, t), t), x ∈ ∂M, t ∈ (0, T ), (2.2)

on the solutions of (2.1). Here, PrW and PrW⊥ stand for the orthogonal projections in E∂M onto W

and W⊥. The letter o refers to the zero section of E. In essence, we impose the Dirichlet boundary
condition on u inside W and a nonlinear nonhomogeneous Neumann condition inside W⊥. To understand
what formulas (2.2) mean in a geometrically trivial case, the reader may revisit the introduction to the
present paper.

Suppose u0 is a smooth section of E. We supplement equation (2.1) with the initial condition

u(x, 0) = u0(x), x ∈M. (2.3)
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Our goal is to establish the solvability of problem (2.1)–(2.2)–(2.3). In order to do so, we need two additional
assumptions. The first one is a parabolicity condition on equation (2.1). We suppose there is a constant
c1 > 0 such that the inequality

Hij(η, t)ξiξj ≥ c1|ξ|
2 (2.4)

holds for every η ∈ E, t ∈ [0,∞), and ξ ∈ T ∗M projecting on π(η). The reader should see, e.g., [29,
Chapter 4] for an elaborate discussion of the concept of parabolicity in the framework of vector bundles.
The second assumption is the natural compatibility condition

PrW u0(x) = o(x),

PrW⊥

(

Hij(u0(x), 0)νi(x)∇ju0(x)
)

= Ψ(u0(x), 0), x ∈ ∂M. (2.5)

It is now time to state the main result of Section 2. This result is an existence theorem for problem (2.1)–
(2.2)–(2.3). It will be utilized in Section 3 when we investigate the Ricci flow.

Theorem 2.1. Consider the initial-boundary value problem (2.1)–(2.2)–(2.3). Suppose the parabolicity con-

dition (2.4) and the compatibility condition (2.5) are satisfied. Then there exist a number T > 0 and a map

u :M × [0, T ) → E such that the following requirements are met:

1. The equality π(u(x, t)) = x holds for every x ∈ M and t ∈ [0, T ). In other words, u is a section of E

depending on t ∈ [0, T ).

2. The map u and the covariant derivative ∇u are continuous on M × [0, T ). Furthermore, u is smooth

on M × (0, T ).

3. Equalities (2.1), (2.2), and (2.3) hold for u.

Remark 2.2. The number T > 0 whose existence the theorem asserts is dependent on the mappings H , F ,
Ψ, and u0. It may also be affected, for example, by the Riemannian metric on M .

Remark 2.3. Suppose Ξ is an open neighborhood of the set {u0(x) |x ∈M} in E. It is not difficult to verify
that the theorem still holds if the mappingsH , F , and Ψ are only defined on Ξ×[0,∞), Ξ×(T ∗M⊗E)×[0,∞),
and (Ξ∩E∂M )× [0,∞). Furthermore, let Ω be the set of (η, θ, t) ∈ Ξ× (T ∗M ⊗E)× [0,∞) such that η and
θ project onto the same point in M . The theorem prevails if F is only defined on Ω.

Remark 2.4. It may be possible to improve the regularity of u on M × [0, T ) by imposing higher-order
compatibility conditions along with (2.5); cf. [15, pages 319–321]. But this issue remains beyond the scope
of the present paper.

Remark 2.5. One may be able to prove an analogue of Theorem 2.1 in a more general setting. Namely,
suppose EndE is the bundle of endomorphisms of E and the mapping H acts from E × [0,∞) to TM ⊗
TM⊗EndE instead of TM⊗TM . It is clear how problem (2.1)–(2.2)–(2.3) should be modified in this case.
It may then be possible to establish an existence result analogous to Theorem 2.1. But we do not concern
ourselves with this in the present paper. Let us just mention that the references [27, 2, 12, 28, 3, 30] might
be helpful.

Before we can prove Theorem 2.1, we need to introduce additional notation, make a few comments, and
state a lemma. This will be done in Sections 2.2 and 2.3. When the preparations are finished, we will use a
fixed-point argument to produce T and u. The last step will be to establish the smoothness of u by localizing
our equation and appealing to some classical facts from [15].

2.2 Spaces of vector bundle sections

We will deal with a multitude of spaces of vector bundle sections. Although some of these spaces are rather
classical, they can be approached from several different viewpoints. In order to exclude ambiguity, and for
the convenience of the reader, we will outline the definitions with which we will work in this paper.

Let us use the notation R
n
+,0 for the open half-space {(y1, . . . , yn) ∈ R

n | yn > 0} and the notation R
n
+

for the closed half-space {(y1, . . . , yn) ∈ R
n | yn ≥ 0}. Fix a real number I ∈ (0, 1) and an integer number

5



q > n + 2. We will encounter the classical Sobolev-type spaces W 2,1
q (Rn × (0, I)) and W 2,1

q (Rn
+,0 × (0, I))

of real-values functions. Their precise definitions can be found in several sources such as, for example, [15,
Chapter I]. Given a domain Θ in R

n or R
n
+ and a number λ > 0, we will deal with the Hölder-type space

Hλ,λ
2 (Θ× (0, I)) of real-valued functions. Again, one may find its definition in [15, Chapter I].
Like in the beginning of Section 2, consider a vector bundle E = E1 ⊗ · · · ⊗ Ek. Let C

∞(M × [0, I] → E)
be the set of all the smooth mappings φ : M × [0, I] → E such that the projection of φ(x, t) onto M always
equals x. Suppose dx and dt are the Riemannian volume measure on M and the Lebesgue measure on [0, I].
We will encounter the space Lq(M × [0, I] → E, dx dt). It is the completion of C∞(M × [0, I] → E) in the
norm

‖φ‖Lq(M×[0,I]→E,dx dt) =

(
∫

M×[0,I]

|φ|q dx dt

)
1
q

.

Our further arguments will involve the spaces Lq(M × [0, I] → E, dx dt) for several different bundles E. It
will be convenient to use the same short notation Lq

I for all these spaces. The norms ‖ · ‖Lq(M×[0,I]→E,dx dt)

will all be written as ‖ · ‖Lq

I
.

Suppose C∞
W (M × [0, I] → E) is the set of all the smooth mappings φ ∈ C∞(M × [0, I] → E) such that

the equalities

PrW (φ(x, t)) = o(x), x ∈ ∂M, t ∈ [0, I],

φ(x, 0) = o(x), x ∈M,

hold true. Let WI
q stand for the completion of C∞

W (M × [0, I] → E) in the norm

‖φ‖WI
q
= ‖φ‖Lq

I
+ ‖∇∇φ‖Lq

I
+

∥

∥

∥

∥

∂

∂t
φ

∥

∥

∥

∥

L
q

I

.

The space WI
q is a Sobolev-type space. It will play an important part in our proof of Theorem 2.1.

Before proceeding, we need to introduce a family of atlases on M . If x ∈ M and r > 0, suppose B(x, r)

is the open ball in M centered at x of radius r. Given s > 0, consider an atlas
(

Us
k , ᾱs,k

)N(s)

k=1
on M such

that the following requirements hold:

1. The map ᾱs,k is a diffeomorphism from Us
k to R

n if Us
k lies in M◦ and a diffeomorphism from Us

k to
R

n
+ if Us

k intersects ∂M .

2. For every k = 1, . . . , N(s), the domain Us
k equals B(xs,k, s) with xs,k ∈ M . The map ᾱs,k takes xs,k

to the origin.

3. Given x ∈ M , there exists k such that x ∈ B(xs,k, s2 ) and the distance from x to M \ B(xs,k, s2 ) is
greater than s̃s. This requirement must hold for some number s̃ > 0 independent of s.

4. If 1 ≤ k1 < · · · < kN0
≤ N(s), then Us

k1
∩ · · · ∩ Us

kN0
= ∅. This must hold for some natural number N0

independent of s.

5. The inequality

1

c′
|dᾱs,k(ξ)|Rn ≤ |ξ| ≤ c′|dᾱs,k(ξ)|Rn

is satisfied for all ξ tangent to M at a point x whenever x ∈ B(xs,k, 3s4 ). Here, | · |Rn
is the standard

Euclidean norm in R
n, and c′ > 0 is a constant independent of s, k, and x.

It is clear that
(

Us
k , ᾱs,k

)N(s)

k=1
exists as long as s is sufficiently small; cf. [15, page 295]. In what follows, we

fix s0 > 0 such that we can construct
(

Us
k , ᾱs,k

)N(s)

k=1
when s ∈ (0, s0]. It will be convenient for us to extend

the diffeomorphisms ᾱs,k to the sets Us
k × [0, I]. More precisely, we introduce the mappings αs,k on Us

k × [0, I]
by letting αs,k(x, t) = (ᾱs,k(x), t).

6



Let us define a few cut-off functions. For each s ∈ (0, s0] and k = 1, . . . , N(s), choose a smooth κ̄s,k :
M → [0, 1] identically equal to 1 on B(xs,k, s2 ) and to 0 on M \B(xs,k, 3s4 ). We may assume the norm of the

gradient of κ̄s,k is bounded by c′′

s
on M , while the norm of the Hessian of κ̄s,k is bounded by c′′

s2
for some

constant c′′ > 0 independent of s and k. It will be convenient for us to define

ρ̄s,k =
κ̄s,k

∑N(s)
k=1 (κ̄s,k)

2
.

Finally, we introduce the function κs,k on M × [0, I] by setting κs,k(x, t) = κ̄s,k(x).
Assume that, for every s ∈ (0, s0] and k = 1, . . . , N(s), there is a local trivialization β̄s,k : π−1(Us

k) →
Us
k × R

d of the bundle E. This does not lead to any loss of generality. Along with β̄s,k, let us introduce
a mapping βs,k : π−1(Us

k ) → R
d. By definition, the image of θ ∈ π−1(Us

k ) under βs,k is the projection of
β̄s,k(θ) onto R

d. We assume that the standard Euclidean norm of βs,k(θ) equals |θ| for all θ ∈ π−1(Us
k ) and,

if Us
k intersects ∂M , the equality

βs,k(π
−1(x) ∩W ) = {(e1, . . . , ed′, 0, . . . , 0) ∈ R

d | e1, . . . , ed′ ∈ R}, x ∈ Us
k ∩ ∂M, (2.6)

holds for some d′ between 0 and d. Again, these assumptions do not lead to any loss of generality.
Let (Us0

kl
)N1

l=1 be the collection of all those Us0
k that intersect ∂M . We use the notation Vl for U

s0
kl

∩ ∂M .
It will be convenient for us to write α̂l and κ̂l for the restrictions of ᾱs0,kl

and κ̄s0,kl
to Vl. One may view

α̂l as a diffeomorphism from Vl to R
n−1. We can extend α̂l and κ̂l to the maps α̌l and κ̌l on Vl × [0, I] by

setting α̌l(x, t) = (α̂l(x), t) and κ̌l(x, t) = κ̂l(x). Also, let β̌l be the restriction of βs0,kl
to π−1(Vl).

Denote δ = 1 − 1
q
, where q is the integer fixed above. We consider the fractional-order Sobolev-type

space W
δ, δ

2
q (Rn−1 × (0, I)) of real-valued functions. Its precise definition may be found in [15, Chapter II].

Given a mapping φ : ∂M × [0, I] → W⊥ such that π(φ(x, t)) = x, let us write φml for the function taking
(y, t) ∈ R

n−1 × [0, I] to the mth component of the vector
(

β̌l ◦ κ̌lφ ◦ α̌−1
l

)

(y, t) ∈ R
d. Here, l is an integer

between 1 and N1, while m is an integer between 1 and d. We introduce the spaceW
δ, δ

2
q (∂M× [0, I] →W⊥).

It consists of the mappings φ : ∂M×[0, I] →W⊥ such that π(φ(x, t)) = x for all x ∈ ∂M and the function φml

lies inW
δ, δ

2
q (Rn−1×(0, I)) for all l = 1, . . . , N1 and m = 1, . . . , d. The norm of φ inW

δ, δ
2

q (∂M× [0, I] →W⊥)

is defined as the sum of the norms of φml in W
δ, δ

2
q (Rn−1 × (0, I)). We use the notation ‖φ‖

W
δ, δ

2
q,I

for it. Let

us also introduce the space W
δ, δ

2

q,I of those φ ∈ W
δ, δ

2
q (∂M × [0, I] → W⊥) that satisfy φ(x, 0) = o(x) for all

x ∈ ∂M . Clearly, W
δ, δ

2

q,I inherits the norm ‖ · ‖
W

δ, δ
2

q,I

from W
δ, δ

2
q (∂M × [0, I] → W⊥). The nature of W

δ, δ
2

q,I is

explained in part by the discussion on page 312 of [15]. Roughly speaking, this space consists of the normal
derivatives of the mappings from WI

q .

2.3 Linear parabolic equations

In order to prove Theorem 2.1, we need to establish a few facts about second-order linear parabolic equations
for sections of E. We will heavily use material from [15]. Let us lay down our setup.

Consider a smooth mapping

K :M × [0, I] → TM ⊗ TM.

Assume that K(x, t) is a symmetric tensor over x for all x and t. One may view K as a section of the bundle
TM ⊗ TM depending on t ∈ [0, I]. Consider one more mapping

G :M × [0, I] → E.

We demand that G ∈ L
q
I . Our interest is in the equation

vt(x, t) −Kij(x, t)∇i∇jv(x, t) = G(x, t), x ∈M◦, t ∈ (0, I). (2.7)

The unknown v is a section of E dependent on t ∈ [0, I). The subscript t designates the differentiation
in t ∈ (0, I).
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Consider yet another mapping

p : ∂M × [0, I] →W⊥.

We suppose it lies in W
δ, δ

2

q,I . Let us supplement (2.7) with the boundary condition

PrW⊥

(

Kij(x, t)νi(x)∇jv(x, t)
)

= p(x, t), x ∈ ∂M, t ∈ (0, I). (2.8)

Also, we assume there is a constant c2 > 0 such that

Kij(x, t)ξiξj ≥ c2|ξ|
2 (2.9)

for every x ∈ M , t ∈ [0, I], and ξ ∈ T ∗M projecting on x. It is now time to state the main result of this
subsection. It gives us a solution to problem (2.7)–(2.8) in the space WI

q as well as an important estimate.
The proof will be largely based on the arguments in [15, Chapter IV]; see also [27] and [15, Chapter VII].

Lemma 2.6. The boundary value problem (2.7)–(2.8), subject to condition (2.9), has a unique solution v in

the space WI
q . Furthermore, there exists a > 0 such that v satisfies the estimate

‖v‖WI
q
≤ a
(

‖G‖Lq

I
+ ‖p‖

W
δ, δ

2
q,I

)

. (2.10)

Remark 2.7. The number a > 0 can be chosen independent of I ∈ (0, 1). Just how large it has to be is
determined by, among other things, the mapping K.

Proof of Lemma 2.6. We will produce the solution v and establish (2.10) assuming the number I ∈ (0, 1) is
less than some number I0 > 0 to be specified later. In the end of the proof, we will remove this assumption.

Meanwhile, let HI
q stand for the direct sum L

q
I ⊕ W

δ, δ
2

q,I . Define the operator A : WI
q → HI

q by setting

Aw = (A1w,A2w
)

with

(A1w)(x, t) = wt(x, t)−Kij(x, t)∇i∇jw(x, t), x ∈M◦, t ∈ (0, I),

(A2w)(x, t) = PrW⊥

(

Kij(x, t)νi(x)∇jw(x, t)
)

, x ∈ ∂M, t ∈ (0, I).

We need to show that A has a bounded inverse A−1. The assertions of the lemma will follow immediately.
The role of the constant a > 0 in inequality (2.10) will be played by the norm of A−1.

To demonstrate that A has a bounded inverse, we blend the arguments from the proofs of Theorems 5.3
and 9.1 in [15, Chapter IV]. Note that the geometric nature of problem (2.7)–(2.8) forces us to modify those
arguments rather substantially. Our first step is to construct, assuming I is less than I0, a bounded operator
B : HI

q → WI
q such that the norms of the operators AB − IdHI

q
and BA − IdWI

q
are less than 1. Here, IdHI

q

and IdWI
q
are the identity maps in the corresponding spaces. Once B is at hand, we will utilize it to produce

a left inverse and a right inverse for A. The existence of A−1 will be a direct consequence.
Suppose (J1, J2) ∈ HI

q . In order to specify how the operator B acts on (J1, J2), let us fix s ∈ (0, s0] and

an atlas (Us
k , ᾱs,k)

N(s)
k=1 on M as described in Section 2.2. Along with (Us

k , ᾱs,k)
N(s)
k=1 , we have the collection

(βs,k)
N(s)
k=1 . Each βs,k is a mapping from π−1(Us

k) to R
d. Choose a domain Us

k intersecting ∂M . The
diffeomorphism ᾱs,k takes Us

k to R
n
+. Let {y1, . . . , yn} be the standard coordinates on R

n
+. Given y ∈ R

n
+

and t ∈ [0, I], we write K̂ij
s,k(y, t) and ν̂

s,k
i (y) for the components of the tensors K(ᾱ−1

s,k(y), t) and ν(ᾱ
−1
s,k(y))

with respect to ᾱs,k and {y1, . . . , yn}.
To describe the action of B on (J1, J2), some preparations are required. It will be convenient for us to

denote

Ĵ1,s,k(y, t) =
(

βs,k ◦ κs,kJ1 ◦ α
−1
s,k

)

(y, t), y ∈ R
n
+, t ∈ (0, I),

Ĵ2,s,k(y, t) =
(

βs,k ◦ κs,kJ2 ◦ α
−1
s,k

)

(y, t), y ∈ ∂Rn
+, t ∈ (0, I).

Consider the equation

zt(y, t)− K̂
ij
s,k(0, 0)zyiyj

(y, t) = Ĵ1,s,k(y, t), y ∈ R
n
+,0, t ∈ (0, I). (2.11)
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Here, z = (z1, . . . , zd) is the vector of unknown functions with zm : Rn
+ × [0, I) → R for m = 1, . . . , d. The

subscript yi and yj mean component-wise differentiation in yi and yj . Let us impose the boundary conditions

Prβs,k(π−1(ᾱ−1

s,k
(y))∩W ) z(y, t) = 0,

Prβs,k(π−1(ᾱ−1

s,k
(y))∩W⊥)

(

K̂
ij
s,k(0, 0)ν̂

s,k
i (y)zyj

(y, t)
)

= Ĵ2,s,k(y, t), y ∈ ∂Rn
+, t ∈ (0, I), (2.12)

and the initial condition

z(y, 0) = 0, y ∈ R
n
+. (2.13)

Using formula (2.6), we see that problem (2.11)–(2.12)–(2.13) is equivalent to d uncoupled problems, one
for each zm. The Dirichlet boundary condition is imposed on zm when m = 1, . . . , d′, and a Neumann-type
condition is in place when m = d′ + 1, . . . , d. On the basis of Theorem 6.1 from [15, Chapter IV] (see also
the argument on pages 343–345 of [15]), one easily concludes that problem (2.11)–(2.12)–(2.13) has a unique

solution whose components all lie in the space W 2,1
q (Rn

+,0× (0, I)). We denote this solution by B̂s,k
J1,J2

. Given

m = 1, . . . , d, let Ĵm
1,s,k, Ĵ

m
2,s,k, and B̂s,k,m

J1,J2
be the mth components of Ĵ1,s,k, Ĵ2,s,k, and B̂s,k

J1,J2
. The estimate

∥

∥B̂s,k,m
J1,J2

∥

∥

W
2,1
q (Rn

+,0×(0,I))
≤ a1

(

(
∫

R
n
+
×[0,I]

∣

∣Ĵm
1,s,k

∣

∣

q
dy dt

)
1
q

+
∥

∥Ĵm
2,s,k

∥

∥

W
δ, δ

2
q (Rn−1×(0,I))

)

(2.14)

must be satisfied for some a1 > 0 (dy and dt are the Lebesgue measures on R
n
+ and [0, I]). We introduce the

map Bs,k
J1,J2

: Us
k × [0, I] → E by setting

Bs,k
J1,J2

(x, t) = β̄−1
s,k

(

x,
(

B̂s,k
J1,J2

◦ αs,k

)

(x, t)
)

, x ∈ Us
k , t ∈ [0, I].

It will be convenient for us to have Bs,k
J1,J2

defined on all ofM× [0, I]. Therefore, we let Bs,k
J1,J2

(x, t) = o(x) for

x ∈M \ Us
k and t ∈ [0, I]. The map Bs,k

J1,J2
will be a substantial ingredient in the image of (J1, J2) under B.

So far, we’ve been assuming Us
k intersected ∂M . Suppose now Us

k is a domain contained in M◦. The
diffeomorphism ᾱs,k then acts from Us

k to R
n. We can write down an equation analogous to (2.11) in R

n

and an initial condition analogous to (2.13) in R
n. The resulting problem will have a unique solution with

components in W 2,1
q (Rn × (0, I)). Again, we denote this solution by B̂s,k

J1,J2
and introduce the map Bs,k

J1,J2
.

Notice that each component of B̂s,k
J1,J2

will satisfy an estimate similar to (2.14). We are now ready to specify
how B acts on (J1, J2).

Consider the mapping Bs
J1,J2

:M × [0, I] → E given by the formula

Bs
J1,J2

(x, t) =

N(s)
∑

k=1

ρ̄s,k(x)B
s,k
J1,J2

(x, t), x ∈M, t ∈ [0, I].

It is clear that Bs
J1,J2

∈ WI
q . Let B be the operator taking (J1, J2) ∈ HI

q to Bs
J1,J2

∈ WI
q . Our next step is

to establish a few inequalities for B.
In the beginning of the proof, we assumed I was less than some I0 > 0. Fix a number s̄ ∈ (0, 1] and

suppose I0 is s̄s2. Thus, the formula

I < s̄s2 (2.15)

must hold. Employing (2.14), (2.15), and the properties of the atlas (Us
k , ᾱs,k)

N(s)
k=1 listed in Section 2.2, we

easily see that the inequality

‖Bh‖WI
q
< a2‖h‖HI

q
, h ∈ H

I
q , (2.16)

is satisfied for some a2 > 0 independent of the numbers s and s̄; cf. Lemma 4.7 and Theorem 7.1 in [15,
Chapter IV]. In particular, the operator B is bounded.
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If s and s̄ are chosen sufficiently small and (2.15) holds, then

‖ABh− h‖HI
q
< ‖h‖HI

q
, h ∈ H

I
q ,

‖BAw − w‖WI
q
< ‖w‖WI

q
, w ∈ WI

q .

In order to prove this, it is necessary to write down a series of estimates based on (2.16) and the Hölder
inequality. These estimates are very similar to the ones on pages 348-349 of [15]; see also [27]. We will
not present them here. At this point, the required inequalities for B are at hand. We will now utilize B to
produce the left inverse and the right inverse of A.

If s and s̄ are chosen small and (2.15) holds, then the norms of the operators AB− IdHI
q
and BA− IdWI

q

are less than 1. In this case, AB = (AB − IdHI
q
) + IdHI

q
and BA = (BA− IdWI

q
) + IdWI

q
must have bounded

inverses. Keeping this in mind, we conclude that

A
(

B(AB)−1
)

= IdHI
q
,

(

(BA)−1B
)

A = IdWI
q
.

It is now easy to see that A must have a bounded inverse A−1. Thus, the assertions of the lemma hold
true provided I is less than s̄s2 for some s and s̄. In order to complete the proof, we have to remove the
assumption on I. But this can be accomplished by repeating the arguments from pages 349–350 of [15] (see
also [15, Chapter IV, Section 8]).

2.4 Proof of the existence theorem

Our preparations for the proof of Theorem 2.1 are now completed. We proceed in two steps. First, we will
use a fixed-point argument similar to the one found in [30] (see also [12, 1]) to construct a solution u of
problem (2.1)–(2.2)–(2.3). Then we will employ classical facts from [15] to show that u possesses the desired
differentiability properties.

Proof of Theorem 2.1. Let us assume u0(x) is equal to zero for every x ∈M . This does not lead to any loss
of generality. Indeed, it is always possible to reduce the general case to the case where u0(x) = o(x) for all
x ∈M by introducing the new unknown ǔ(x, t) = u(x, t)− u0(x).

We will now construct the mapping C whose fixed point will be a solution of problem (2.1)–(2.2)–(2.3).
As in Sections 2.2 and 2.3, suppose I ∈ (0, 1) is a real number and q > n+2 is an integer. The space WI

q will
play an important role in our further considerations. Denote H0(x) = H(o(x), 0) for each x ∈ M . Suppose
that w ∈ WI

q . Let us introduce the mapping Hw :M × [0, I] → TM ⊗ TM by the formula

Hw(x, t) = H(w(x, t), t), x ∈M, t ∈ [0, I].

The notation

Fw,∇w(x, t) = F (w(x, t),∇w(x, t), t), x ∈M, t ∈ [0, I],

Ψw(x, t) = Ψ(w(x, t), t), x ∈ ∂M, t ∈ [0, I],

will also be helpful. We consider the equation

vt(x, t) −H
ij
0 (x)∇i∇jv(x, t)

= Fw,∇w(x, t) +
(

Hij
w (x, t) −H

ij
0 (x)

)

∇i∇jw(x, t), x ∈M◦, t ∈ (0, I), (2.17)

for the unknown section v depending on t ∈ [0, I]. We then supplement this equation with the boundary
condition

PrW⊥

(

H
ij
0 (x)νi(x)∇jv(x, t)

)

= Ψw(x, t)− PrW⊥

((

Hij
w (x, t)−H

ij
0 (x)

)

νi(x)∇jw(x, t)
)

, x ∈ ∂M, t ∈ (0, I). (2.18)
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Lemma 2.6 above demonstrates that problem (2.17)–(2.18) has a unique solution in the space WI
q . We may,

therefore, define a mapping C : WI
q → WI

q that takes w to this solution. A series of estimates based on (2.10)
show the existence of a number T ∈ (0, 1) such that C has a fixed point when I ≤ T . These estimates are
very similar to the ones in the proofs of Lemmas 2.4 and 2.5 in [30]. We will not present them here. It is,
thus, possible to find w ∈ WI

q satisfying the equality C(w) = w provided I ≤ T . In particular, there exists

u ∈ WT
q with C(u) = u. Lemma 3.3 of [15, Chapter II] implies that u and ∇u are continuous on M × [0, T ).

Formulas (2.1) and (2.2) hold for u. We also have (2.3) since we assumed u0(x) = o(x) for x ∈M . It remains
to show that u is smooth on M × (0, T ). We will do so on the basis of bootstrapping argument.

Fix an atlas (Us
k , ᾱs,k)

N(s)
k=1 on M as described in Section 2.2. Here, s is an arbitrary positive number less

than s0. Along with (Us
k , ᾱs,k)

N(s)
k=1 , we have the collection (βs,k)

N(s)
k=1 . Choose a domain Us

k intersecting ∂M .
The diffeomorphism ᾱs,k takes Us

k to R
n
+. We introduce the function ũs,k = βs,k ◦ u ◦ α−1

s,k. It acts from

R
n
+ × [0, T ] to R

d. We take m = 1, . . . , d and write ũms,k for the mth component of ũs,k. Our next step is to
study the differentiability of ũms,k. This will help us obtain the desired conclusion about the smoothness of u.

Let {y1, . . . , yn} be the standard coordinates in R
n
+. In what follows, the notation Dũs,k stands for the

Jacobian matrix of ũs,k with respect to {y1, . . . , yn}. It is not difficult to understand on the basis of (2.1)
that ũms,k satisfies

(ũms,k)t(y, t)− H̃
ij
s,k,u(y, t)(ũ

m
s,k)yiyj

(y, t) = F̃
s,k,m
u,∇u (y, t), y ∈ R

n
+,0, t ∈ (0, T ). (2.19)

In this formula,

H̃
ij
s,k,u(y, t) = H̃

ij
s,k(ũs,k(y, t), y, t), y ∈ R

n
+,0, t ∈ (0, T ),

with H̃
ij
s,k being a function from R

d × R
n
+ × [0, T ] to R for any i, j = 1 . . . , n. We point out that H̃ij

s,k is
smooth in all three variables. Also, in formula (2.19),

F̃
s,k,m
u,∇u (y, t) = F̃m

s,k(ũs,k(y, t), Dũs,k(y, t), y, t), y ∈ R
n
+,0, t ∈ (0, T ),

with F̃m
s,k taking R

d×Matd,n×R
n
+×[0, T ] to R. The notation Matd,n refers to the space of d×n matrices. We

naturally identify Matd,n with R
dn and equip it with the standard Euclidean metric. Then the function F̃m

s,k

is smooth in all four variables. According to (2.2) and (2.6), if m is between 1 and d′, the equality

ũms,k(y, t) = 0, y ∈ ∂Rn
+, t ∈ (0, T ), (2.20)

holds true. For the other values of m, we have a slightly more complicated identity. Finally, it is easy to see
from (2.3) that

ũms,k(y, 0) = 0, y ∈ R
n
+. (2.21)

We proceed to establishing differentiability properties of ũms,k.

The fact that u lies in WT
q and Lemma 3.3 from [15, Chapter II] tell us that the coefficients H̃ij

s,k,u and the

term F̃
s,k,m
u,∇u in equation (2.19) lie in the Hölder-type space Hλ,λ

2 (Θs,k × (0, T )) for Θs,k = ᾱs,k(B(xs,k , s2 ))
and some λ ∈ (0, 1). Taking (2.19)–(2.20)–(2.21) into account and employing the material in [15, Chapter III,

Section 12], we can conclude that ũms,k must belong to H2+λ,1+λ
2 (Θs,k × (0, T )) if m = 1, . . . , d′. Analogous

reasoning works when m = d′ + 1, . . . , d. In this case, ũms,k is a solution of (2.19) under a Neumann-type

boundary condition and the initial condition (2.21). We easily see that ũms,k ∈ H2+λ,1+λ
2 (Θs,k × (0, T )).

Let us examine equation (2.19) again. It is now evident that the coefficients H̃ij
s,k,u and the term F̃

s,k,m
u,∇u

in it must belong to H1+λ, 1
2
+λ

2 (Θs,k × (0, T )). As above, we conclude ũms,k ∈ H3+λ, 3
2
+λ

2 (Θs,k × (0, T )). Let
us iterate this argument. It becomes clear that ũms,k must be smooth on Θs,k × (0, T ).

So far, it’s been assumed that the domain Us
k intersected ∂M . Suppose now Us

k is contained in M◦. We
can still introduce the function ũs,k = βs,k ◦u◦α

−1
s,k. It now acts from R

n× [0, T ] to R
d. Repeating the above

reasoning with minor modifications, we can demonstrate that, given m = 1, . . . , d, the component ũms,k must

be smooth on ᾱs,k(B(xs,k, s2 ))× (0, T ).
Let us summarize. Our goal was to establish the differentiability properties of u on M × (0, T ). The

presented arguments suggest that, whichever k = 1, . . . , N(s) we choose, u must be smooth on B(xs,k, s2 )×
(0, T ). This immediately implies the desired properties of u on M × (0, T ).
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3 The Ricci flow

Like in Section 2, we consider a smooth manifoldM with boundary. We now assume thatM is n-dimensional
with n ≥ 3, compact, connected, and oriented. The notations M◦ and ∂M will be used for the interior and
the boundary of M . Our goal is to investigate the Ricci flow on M . More specifically, we will propose a new
boundary condition and establish two short-time existence results for this flow. The proofs will be based on
the method commonly known as DeTurck’s trick. The reader should consult, e.g., [8, 9, 29] for a detailed
explanation of this method in the context of closed manifolds. A relevant historic discussion may be found
in [6]. Our proofs will rely heavily on Theorem 2.1.

We focus on the equation

∂

∂t
g(x, t) = −2Ricg(x, t), x ∈M◦, t ∈ (0, T ), (3.1)

for a Riemannian metric g on M depending on the parameter t ∈ [0, T ) with T > 0. The notation Ricg

in the right-hand side refers to the Ricci curvature of g. We fix a smooth Riemannian metric ĝ on M and
supplement (3.1) with the initial condition

g(x, 0) = ĝ(x), x ∈M. (3.2)

So far, we do not concern ourselves with the behavior of g near ∂M . The reader will recognize that (3.1) is
the Ricci flow equation on M . The introduction to the present paper contains references to several books
that discuss it in great detail.

We call a mapping g :M × [0, T ) → T ∗M ⊗ T ∗M a decent solution of problem (3.1)–(3.2) on M × [0, T )
if the following requirements are met:

1. For every x ∈ M and t ∈ [0, T ), the tensor g(x, t) is symmetric and positive-definite. In other words,
g is a Riemannian metric on M depending on t ∈ [0, T ).

2. The mapping g is continuous on M × [0, T ) and smooth on M × (0, T ).

3. The Ricci flow equation (3.1) and the initial condition (3.2) hold for g.

Throughout Section 3, we write ∇̃ and ∇̂ for the Levi-Civita connections of the metrics g and ĝ. In a similar
fashion, υ̃ and υ̂ will stand for the outward unit normal vector fields on ∂M with respect to g and ĝ. We
point out that ∇̃ and υ̃ depend on the parameter t ∈ [0, T ), while ∇̂ and υ̂ do not. The connection ∇̂ gives
rise to connections in tensor bundles over M . We preserve the notation ∇̂ for them.

As in Section 2, let us implicitly assume that a coordinate system {x1, . . . , xn} is chosen in a neighborhood
of every point x ∈ M . Suppose T is a (k, l)-tensor field on M near x. By analogy with the notation of
Section 2, we write T i1...ik

j1...jl
for the components of T in the coordinates {x1, . . . , xn}, while ∇̃iT and ∇̂iT

stand for ∇̃ ∂
∂xi

T and ∇̂ ∂
∂xi

T . The expression ∇̂i∇̂jT means the second covariant derivative ∇̂∇̂T applied

to ∂
∂xi

and ∂
∂xj

. If x lies in ∂M , we assume that {x1, . . . , xn−1} is a local coordinate system on ∂M , the

nth coordinate of any point in ∂M near x is equal to 0, and υ̂ is a scalar multiple of ∂
∂xn

near x. Given a
(k, l)-tensor Z on ∂M at x ∈ ∂M , we write Zα1...αk

β1...βl
for the components of Z with respect to {x1, . . . , xn−1}.

As before, the Einstein summation convention is in effect. The Latin indices i, j, k, and l will vary from 1
to n, whereas the Greek indices α, β, γ, and σ will vary from 1 to n− 1.

In accordance with the notation introduced above, gij and ĝij are the components of the Riemannian
metrics g and ĝ. We will also deal with the inverses of these metrics. Their components will be denoted
by gij and ĝij .

3.1 Formulation of the existence results

Our further considerations involve the second fundamental form field II : ∂M × [0, T ) → T ∗∂M ⊗ T ∗∂M of
the boundary with respect to g. By definition,

IIαβ(x, t) = gαγ(x, t)
(

∇̃β υ̃
)γ
(x, t), x ∈ ∂M, t ∈ [0, T ).
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Let us introduce the quantity

H(x, t) =
1

n− 1
gαβ(x, t) IIαβ(x, t), x ∈ ∂M, t ∈ [0, T ).

It is called the mean curvature of ∂M . One may also consider the second fundamental form field of ∂M with
respect to ĝ. We will denote it by ÎI. Finally, one may introduce the mean curvature of ∂M with respect
to ĝ. We will write Ĥ for it.

Let us state the first main result of this section. It assumes that Ĥ(x) is independent of x ∈ ∂M . If this
is the case, we can solve problem (3.1)–(3.2) for a short time maintaining control over H(x, t).

Theorem 3.1. Suppose the mean curvature Ĥ(x) is equal to a constant H0 ∈ R for all x ∈ ∂M . Let µ be

a smooth real-valued function on [0,∞) with µ(0) = 1. Then there exist T > 0 and a decent solution g of

problem (3.1)–(3.2) on M × [0, T ) such that the mean curvature H(x, t) satisfies the boundary condition

H(x, t) = µ(t)H0

for all x ∈ ∂M and t ∈ [0, T ).

Remark 3.2. The function µ appearing in Theorem 3.1 plays the role of a normalization factor. The reader
should see [4] for a discussion relevant to the geometric meaning of µ.

The next main result of this section concerns the behavior of the Ricci flow on manifolds with convex
boundary. Again, it is an existence theorem. Note that there are several ways to define what it means
for ∂M to be convex with repsect to a Riemannian metric on M . Different viewpoints and the relations
between them are surveyed in [21]. Perhaps, the most common way is to deem ∂M convex with respect to
a Riemannian metric on M if and only if the second fundamental form of ∂M with respect to this metric is
nonnegative-definite on ∂M . Having said that, we can formulate the result.

Theorem 3.3. Let ÎI(x) be nonnegative-definite whenever x ∈ ∂M . That is, we assume ∂M is convex with

respect to ĝ. There exist T > 0 and a decent solution g of problem (3.1)–(3.2) on M × [0, T ) such that II(x, t)
is nonnegative-definite for all x ∈ ∂M and t ∈ [0, T ). Thus, ∂M remains convex with respect to g.

One more remark is in order at this point. After stating it, we will proceed to proving Theorems 3.1
and 3.3. The first step will be to make some preparations. We will do so in Section 3.2.

Remark 3.4. It may be possible to improve the regularity of g on the set M × [0, T ) in Theorems 3.1 and 3.3
by imposing additional restrictions on the behavior of ĝ near ∂M . Remark 2.4 suggests the nature of the
assumptions that have to be made. We do not address this issue in the present paper.

3.2 The Ricci-DeTurck flow and bundles over the boundary

Let us introduce the Ricci-DeTurck flow on the manifold M . We will employ it to prove the results listed in
Section 3.1. Supplementing it with boundary conditions will be the key steps in our reasoning. The existence
of solutions to the flow will follow from Theorem 2.1.

Given a Riemannian metric ḡ onM depending on t ∈ [0, T ), define the mappings P ḡ :M× [0, T ) → T ∗M

and Qḡ :M × [0, T ) → T ∗M ⊗ T ∗M by the formulas

P
ḡ
i (x, t) = ḡij(x, t)ḡ

kl(x, t)
(

Γ̄j
kl(x, t)− Γ̂j

kl(x)
)

,

Q
ḡ
ij(x, t) =

(

∇̄iP
ḡ
)

j
(x, t) +

(

∇̄jP
ḡ
)

i
(x, t), x ∈M, t ∈ [0, T ).

Here, ḡkl are the components of the inverse of ḡ, while Γ̄j
kl and Γ̂j

kl are the Christoffel symbols corresponding

to the Levi-Civita connections ∇̄ and ∇̂ of ḡ and ĝ. We have written ∇̄iP
ḡ and ∇̄jP

ḡ for the covariant
derivatives of P ḡ in the directions ∂

∂xi
and ∂

∂xj
. These derivatives are taken with respect to the connection

in T ∗M induced by ∇̄. Consider the equation

∂

∂t
ḡ(x, t) = −2Ricḡ(x, t) +Qḡ(x, t), x ∈M◦, t ∈ (0, T ). (3.3)
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In what follows, it will be convenient for us to use the notation E for the bundle of symmetric (0,2)-tensors
on M . One could think about ḡ as a section of E depending on t ∈ [0, T ). By Lemma 7.48 in [9], we can
rewrite equation (3.3) as

∂

∂t
ḡ(x, t) = ḡij(x, t)∇̂i∇̂j ḡ(x, t) +R

(

ḡ(x, t), ∇̂ḡ(x, t)
)

, x ∈M◦, t ∈ (0, T ). (3.4)

The map R here is defined on the set of all the pairs (η, θ) such that η is a symmetric positive-definite (0,2)-
tensor and θ is a (0,3)-tensor at the same point. It is clear that R must act to T ∗M ⊗ T ∗M . Equation (3.3)
is the Ricci-DeTurck flow equation on M . Rewriting it in the form (3.4) will later enable us to apply
Theorem 2.1 to it.

Let us introduce a few more pieces of notation. Suppose πE is the projection in the bundle E . We assume
that E is equipped with the fiber metric given by ĝ. It will be convenient for us to write E∂M for the set
of all η ∈ E such that πE(η) ∈ ∂M . This set has the structure of a vector bundle over ∂M induced by the
structure of E . It also inherits the fiber metric from E . Let F be the subbundle of E∂M consisting of all
η ∈ E∂M such that ηαβ = 0 for α, β = 1, . . . , n− 1 and, in addition, ηnn = 0. One could view every η ∈ E∂M
as a bilinear form on TπE(η)M . With this interpretation adopted, the subbundle F consists of those η ∈ E∂M
that satisfy

η(X,Y ) = η(υ̂, υ̂) = 0

for all X and Y tangent to ∂M at πE(η). Let F⊥ be the orthogonal complement of F in E∂M .

3.3 Proofs of the existence results

We are now ready to prove Theorem 3.1. In order to do so, we will supplement the Ricci-DeTurck flow (3.3)
with boundary conditions and an initial condition. Theorem 2.1 will then imply the existence of a solution.
By modifying this solution, it is possible to obtain a Riemannian metric on M that satisfies (3.1)–(3.2) and
exhibits the desired boundary behavior.

Proof of Theorem 3.1. Recall that we are given a smooth real-valued function µ on [0,∞) with µ(0) = 1.
Let us impose boundary conditions on the solutions of (3.3) by demanding that

PrF ḡ(x, t) = o(x),

ĪIαβ(x, t) =
1

2
µ(t)

(

ḡαγ(x, t)ĝ
γσ(x)ÎIσβ(x) + ḡβγ(x, t)ĝ

γσ(x)ÎIσα(x)
)

,

P ḡ
n (x, t) = 0, x ∈ ∂M, t ∈ (0, T ). (3.5)

Here, o is the zero section in E , and ĪI is the second fundamental form field of ∂M with respect to ḡ. A
computation demonstrates that the boundary conditions (3.5) are equivalent to the formulas

PrF ḡ(x, t) = o(x),

PrF⊥

(

ḡnn(x, t)(ĝnn(x))
1
2 ∇̂nḡ(x, t)

)

= ζ(ḡ(x, t)), x ∈ ∂M, t ∈ (0, T ), (3.6)

where ζ is a map from the set {η ∈ E∂M | η is positive-definite} to the bundle F⊥. The components of the
tensor ζ(ḡ(x, t)) appear as

ζαβ(ḡ(x, t)) =− µ(t)
(

ĝnn(x)ḡ
nn(x, t)

)
1
2
(

ḡαγ(x, t)ĝ
γσ(x)ÎIσβ(x) + ḡβγ(x, t)ĝ

γσ(x)ÎIσα(x)
)

+ ĝnn(x)ḡ
nn(x, t)

(

ḡαγ(x, t)ĝ
γσ(x)ÎIσβ(x) + ḡβγ(x, t)ĝ

γσ(x)ÎIσα(x)
)

,

ζnn(ḡ(x, t)) =− 2ḡnn(x, t)
(

µ(t)(ĝnn(x)ḡ
nn(x, t))

1
2 ĝαβ(x)ÎIαβ(x) − ḡαβ(x, t)ÎIαβ(x)

)

,

and ζαn(ḡ(x, t)) = 0 whenever x ∈ ∂M and t ∈ [0, T ). As usual, the Greek indices vary from 1 to n− 1.
We supplement (3.3) with the initial condition

ḡ(x, 0) = ĝ(x), x ∈M. (3.7)

Theorem 2.1 and Remark 2.3 imply the existence of a number T > 0 and a mapping ḡ :M × [0, T ) → E such
that the following statements hold:
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1. The tensor ḡ(x, t) is positive-definite for every x ∈M and t ∈ [0, T ). In other words, ḡ is a Riemannian
metric on M depending on t ∈ [0, T ).

2. The mappings ḡ and ∇̂ḡ are continuous on M × [0, T ). Furthermore, ḡ is smooth on M × (0, T ).

3. Equalities (3.4), (3.6), and (3.7) hold true.

Evidently, ḡ must also solve (3.3) and satisfy the boundary conditions (3.5) along with the initial condi-
tion (3.7). We will write H̄ for the mean curvature of ∂M with respect to ḡ. Our next step is to modify ḡ by
means of the DeTurck diffeomorphisms. Then ḡ will become a decent solution of problem (3.1)–(3.2). Once
we have that, the proof of the theorem will be easy to complete.

Consider a mapping Pḡ :M × [0, T ) → TM defined by the formula

P i
ḡ(x, t) = ḡij(x, t)P ḡ

j (x, t), x ∈M, t ∈ [0, T ).

It is clear from (3.5) that Pn
ḡ (x, t) must equal 0 when x ∈ ∂M and t ∈ [0, T ). In other words, Pḡ(x, t) is

tangent to ∂M as long as x ∈ ∂M . Let us look at the equation

∂

∂t
ψ(x, t) = −Pḡ(ψ(x, t), t), x ∈M, t ∈ (0, T ), (3.8)

for ψ :M × [0, T ) →M . We supplement this equation with the initial condition

ψ(x, 0) = x, x ∈M. (3.9)

The mapping Pḡ is continuous on M × [0, T ) and smooth on M × (0, T ). Also, Pḡ(·, 0) is identically zero
on M . Using these properties along with the fact that Pḡ(x, t) is tangent to ∂M whenever x ∈ ∂M , we can
prove the existence of a unique ψ :M × [0, T ) →M such that

1. The map ψ is continuous on M × [0, T ) and smooth on M × (0, T ).

2. Equalities (3.8) and (3.9) hold true.

3. The map ψ(·, t) is a diffeomorphism from the manifold M to itself for every t ∈ [0, T ).

The reader may find relevant material in [8, Chapter 3, Section 3.1]. It is customary to call ψ(·, t) the
DeTurck diffeomorphisms.

Given t ∈ [0, T ), define the Riemannian metric g(·, t) on M as the pullback of ḡ(·, t) by ψ(·, t). One can
then verify that the mapping g :M× [0, T ) → T ∗M⊗T ∗M is a decent solution of problem (3.1)–(3.2) on the
set M × [0, T ); see, e.g., [8, page 81]. Moreover, for each t ∈ [0, T ), the second fundamental form field II(·, t)
is equal to the pullback of ĪI(·, t) by the restriction of ψ(·, t) to ∂M . Keeping this fact in mind, taking (3.5)
into account, and remembering the hypotheses of the theorem, we compute the mean curvature H(x, t) and
see that

H(x, t) = H̄(ψ(x, t), t) = µ(t)Ĥ(ψ(x, t)) = µ(t)H0, x ∈ ∂M, t ∈ [0, T ).

The desired conclusion follows immediately.

It is time to prove Theorem 3.3. Again, we have to supplement the Ricci-DeTurck flow (3.3) with
boundary conditions. The next step will be to apply Theorem 2.1 and obtain a solution. We will then
modify this solution by means of the DeTurck diffeomorphisms. Note that the boundary conditions satisfied
by it will be different from the ones appearing in the previous proof. In a sense, they will be simpler.

Proof of Theorem 3.3. Let us add boundary conditions to (3.3) by demanding that

PrF ḡ(x, t) = o(x),

ĪIαβ(x, t) = ÎIαβ(x), P
ḡ
n(x, t) = 0, x ∈ ∂M, t ∈ (0, T ). (3.10)
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As before, ĪI is the second fundamental form field of ∂M with respect to ḡ. A computation shows that
formulas (3.10) are equivalent to

PrF ḡ(x, t) = o(x),

PrF⊥

(

ḡnn(x, t)(ĝnn(x))
1
2 ∇̂nḡ(x, t)

)

= χ(ḡ(x, t)), x ∈ ∂M, t ∈ (0, T ),

with χ acting from {η ∈ E∂M | η is positive-definite} to F⊥. The components of χ(ḡ(x, t)) are

χαβ(ḡ(x, t)) =− 2
(

ĝnn(x)ḡ
nn(x, t)

)
1
2 ÎIαβ(x)

+ ĝnn(x)ḡ
nn(x, t)

(

ḡαγ(x, t)ĝ
γσ(x)ÎIσβ(x) + ḡβγ(x, t)ĝ

γσ(x)ÎIσα(x)
)

,

χnn(ḡ(x, t)) =− 2
(

(ĝnn(x)ḡnn(x, t))
1
2 − ḡnn(x, t)

)

ḡαβ(x, t)ÎIαβ(x),

and χαn(ḡ(x, t)) = 0 when x ∈ ∂M and t ∈ [0, T ). As in the proof of Theorem 3.1, we apply Theorem 2.1
and Remark 2.3 to obtain T > 0 and ḡ :M × [0, T ) → E such that

1. The tensor ḡ(x, t) is positive-definite for every x ∈M and t ∈ [0, T ).

2. The mappings ḡ and ∇̂ḡ are continuous on M × [0, T ). Also, ḡ is smooth on M × (0, T ).

3. Equalities (3.3) and (3.10) hold true, and ḡ(x, 0) = ĝ(x) whenever x ∈M .

It remains to modify ḡ by means of the DeTurck diffeomorphisms. We will then have a decent solution
of (3.1)–(3.2). The boundary of M will be convex with respect to this solution.

Following the same procedure as in the proof of Theorem 3.1, let us define the mapping Pḡ :M× [0, T ) →
TM and construct the corresponding ψ :M× [0, T ) →M . We introduce the Riemannian metric g(·, t) onM
as the pullback of ḡ(·, t) by ψ(·, t) for every t ∈ [0, T ). One verifies that g : M × [0, T ) → T ∗M ⊗ T ∗M is
a decent solution of (3.1)–(3.2) on M × [0, T ). Moreover, II(·, t) coincides with the pullback of ĪI(·, t) by
the restriction of ψ(·, t) to ∂M for each t ∈ [0, T ). This fact, along with (3.10) and the hypotheses of the
theorem, implies that II(x, t) must be nonnegative-definite for x ∈ ∂M and t ∈ [0, T ). The desired conclusion
becomes obvious.
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