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Abstract

We study the spectral triples over the total space of noncommutative prin-
cipal U(1) bundles. Basing on the classical situation and the abstractal-
gebraic approach we propose a definition of connections and compatibility
between the connection and the Dirac operator. We analyse indetails the ex-
ample of the noncommutative three-torus viewed as aU(1) bundle over the
noncommutative two-torus and find all connections compatible with an ad-
missible Dirac operator. Conversely, we find a family of new Dirac operators
on the noncommutative tori, which arise from the base-spaceDirac operator
and a suitable connection.

1 Introduction

The principalU(1) bundles are simplest and fundamental examples of fibre bun-
dles, often encountered in mathematics and physics. They are usually equipped
with a connection and a metric, which are in principle independent, though an
interesting situation arises when they are compatible in some natural way. This
reflects in particular on the spectral geometry ofU(1) bundles, which in terms of
Laplace operator has been studied in [8] whereas the analysis of Dirac operator
was presented in [1, 2]. In this note we shall extend part of the latter analysis to the
analogue of principalU(1) bundles in noncommutative geometry, encoding their
geometric aspects in terms of spectral triples [5, 6].
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2 Spin Geometry of U(1)-bundles

We suppose thatM is an + 1 dimensional (n + 1 odd) compact manifold which
is the total space ofU(1)-principal bundle over then-dimensional (n even) base
spaceN = M/U(1). Moreover assumeM is equipped with a Riemannian metric
g̃ and theU(1) action (free and transitive on fibres) is isometric. The basespace
N carries a unique metricg such that the projectionπ : (M, g̃)−→(N, g) is a
Riemannian submersion.
We can and shall use a suitable local orthonormal frame (basis) of the tangent space
TM , e = (e0, e1, . . . , en), such thate is U(1) invariant ande0 is the (normalized)
Killing vector fieldK associated to theU(1)-action. For simplicity we assume that
the fibres are of constant length2πℓ.
There exists a unique principal connection 1-formω : TM → R ≈ u(1), such that
kerω is orthogonal to the fibres for allm ∈ M with respect tõg. Obviously it is
given byω = e0/ℓ, where(e0, e1, . . . , en) is the dual frame toe. Conversely, if
we are given a principal connection on the principalU(1) bundle and a metric on
the base spaceN then there exists a uniqueU(1)-invariant metric onM , such that
the horizontal vectors are orthogonal to the fundamental (Killing) vector fieldK
of lengthℓ.
Assume nowM is spin and letΣM be its spinor bundle (which is hermitian, rank
2

n
2 vector bundle). TheU(1) action either lifts to the spin structure and then to an

action
κ : U(1)× ΣM → ΣM,

or to a projective action (up to a sign), i.e. to the action of anon-trivial double
cover ofU(1), which happens to be stillU(1) as a group.
Assuming the former case, we have aprojectablespin structure onM . As ex-
plained in [2] this induces a spin structure onN . Conversely, any spin structure on
N canonically induces a projectable spin structure onM via a pull-back construc-
tion.
We recall that the Dirac operator̃D on M can be constructed as follows. Let
γj , j = 0, 1, . . . , n, be the antihermitian matrices inM(2

n
2 ,C), which satisfy the

relations
γjγk + γkγj = −2δjk. (2.1)

Then Dirac operator̃D acting on sections ofΣM can be explicitly written as

D̃ =

n
∑

i=0

γi∂ei +
1

4

n
∑

i,j,k=0

Γ̃k
ijγiγjγk,
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whereΓ̃k
ij are Christoffel symbols (in the orthonormal basise) of the Levi-Civita

connection onM . In particular

− Γ̃0
ij = Γ̃j

i0 = Γ̃j
0i =

ℓ

2
dω(ei, ej),

Γ̃0
i0 = Γ̃0

0i = Γ̃i
00 = Γ̃0

00 = 0.
(2.2)

Since the metric onM is completely characterized by the connection 1-formω, the
lengthℓ of the fibres and the metricg on N , the Dirac operator̃D on M can be
expressed in terms ofω, andg. Conversely, the metric onN , the connectionω and
the length of the fibres can be recovered fromD̃.
Following this line, Ammann and Bär [2] achieved to present the Dirac operator̃D
as a sum of two first order differential operators onL2(ΣM) and a zero order term
(endomorphism of the spinor bundle).
The first operator, called thevertical Dirac operator is

Dv :=
1

ℓ
γ0 ∂K ,

where

∂K(Ψ)(m) =
d

dt
|t=0 κ(e

−it,Ψ(m · eit))

is the Lie derivative of a spinorΨ along the U(1) Killing field. Note thatDv :=
γ0 ∂e0 , where∂e0 could be interpreted as the Dirac operator associated to thetypical
fibreS1 ≃ U(1), whereasγ0 is the Clifford representation of the (normalized) one-
form e0 = ℓω.
It follows from (2.2) that the spinor covariant derivative differs from the Lie deriva-
tive in the direction ofe0:

∇e0 = ∂e0 +
ℓ

4

∑

j<k

dω(ej , ek)γjγk. (2.3)

The description of the second differential operatorDh, called ahorizontalDirac
operator, uses an orthogonal decomposition of the Hilbert space into irreducible
representations ofU(1):

L2(ΣM) =
⊕

k∈Z

Vk,

whereVk are the closures of eigenspacesVk of the Lie derivative∂e0 for the eigen-
valueik, k ∈ Z. This decomposition is preserved bỹD, since it commutes with
the (isometric)U(1)-action onM .
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Next, letL := M ×U(1) C be the complex line bundle associated to theU(1)-
bundleM → N . In [2] it is shown that there is a natural homothety of Hilbert
spaces (isomorphism if the fibres are of lengthℓ = 1)

Qk : L2(ΣN ⊗ L−k) → Vk,

which satisfies
Qk(γiΨ) = γiQk(Ψ), i = 1, . . . , n

and

∇eiQk(Ψ) = Qk(∇fiΨ) +
1

4

n
∑

j=1

(

Γ̃j
i0 − Γ̃0

ij

)

γ0γjQk(Ψ), (2.4)

wheref = (f1, f2, . . . , fn), fi := π∗(ei) is a local orthonormal frame onN .
ThenDh : L2(ΣM) → L2(ΣM) is defined as the unique closed linear operator,
such that on eachVk it is:

Dh := Qk ◦D
′
k ◦Qk

−1,

whereD′
k is the twisted (of chargek) Dirac operator onΣN ⊗ L−k acting on

sections ofΣM ⊗E by using the gamma matrices on the first factor and the tensor
product connection∇N + kω. Here,∇N is the covariant spinor derivative onN
coming from the Levi-Civita connection onN , whose Christoffel symbols with
respect to the projected framef = (f1, . . . , fn) onN are given by

Γk
ij = Γ̃k

ij ∀ i, j, k ∈ {1, . . . , n}. (2.5)

Using the above results the Dirac operatorD̃ onM can expressed as a sum

D̃ = Dv +Dh + Z,

where
Z := −(ℓ/4) γ0

∑

j<k

dω(ej , ek)γjγk.

Observe that sinceDh, γ0 andZ areU(1)-invariant, they commute with∂e0 . Since
for evenn, γ1γ2 . . . γn anticommutes with any twisted Dirac operator onN and
γ0 ∼ γ1γ2 . . . γn (up to a constant1, i,−1,−i depending onn and the representa-
tion of gamma matrices),γ0 anticommutes withDh.
Finally, let us observe that the presence of the zero-order termZ is responsible for
the torsion-free condition. In other words, omittingZ still provides a Dirac oper-
ator ofM for the linear connection, which preserves the metricg̃ but has a non-
vanishing (in general) torsion. This can be see easily by looking at the Christoffel
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symbols defined by (2.5) and by (2.2). If, in the latter formula we putΓ̃k
ij = 0

whenever one or more of the indicesi, j, k is zero, we get a linear connection,
which is still compatible with the metric but the components

T 0
ij = e0(∇eiej −∇ejei − [ei, ej ]) = de0(ei, ej) = ℓ dω(ei, ej) (2.6)

of the torsion tensor do not vanish (in general).

3 NoncommutativeU(1) principal bundles

We turn now to the noncommutative picture, where the conceptof principal bundles
is given by the Hopf-Galois theory. Let us shortly recall thebasic definitions, for
details and examples see [3, 4, 7, 10].

Definition 3.1. Let H be a unital Hopf algebra andA be a rightH-comodule
algebra. We denote byB the subalgebra of invariant elements ofA. We say the
B →֒ A is a Hopf-Galois extension iff the canonical mapχ :

A⊗B A ∋ a′ ⊗ a 7→ χ(a′ ⊗ a) = a′a(0) ⊗ a(1) ∈ A⊗H, (3.1)

is an isomorphism.

In the purely algebraic settings the connections are definedas right-colinear maps
from the Hopf algebraH to the first order universal differential calculusΩ1

u(A)
overA.

Definition 3.2. We say that a rightH-colinear mapω : H → Ω1
u(A) is a strong

universal connection if the following conditions hold:

ω(1) = 0,

∆R ◦ ω = (ω ⊗ id) ◦ AdR,

du(a)− a(0)ω(a(1)) ∈
(

Ω1
u(B)

)

A, ∀a ∈ A,

(m⊗ id) ◦ (id⊗∆R) ◦ ω = 1⊗ (id−ε).

(3.2)

where we use the natural Sweedler notation for the right coaction of H onA:

∆R(a) = a(0) ⊗ a(1) ∈ A⊗H.

It is possible to extend this definition of connections for nonuniversal differential
calculi, however only after requiring certain compatibility conditions between the
differential calculus onA and a given calculus over the Hopf algebraH. Choosing
a subbimoduleN ⊂ A⊗A we have an associated first order differential calculus
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overA. If the canonical mapχ mapsN to A ⊗ Q, whereQ ⊂ ker ε ⊂ H is an
Ad-invariant vector space then it is possible to use a calculusoverH determined
by Q using the Woronowicz construction of bicovariant calculi [13]. For details
see [3, 10, 11].
As in the case of spectral geometry it will be more convenientto use action of the
U(1) group rather then the coaction of the algebra of functions overU(1). Since
as the algebra of functions onU(1) we consider the space of polynomials, and
effectively we work with homogeneous elementsa ∈ A(k) ⊂ A of a fixed degree
k, which are defined as follows:

a ∈ A(k) ⇔ ∆(a) = a⊗ zk,

we can easily reformulate all conditions above using the language ofU(1) action,
where we have:

a ∈ A(k) ⇔ eiφ ⊲ a = eikφa.

Definition 3.3. For aU(1) Hopf-Galois extensionB →֒ A we say thatω : Z →
Ω1
u(A) is a stronguniversal connection iff:

ω(0) = 0,

g ⊲ ω = ω, ∀g ∈ U(1),

du(a)− aω(k) ∈
(

Ω1(B)
)

A, ∀a ∈ A(k),

m ◦ (id⊗πn)ω(k) = δkn − δn0.

(3.3)

Her πn projects an element on the part of a fixed homogeneity degreen. We
shall see in section 5 that the third condition (strongness)will play a significant
role in the extension of Dirac operator, we shall also rewrite suitably the last one
(fundamental vertical field condition).

4 Spectral triples overU(1) bundles

We assume that there exists a real spectral triple overA (for details on real spectral
triples, notation and basic properties we refer to the textbook [9]), which isU(1)
equivariant, that is the action ofU(1) extends to the Hilbert space and the repre-
sentation, the Dirac operator and the reality structure areU(1) equivariant. We
denote byπ the representation ofA onH, D is the Dirac operator andJ the reality
structure.
Let δ be the operator onH which generates the action ofU(1) on the Hilbert space.
TheU(1) equivariance of the reality structure andD means that:

Jδ = −δJ, Dδ = δD, (4.1)
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whereas the equivariance of the representation is:

[δ, π(a)] = π(δ(a)), ∀a ∈ A,

whereδ(a) is the derivation ofa arising from theU(1) action.
For simplicity, we take the dimension of the spectral tripleoverA to be odd, then
the dimension of spectral triple overB is even (in particular, the spectral triple
overB has aZ2 grading). We shall require that the signs of algebraic relations
betweenJ,D and the chirality (in the even case) are not changed when we pass to
the quotient. For concreteness we take the top dimension3 and the dimension of
the quotient2. Our example will be also three-dimensional. Therefore we have:

DJ = JD, J2 = −1.

4.1 Projectable spectral triples

We define the spaceHk ⊂ H, k ∈ Z, to be a subspace of vectors homogeneous of
degreek in H that is, they are eigenvectors ofδ of eigenvaluek. Let us denote by
Pk the projectionH → Hk. The relation (4.1) means that

JHk = H−k.

In particular the subspaceH0 is J invariant. From the equivariance ofD we see
that eachHk is preserved by the action ofD:

DHk ⊂ Hk.

We start by assuming an additional structure on the spectraltriple.

Definition 4.1. We say that theU(1) equivariant spectral triple(A,D, J,H, δ) is
projectable along the fibres if there exists an operatorΓ, aZ2 grading of the Hilbert
spaceH, which satisfies the following conditions:

∀a ∈ A : [Γ, π(a)] = 0,

ΓJ = −JΓ, Γδ = δΓ, Γ∗ = −Γ,
(4.2)

and thehorizontal Dirac operator:

Dh =
1

2
Γ[D,Γ],

generates the same bimodule of one-forms overB asD:

[Dh, b] = [D, b], ∀b ∈ B. (4.3)
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The first two lines of conditions will assure that we can useΓ to project the spectral
triple to obtain an even triple overB, the second condition is necessary so that the
differential calculus overB does not depend on the choice of projection. Note, that
the signs in the definition are adjusted to the case of dimension 3 bundle.
Since[Dh, δ] = 0 we see thatDh preserves the subspacesHk. We shall denote by
Dk its restriction to each subspaceHk. Similarly, by denoting byγk the restriction
of Γ to Hk andjk the restriction ofJ (as a mapHk → H−k).
In what follows, we shall make one additional assumption, which in the classical
case amounts to the situation, when we assume that theU(1) fibres are of equal
length. What we propose, is a geometric characterization ofthe Dirac operator,
which closely follows the analysis of Amman and Bär [2].
LetDv denote the vertical part of the Dirac operator:

Dv =
1

ℓ
Γδ.

Definition 4.2. We say that theU(1) bundle has fibre of constant length (taken to
be2πℓ) if

Z = D −Dh −Dv

is an operator of zero order, which commutes with the elements from the commu-
tant:

[Z, Ja∗J−1] = 0, ∀a ∈ A.

Now we have:

Proposition 4.3. The data(B,H0,D0, γ0, j0) gives a real spectral triple of KR-
dimension2 overB. For k 6= 0, (B,Hk,Dk, γk) are twisted spectral triples over
B, which are pairwise real:

γkDk = −Dkγk jkDk = −D−kjk,

jkγk = −γ−kjk.
(4.4)

Proof. ClearlyDh is a selfadjoint operator, which has the same commutation rela-
tion with J asD 1. Therefore, relations (4.4) follow.

As for the spectral properties, it is not difficult to observethat each of theDk

operators has compact resolvent. Indeed, considerD − Z, which is a bounded
perturbation ofD. Since, it is againU(1) invariant, we can restrict it toHk. Its
eigenvalues are:

±
√

k2/ℓ2 + λ2
(k)

1In the case of dimension other than3 it is possible to adjust the signs in the definition ofΓ and
jk so that the resultingKR-dimension of the projected spectral triple shall be correct.
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whereλ(k) are eigenvalues ofDk. Hence spectral properties ofDk are the same as
properties ofD restricted toHk.
Therefore spectral dimension of eachDk can be at most the same as that ofD,
which does not imply that it is exactly2 as we know in the classical case.
Actually, taking a pairHk ⊕H−k yields again a full, real spectral triple, which is,
however, reducible.

Remark 1. In the classical situation, when one is able to consider the fibres over
points of the base space, there is no problem to define the length of a fibre and,
consequently, to restrict the considerations to the case when all fibres are of equal
length. In the general noncommutative setup, this is no longer possible. Instead, we
have proposed in the definition 4.2 above how to replace and extend this property
in a way which links the length of fibres to the form of the Diracoperator. There
may be, however, some other alternatives. We mention here just one other possible
definition, which will be illustrated later on the example ofthe noncommutative
tori.
We can say that theU(1) bundleA with the equivariant spectral triple and the
DiracD has fibres of lengthℓ, if the restriction ofD to aU(1) invariant subspace
of H is an operator of spectral dimension(n− 1) and for any elementb ∈ B:

∫

− b|D|−n = ℓ

∫

− b|D0|
−n+1,

whereD0 is the restriction ofD to the invariant Hilbert subspaceH0.
Although in the classical case it is obvious that this definition implies that the fibres
are indeed of equal length, in the noncommutative setup it isfar from being clear.
The advantage of this definition, is that it is not sensitive to the bounded perturba-
tions of the Dirac operator, which do not commute with the algebra elements.

4.2 Twisted spectral triples

In this subsection we shall discuss how to twist real spectral triples by a left-
module.
Let M be a finitely generated projective left module overB and let the data:
(B,H0, π,D0, γ0, j0) define a real spectral triple overB of KR-dimension2.

D0j0 = j0D0, j20 = −1, j0γ0 = −γ0j0.

We assume thatM has a structure of pre-Hilbert module, withB-valued pairing.
First, we construct the linear spaceVM = H0⊗BM , using the real structure of the
spectral triple for the rightB-module structure ofH0:

hb = j0b
∗j−1

0 h.
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We equipVM with the natural scalar product:

(v1 ⊗B m1, v2 ⊗B m2) = (v1, v2(m2,m1)) ,

so that the completionHk of VM is a Hilbert space.

Lemma 4.4. VM = H0 ⊗B M carries a canonical left representationπM of B
given by

πM (b) (h ⊗B m) = π(b)h ⊗B m.

Our aim is to construct a twisted Dirac operator overHk using connections over
M . Let∇ be any connection onM valued inΩ1

D0
(B).

∇ : M → Ω1
D(B)⊗B M.

Lemma 4.5. The following defines on a dense domainVM in Hk an operatorDM :

DM (h⊗B m) = (D0h⊗B m) + h∇(m),

where the last product is defined in the following way:

h(ω ⊗B m) = (j0ω
∗j−1

0 )h⊗B m.

Proof. We need to show that the definition is well posed. Clearly, it is well defined
for the simple tensor producth⊗m, therefore it remains to check thatDM vanishes
on the ideal generated byhb⊗m− h⊗ bm for anyh, b,m.
We use here extensively the rightB module structure onH0 set by the reality
operatorj0 and the order one condition:

∀b, b′ ∈ B :
[

[D0, b], j0(b
′)∗j−1

0

]

= 0.

The latter is needed to show that the action ofDM on H0 ⊗B M is well-defined
and to calculate the action of a one-form

DM (hb⊗m− h⊗ bm) =D0(hb)⊗m+ hb⊗∇(m)

−D0(h)⊗ bm− h⊗∇(bm)

=
(

[D0, j0b
∗j−1

0 ]h+ (D0h)b
)

⊗m+ hb⊗∇(m)

−D0(h)⊗ bm− h([D0, b]) ⊗m− h⊗ b∇(m)

=(j0[D0, b]
∗j−1

0 )h⊗m− h([D0, b])⊗m = 0.

Similarly one proofs that for anyb ∈ B the commutator is bounded:

[DM , b]h⊗m = D0(bh)⊗m+ bh⊗∇(m)− bD0(h) ⊗m− bh⊗∇(m)

= [D0, b]h⊗m.

Notice that ifT is a bounded operator onH0, which extends to an operator onHk

then the extension is also bounded.
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5 Connections

In order to define a strongU(1) connection over the bundle using the differential
calculus given by the Dirac operator, we need to impose certain conditions on the
Dirac operator itself.

Definition 5.1. We say that the first order differential calculus overA given by the
Dirac operatorD is compatible with the standard de Rham calculus overU(1) if
the following holds:

∀pi, qi ∈ A :
∑

i

pi[D, qi] = 0 ⇒
∑

i

piδ(qi) = 0. (5.1)

We have:

Lemma 5.2. The image by the canonical map of the ideal defining the first order
differential calculus is inA⊗ (ker ε)2.

Proof. Indeed, assume that
∑

i pi ⊗ qi ∈ N , where

N ⊂ kerm ⊂ A⊗A,

is the subbimodule defined by the relation
∑

i pi[D, qi] = 0.
Let us decomposeqi as a sum of homogeneous elements:

qi =
∑

n

q
(n)
i .

Then, using the identity (5.1) we have:

∑

i,n

piq
(n)
i = 0,

∑

i,n

npiq
(n)
i = 0.

which we can solve forpiq
(0)
i andpiq

(1)
i :

∑

i

piq
(1)
i = −

∑

i,n 6=1

npiq
(n)
i ,

∑

i

piq
(0)
i = −

∑

i,n 6=0

piq
(n)
i =

∑

i,n 6=0,1

(n− 1)piq
(n)
i .

Applying canonical mapχ to
∑

pi ⊗ qi we have:
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χ(
∑

i

pi ⊗ qi) =
∑

i,n

piq
(n)
i ⊗ zn

=
∑

i,n 6=0,1

piq
(n)
i ⊗ (zn − 1− n(z − 1)).

Since the second factor on the right-hand side can be writtenas(z − 1)(zn−1 +
· · · + z + 1 − n), it is in (ker ε)2, which means that the differential calculus over
A is compatible with the standard de Rham calculus overU(1).

Now, we are ready to define a strong connection for a principalU(1) bundle with
a differential calculus set by the Dirac operator.

Definition 5.3. We say thatω ∈ Ω1
D(A) is a strong connection for theU(1) bundle

B →֒ A if the following conditions hold:

[δ, ω] = 0, (U(1) invariance ofω)

if ω =
∑

i

pi[D, qi] then
∑

i

piδ(qi) = 1, (vertical field condition),

∀a ∈ A : [D, a]− δ(a)ω ∈ Ω1
D(B)A, (strongness)

Observe that the second condition (which in the classical case corresponds to the
value ofω on fundamental vertical vector field) makes sense due to assumption
(5.1).

5.1 Lifting the Dirac operator through connection

LetA(k) be the left module of elements inA, which are homogeneous of degreek
with respect to the action ofU(1).

Proposition 5.4. The map:

∇ω : A(k) ∋ a 7→ [D, a]− naω ∈ Ω1
D(B)⊗B A(k),

defines aΩ1
D(B)-valued connection (covariant derivative) overA(k).

Indeed, observe first that by the strongness condition and the fact thatω is U(1)-
invariant the element∇ω(a) is indeed inΩ1

D(B)⊗B A(k). Since we have assumed
that the differential calculus overB are isomorphic forD andD0, we easily see
that∇ω indeed satisfies the condition required for a connection (connection should
beΩ1

D0
(B) - valued and we used the commutator withD in the definition).
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Using the construction from the previous section we can now construct Dirac op-
erators, which arise from the connection∇ω for H0 ⊗ A(k) for anyk. Since we
have

A =
⊕

k

A(k),

andH · A(k) is a dense linear subset ofHk, we can defineDω on a dense linear
subspace ofH an operator associated to the connectionω:

Definition 5.5. For eachk ∈ Zwe use the construction of the twisted spectral triple
to define the Dirac operatorD(k)

ω on a dense subset ofHk identified asH0⊗BA
(k).

TakingDω to be the closure of the operator given by the collection ofD
(k)
ω , we

obtain a Dirac operatorDω onH, twisted by the connectionω.

Note that from the construction it is not entirely obvious that the Dirac operator
Dω has bounded commutators with the elements from the algebraA. We have:

Proposition 5.6. The twisted Dirac operatorDω is selfadjoint ifω is an antiselfad-
joint one form and has bounded commutators with all elementsofA.

Proof. To see it let us calculateDω on an elementhp, with h ∈ H0 andp ∈ A(n):

Dω(hp) =(D0h)p + h[D, p]− nhpω

=Jp∗J−1D0h+ [D,Jp∗J−1]h− Jω∗J−1nhp

=D(hp) + ((D0 −D)h) p− Jω∗J−1δ(hp)

=
(

D − Jω∗J−1δ − Z
)

(hp),

where we have used the decomposition ofD into the horizontal part, which re-
stricted toH0 is D0, the vertical part (which vanishes onH0) and the bounded
perturbationZ. If the bounded perturbation commutes with the multiplication by
the elements of the commutant then we have that(Zh)p = Z(hp) and we obtain
the formula above.
Now, calculating the commutator with an arbitrary elementa ∈ A is an easy task.
D has bounded commutators and sinceω was a one-form, from the order one
condition the commutator of the second term witha is Jω∗J−1δ(a) and hence it
is bounded. The third term, as a commutator of two bounded elements remains
bounded. Hence,[Dω, a] is bounded for anya.
Next, observe that sinceD andZ are selfadjoint it suffices to haveJω∗J−1δ to be
selfadjoint. But sinceδ commutes withω and is antiselfadjoint, so must beω.

It is interesting to see whether the operator we obtain is related to the Dirac we
started with. We propose:
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Definition 5.7. We say that the connectionω is compatible with the Dirac operator
D if both Dω andDh coincide on a dense subset ofH.

It is not difficult to see building on the results of [2] that inthe classical case
the Dirac operator, which gives the metric compatible with agiven connection is
indeed compatible with this connection in the sense of the above definition.

6 The noncommutative torus

To see how the definitions work in a noncommutative case, we study in detail
the case of the3-dimensional noncommutative torus as aU(1) bundle over the
2-dimensional noncommutative torus.
We choose the generators of theT

3
θ to beUi, i = 1, 2, 3, with the relationsUiUj =

e2πθijUjUj , whereθij is an antisymmetric real matrix. We assume that neither
of its entries is rational. An element of the algebra of smooth functions on the
noncommutative torus is of the form:

a =
∑

k,l,m∈Z

αklmUk
1U

l
2U

m
3 ,

whereαk,l,m is a rapidly decreasing sequence. The canonical trace on thealgebra
is:

τ(a) = α000.

We start with the canonical Hilbert spaceH0 of the GNS construction with respect
to the trace onT3

θ, andπ the associated faithful representation. Withek,l,m the
orthonormal basis ofH0 we have:

U1ek,l,m = e(k+1),l,m,

U2ek,l,m = e2πkθ21ek,(l+1),m,

U3ek,l,m = e2π(kθ31+lθ32)ek,l,(m+1),

wherek, l,m are inZ or Z + 1
2 depending on the choice of the spin structure.

The projectable spin structures must have the trivial spin structure on the fibre, so
m ∈ Z, which we assume from now on.
We double the Hilbert space takingH = H0⊗C

2, with the diagonal representation
of the algebra. The canonical equivariant spectral triple over T3

θ is given by the
Dirac operatorD and the reality structureJ of the form:

D =

3
∑

j=1

iσjδj, J = iσ2 ◦ J0, (6.1)
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whereσi are Pauli matrices [9].J0 here is the canonical Tomita-Takesaki antilinear
map on the Hilbert spaceH0.

J0ek,l,m = e−k,−l,−m,

andδi are the derivations acting diagonally on the basis:

δ1ek,l,m = kek,l,m, δ2ek,l,m = lek,l,m, δ3ek,l,m = mek,l,m.

Notice thatJD = DJ as required in the spectral triple of dimension3.
We choose the followingU(1) action on the torusT3

θ, defined through the action
on the generators:

eiφ ⊲ U1 = U1, eiφ ⊲ U2 = U2, eiφ ⊲ U3 = eiφU3, (6.2)

and the induced diagonal action on the Hilbert space:

eiφ ⊲ ek,l,m = eimφek,l,m,

TheU(1) invariant subalgebra is generated byU1 andU2, and can be identified
with the 2-dimensional noncommutative torusT2

θ, where the indices ofθij run
over1, 2. It is straightforward to check thatT3

θ is a Hopf-Galois extension ofT2
θ.

The chosen Dirac operator is one which is fully equivariant,that is invariant under
threeU(1) symmetries. This is not necessary in our case, as we need onlyone
U(1) invariance, hence we shall allow for the fluctuations ofD.

Remark 2. The space of possible perturbations of the Dirac operator ofthe gauge
connection type (by one-forms) is given by:

DA = D + σiAi + J(σiAi)J
−1,

whereAi ∈ T
3
θ, i = 1, 2, 3, satisfy:Ai = A∗

i .

If we further require that the Dirac operatorDA is U(1)-invariant then we must
restrictAi to belong to the invariant subalgebraT2

θ.
Before we proceed, observe that any one-form inΩ1

DA
is (trivially) a one-form

in Ω1
D. This provides us with a more convenient description of the bimodule of

one-forms.
We begin with:

Lemma 6.1. The differential calculus generated byDA satisfies the compatibility
condition from the definition 5.1 ifA3 = 0.
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Proof. Takepi, qi such that
∑

i pi[D, qi] = 0. Sinceσi are linearly independent,
we have forσ3:

∑

i

pi (δ3(qi) + [A3, qi]) .

If A3 = 0 then the condition follows.

We shall see that this is in agreement with the existence ofΓ.

Lemma 6.2. If A3 = 0 then there exists a unique operatorΓ, which satisfies the
conditions of the definition 4.1, making the spectral geometry overT3

θ projectable
with constant length fibres:

Γ = σ3.

Proof. It is easy to see that indeedΓ = σ3 does satisfy all conditions. Conversely,
any operatorΓ, which commutes with the algebra, isU(1)-invariant, anticommutes
with J and is aZ2 grading must be a linear combination of Pauli matrices. Then,
the requirement 4.1 thatD has equal length fibres fixesΓ to beσ3.

Lemma 6.3. Note that in the case of the chosen general Dirac operator withA3 =
0, Γ = σ3 satisfies the following orthogonality condition:

∫

− Γρ|DA|
−3 = 0, ∀ρ ∈ Ω1

D(T
2
θ). (6.3)

In fact,Γ = σ3 is a unique (up to sign)U(1)-invariant Z2-grading of the Hilbert
space, which commutes with the algebra and its commutant andsatisfies orthogo-
nality condition (6.3).

Proof. Take an arbitrary one formΓ =
∑

σiρi. From the orthogonality require-
ment (6.3), taking asη = bσ1 andbσ2 respectively, forb ∈ T

2
θ we obtain:

∫

− ρ1b|D|−3 =

∫

− ρ2b|D|−3 = 0,

as in the noncommutative integral we can useD instead ofDA. As this holds for
any b thenρ1 = ρ2 = 0. Therefore, the only nonvanishing coefficient isρ3 and
sinceρ23 = 1 we recoverΓ = σ3 (up to the sign, of course).

Furthermore, we have:

Lemma 6.4. If A3 = 0 andΓ = σ3, then the projection ofD ontoT2
θ gives a real

spectral triple over the two-dimensional torus and the differential calculi overT2
θ

have the property (4.3).
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Proof. It is easy to recognize the general (perturbed) Dirac operators over the two-
torus. To see that for everyb ∈ T

2
θ we have:

[D, b] = [Dh, b],

it is sufficient to see thatδ(b) = 0 and sinceA3 = 0, only the horizontal part has
non-trivial commutators.

Note that, so far, there is a remarkable consistency in all the conditions that we are
imposing on the Dirac operator and the spectral geometry of the noncommutative
three-torus, viewed as aU(1) bundle over the noncommutative two-torus. As a last
note, observe:

Remark 3. The Dirac operatorDA, with A3 = 0, satisfies the condition of equal
length fibres proposed in the remark 1.

Indeed, using the results of the explicit calculations of the spectral action, note
that the noncommutative integral of the perturbed Dirac operator |DA|

−3 does not
depend onA. Hence, we can work withD alone and its restriction toH0. Then,
the proof is reduced to a simple exercise. In fact, an easy check suggests that we
could have taken remark 1 as a defining condition forΓ (at least in that case).

6.1 Compatible strong connections overT3
θ

Next, we turn to the space of possible connectionsω. For simplicity, we consider
the usual unperturbed Dirac operator (6.1) overT

3
θ.

Here is the full characterization of the possible connections, according to the defi-
nition (5.3):

Lemma 6.5. A U(1) connection overT3
θ with theU(1) action defined as in (6.2)

is a one-form:
ω = σ3 + σ2ω2 + σ1ω1, (6.4)

whereω1, ω2 ∈ T
2
θ are U(1) invariant elements of the algebraT3

θ. Every such
connection is strong.

Proof. Any U(1)-invariant one-form could be written as
∑

i σ
iωi, where allωi

are fromT
2
θ. Sinceσ3 = U−1

3 [D,U3], from the condition related toδ we obtain
ω3 = 1.

Finally, let us calculate the Dirac operators associated toan arbitrary antiselfadjoint
connectionω on the noncommutative three-torus,ωi = (ωi)∗.
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Lemma 6.6. For any antiselfadjoint connectionω the associated Dirac operator
Dω has the form:

Dω = D − (σ2Jω2J
−1 + σ1Jω1J

−1)δ3. (6.5)

The proof follows straight from direct calculation based onthe proof of proposition
5.6. We have an immediate corollary:

Corollary 6.7. The only connection, compatible with the fully (U(1)3) equivariant
Dirac operator (6.1) on the noncommutative three-torusT

3
θ is: ω = σ3.

Finally, observe that the new family of Dirac operators gives a class of new, spectral
geometries over the noncommutative torus. Although they are not real, asDω is
not compatible with the real structure, we needed areal spectral tripleas a a back-
ground geometry providing us with necessary tools (in particular, the differential
calculus).
The properties of the new class of Dirac operators are yet to be investigated, how-
ever we expect that they will correspond to some locally non-flat geometries.

7 Conclusions

We have attempted to reconstruct the compatibility conditions between the met-
ric geometry (as given by the Dirac operator) and connections (as defined in the
algebraic setup for the Hopf-Galois extensions) on noncommutativeU(1) bundles.
Although this project has still to be further developed, we have encountered several
new and interesting phenomena. First of all, we observe thatthe existence of real
spectral triples is necessary to provide a kind of background geometry. Further-
more, there are many compatibility conditions, which are necessary to impose on
the spectral triple, apart from the simple requirement ofU(1)-equivariance. We
have demonstrated that in the case, where all assumptions are met it is possible
to consistently extend the algebraic definition of strong connections to the case of
differential calculi given by Dirac operators.
The requirement of compatibility condition between the connection and the metric
(given implicitly by the Dirac operator) has led us to the discovery of a new family
of Dirac operators. This indicates that these are not objects introducedad hocbut
have a deeper geometrical meaning. We postpone the study of their properties to
future work.
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[7] L.Dąbrowski, H.Grosse, P.M.Hajac,Strong connections and Chern-Connes
pairing in the Hopf-Galois theory, Communications in Mathematical Physics,
2001, vol.220, 301-331

[8] P.Gilkey, J.Leahy, J.H. Park,The spectral geometry of the Hopf fibration,
Journal Physics A29 (1996), 5645–5656

[9] J.M.Gracia-Bondía, J.C.Várilly, H.Figueroa,Elements of Noncommutative
Geometry, Birkhäuser Adv. Texts, Birkhäuser, Boston, MA, 2001.

[10] P.M.Hajac,Strong connections on quantum principal bundles., Comm. Math.
Phys. Volume 182, Number 3 (1996), 579-617

[11] P.M.Hajac,A Note on First Order Differential Calculus on Quantum Princi-
pal Bundles., Czechoslovak J. Phys., 1997, vol.47, 1139-1144

[12] P.Podlés,Quantum Spheres, Lett. Math. Phys. 14 (1987) 521–531.

[13] S.L.Woronowicz,TwistedSU(2) group. An example of a noncommutative
differential calculus, Publ. RIMS, Kyoto University, 23 (1987) 117–181.

19


	1 Introduction
	2 Spin Geometry of U(1)-bundles
	3 Noncommutative U(1) principal bundles
	4 Spectral triples over U(1) bundles
	4.1 Projectable spectral triples
	4.2 Twisted spectral triples

	5 Connections
	5.1 Lifting the Dirac operator through connection

	6 The noncommutative torus
	6.1 Compatible strong connections over T3

	7 Conclusions

