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Abstract

We study the spectral triples over the total space of noncetative prin-
cipal U(1) bundles. Basing on the classical situation and the absttact
gebraic approach we propose a definition of connections ampatibility
between the connection and the Dirac operator. We analydetéils the ex-
ample of the noncommutative three-torus viewed &5 B bundle over the
noncommutative two-torus and find all connections compatibth an ad-
missible Dirac operator. Conversely, we find a family of nema operators
on the noncommutative tori, which arise from the base-spéiGe operator
and a suitable connection.

1 Introduction

arxXiv:1012.3055v1 [math-ph] 14 Dec 2010

The principalU (1) bundles are simplest and fundamental examples of fibre bun-
dles, often encountered in mathematics and physics. Theysrally equipped
with a connection and a metric, which are in principle indegent, though an
interesting situation arises when they are compatible mesoatural way. This
reflects in particular on the spectral geometryUdfi) bundles, which in terms of
Laplace operator has been studiedlin [8] whereas the asalffirac operator
was presented in[L] 2]. In this note we shall extend partefdtter analysis to the
analogue of principal/ (1) bundles in noncommutative geometry, encoding their
geometric aspects in terms of spectral triples [5, 6].


http://arxiv.org/abs/1012.3055v1

2 Spin Geometry of U(1)-bundles

We suppose that/ is an + 1 dimensional ¢ + 1 odd) compact manifold which
is the total space df/ (1)-principal bundle over the-dimensional £ even) base
spaceN = M/U(1). Moreover assume@/ is equipped with a Riemannian metric
g and theU (1) action (free and transitive on fibres) is isometric. The bssce
N carries a unique metrig such that the projectiom : (M,§)— (N, g) is a
Riemannian submersion.
We can and shall use a suitable local orthonormal framegpakihe tangent space
TM, e = (e,eq,-..,e,), such that is U(1) invariant ance is the (normalized)
Killing vector field K associated to th& (1)-action. For simplicity we assume that
the fibres are of constant leng2fi /.
There exists a unique principal connection 1-fasm7' M — R ~ u(1), such that
kerw is orthogonal to the fibres for ath € M with respect tq;. Obviously it is
given byw = €%/¢, where(e®, e, ... e") is the dual frame te. Conversely, if
we are given a principal connection on the principdll) bundle and a metric on
the base spac¥ then there exists a uniqué(1)-invariant metric onV/, such that
the horizontal vectors are orthogonal to the fundamentdlirflf) vector field K
of length/.
Assume now)V! is spin and leB M be its spinor bundle (which is hermitian, rank
272 vector bundle). Thé/ (1) action either lifts to the spin structure and then to an
action

k:U(l)x XM — XM,

or to a projective action (up to a sign), i.e. to the action efoa-trivial double
cover ofU (1), which happens to be stilf (1) as a group.
Assuming the former case, we havepmjectablespin structure on\/. As ex-
plained in [2] this induces a spin structure &h Conversely, any spin structure on
N canonically induces a projectable spin structuré\éia a pull-back construc-
tion.
We recall that the Dirac operatdp on M can be constructed as follows. Let
v, § = 0,1,...,n, be the antihermitian matrices M(Q%,C), which satisfy the
relations

Yivk + VY = — 20k (2.1)

Then Dirac operatoD acting on sections df M can be explicitly written as

n n
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D=3 e, +7 > Dhwym,
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whereffj are Christoffel symbols (in the orthonormal basjof the Levi-Civita
connection onV/. In particular

- - . 12
I =T =T} = §dw(ei>€j)v

[ = I =Ty = LGy = 0.

2.2)

Since the metric o/ is completely characterized by the connection 1-farnthe
length ¢ of the fibres and the metri¢ on IV, the Dirac operato) on M can be
expressed in terms af, andg. Conversely, the metric al¥, the connectiom and
the length of the fibres can be recovered frbm

Following this line, Ammann and B&r][2] achieved to preséetDirac operatoD
as a sum of two first order differential operatorsiot{>M) and a zero order term
(endomorphism of the spinor bundle).

The first operator, called theertical Dirac operator is

1
D, = 770 Ok,

where J
Ok (V)(m) = Elt:o k(e W(m-e™))

is the Lie derivative of a spino¥ along the U(1) Killing field. Note thaD,, :=

70 Oe,, Whered,,, could be interpreted as the Dirac operator associated tgjical
fibre S' ~ U(1), whereasy is the Clifford representation of the (normalized) one-
form e? = fw.

It follows from (2.2) that the spinor covariant derivativiéfers from the Lie deriva-
tive in the direction okg:

1
Veo = Oey + 1 2 dw(ej, ex) VY- (2.3)
j

The description of the second differential operafyy, called ahorizontal Dirac
operator, uses an orthogonal decomposition of the Hilmate into irreducible
representations df (1):

LX(sM) = P i,

keZ

whereV}, are the closures of eigenspadgsof the Lie derivatived,,, for the eigen-
valueik, k € Z. This decomposition is preserved B, since it commutes with
the (isometric)U(1)-action onM.



Next, let L := M xy; ;) C be the complex line bundle associated to the )-
bundleM — N. In [2] it is shown that there is a natural homothety of Hilber
spaces (isomorphism if the fibres are of length 1)

Qr:L*(EN®@ L% =V,

which satisfies

and
I/ =
Ve Qu(®) = Qu(V0) + 7 > (T = T5) 107 Qu(0),  (24)
j=1
wheref = (f1, fa,. .., fn), fi := m«(e;) is alocal orthonormal frame oN.

ThenDy, : L?2(XM) — L*(XM) is defined as the unique closed linear operator,
such that on each, it is:

Dy, := QroDjoQi !,

where D is the twisted (of chargé) Dirac operator orEN ® L~F acting on
sections o2 M ® E by using the gamma matrices on the first factor and the tensor
product connectiolV y + kw. Here,V  is the covariant spinor derivative ok
coming from the Levi-Civita connection o, whose Christoffel symbols with
respect to the projected franfe= (f1,..., f,) on N are given by

rh=TF  Vijke{l... n} (2.5)

Using the above results the Dirac operafbpn M can expressed as a sum

D=D,+D,+ 2,

where

Z = —(t/N)v0 Y _ dw(ej, er)vv-

j<k

Observe that sinc®;, 7o andZ arelU (1)-invariant, they commute witb,,. Since
for evenn, vy, ...y, anticommutes with any twisted Dirac operator &nhand
Yo ~ Y172 - - - Y (Up tO @ constant, i, —1, —i depending om and the representa-
tion of gamma matrices)y, anticommutes withDy,.
Finally, let us observe that the presence of the zero-oettar ¥ is responsible for
the torsion-free condition. In other words, omittiagstill provides a Dirac oper-
ator of M for the linear connection, which preserves the mejrlaut has a non-
vanishing (in general) torsion. This can be see easily biifgpat the Christoffel
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symbols defined by (2.5) and by (2.2). If, in the latter forenule putffj =0
whenever one or more of the indicégj, k is zero, we get a linear connection,
which is still compatible with the metric but the components

Tioj = eO(Veiej — Ve, — lei,e;]) = deo(ei,ej) = ldw(e;, e;) (2.6)

of the torsion tensor do not vanish (in general).

3 NoncommutativeU (1) principal bundles

We turn now to the noncommutative picture, where the conaigmincipal bundles
is given by the Hopf-Galois theory. Let us shortly recall Hasic definitions, for
details and examples see [3| 4], 7| 10].

Definition 3.1. Let H be a unital Hopf algebra and be a right H-comodule
algebra. We denote b§ the subalgebra of invariant elements.4f We say the
B — Ais a Hopf-Galois extension iff the canonical mgp

AopAsd ®ar x(d ®a)=dag@an € A® H, (3.1)
is an isomorphism.

In the purely algebraic settings the connections are defisaifjht-colinear maps
from the Hopf algebrad to the first order universal differential calculéis,(.A)
over A.

Definition 3.2. We say that a righf{-colinear mapyv : H — Q! (A) is a strong
universal connection if the following conditions hold:
w(l) =0,
Apow = (w®id) o Adpg,
du(a) — agwlan)) € (W(B)) A, Va € A,
(m®id) o (id®AR) cw =1® (id —e).

(3.2)

where we use the natural Sweedler notation for the righttamaof 4 on A:
Ar(a) = a@)y ®aq) € A® H.

It is possible to extend this definition of connections fonuaoiversal differential
calculi, however only after requiring certain compatilyilconditions between the
differential calculus o4 and a given calculus over the Hopf algelsfa Choosing

a subbimoduleV' ¢ A ® A we have an associated first order differential calculus



over A. If the canonical map maps\ to A ® Q, whereQ C kere C H is an
Ad-invariant vector space then it is possible to use a calooNes H determined
by @ using the Woronowicz construction of bicovariant calci8]. For details
see([3| 10, 11].

As in the case of spectral geometry it will be more convenientse action of the

U (1) group rather then the coaction of the algebra of functiores 6(1). Since
as the algebra of functions di(1) we consider the space of polynomials, and
effectively we work with homogeneous elemeats A*) ¢ A of a fixed degree
k, which are defined as follows:

ae AY & A(a) =a® 2,

we can easily reformulate all conditions above using thgdage ofU/ (1) action,
where we have: _ _
ae AP & g = g,

Definition 3.3. For aU (1) Hopf-Galois extensiol8 — A we say thatv : Z —
QL (A) is a stronguniversal connection iff:
w(0) =0,
grw=w, YgeU(l),
dy(a) — aw(k) € (Q'(B)) A, Vae AW,
m o (id @, )w(k) = dkn — Ono-

(3.3)

Her m,, projects an element on the part of a fixed homogeneity degre&Ve
shall see in section 5 that the third condition (strongnesi)play a significant
role in the extension of Dirac operator, we shall also rewsititably the last one
(fundamental vertical field condition).

4  Spectral triples overU (1) bundles

We assume that there exists a real spectral triple dvgor details on real spectral
triples, notation and basic properties we refer to the w#H9]), which isU (1)
equivariant, that is the action @f(1) extends to the Hilbert space and the repre-
sentation, the Dirac operator and the reality structurel&re) equivariant. We
denote byr the representation od on#, D is the Dirac operator and the reality
structure.

Let o be the operator ol which generates the action G 1) on the Hilbert space.
TheU (1) equivariance of the reality structure aldmeans that:

J§ = —6J, D& =dD, 4.1)
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whereas the equivariance of the representation is:
[0, 7(a)] = w(d(a)), Va € A,

whered(a) is the derivation of; arising from thel/ (1) action.

For simplicity, we take the dimension of the spectral tripler A to be odd, then
the dimension of spectral triple ovét is even (in particular, the spectral triple
over B has aZ, grading). We shall require that the signs of algebraic i@tat
betweenJ, D and the chirality (in the even case) are not changed when agetpa
the quotient. For concreteness we take the top dimerssiamd the dimension of
the quotien®. Our example will be also three-dimensional. Therefore aneh

DJ=JD, J*=-1.

4.1 Projectable spectral triples

We define the spacH. C H, k € Z, to be a subspace of vectors homogeneous of
degreek in H that is, they are eigenvectors &bf eigenvaluek. Let us denote by
P, the projectionf{ — Hy. The relation[(4.1) means that

JHp = H_y.

In particular the subspacg, is J invariant. From the equivariance &f we see
that eachH;, is preserved by the action @f:

DH,; C Hy.
We start by assuming an additional structure on the spediéd.

Definition 4.1. We say that thé/(1) equivariant spectral triple4, D, J, H, ) is
projectable along the fibres if there exists an opergf@Z- grading of the Hilbert
spaceH, which satisfies the following conditions:

Va € A:[I',7(a)] =0,

(4.2)
rJ=-Jr, r6=6r, r*=-T,
and thehorizontal Dirac operator
1
Dh = §F[D, F],
generates the same bimodule of one-forms &/asD:
[Dp,b] = [D,b], VbeB. (4.3)



The first two lines of conditions will assure that we can Lide project the spectral
triple to obtain an even triple ovét, the second condition is necessary so that the
differential calculus oveB does not depend on the choice of projection. Note, that
the signs in the definition are adjusted to the case of dimarmsbundle.

Since[Dy,, 6] = 0 we see thaD,, preserves the subspacks. We shall denote by
Dy, its restriction to each subspatg,. Similarly, by denoting byy, the restriction

of I to Hy, andjj the restriction of/ (as a mag, — H_).

In what follows, we shall make one additional assumptionictviin the classical
case amounts to the situation, when we assume thdf the fibres are of equal
length. What we propose, is a geometric characterizatiomeDirac operator,
which closely follows the analysis of Amman and Bér [2].

Let D, denote the vertical part of the Dirac operator:

1
D, = -T.
7 )
Definition 4.2. We say that thé/(1) bundle has fibre of constant length (taken to
be2r/l) if
Z=D—Dy—D,

is an operator of zero order, which commutes with the elesieoim the commu-
tant:
(Z,Ja*J 7Y =0, VYac€ A.

Now we have:
Proposition 4.3. The data(B, Ho, Do, 70, jo) gives a real spectral triple of KR-

dimensior2 over B. For k # 0, (B, Hy, Dy, i) are twisted spectral triples over
B, which are pairwise real:

Dy =-D kD = —D_gJk,
ﬁ; k k:’ch Jelk kJk (4.4)
JETe = —V—kJk-

Proof. Clearly D;, is a selfadjoint operator, which has the same commutatian re
tion with .J asD[I. Therefore, relations (4.4) follow. O

As for the spectral properties, it is not difficult to obsettat each of theDy
operators has compact resolvent. Indeed, conditler Z, which is a bounded
perturbation ofD. Since, it is agairU/ (1) invariant, we can restrict it t@{;. Its

eigenvalues are:
+./k2/02 + A%k)

1In the case of dimension other tharit is possible to adjust the signs in the definitionloénd
Jr So that the resultingd R-dimension of the projected spectral triple shall be cdrrec




where) ;) are eigenvalues db,.. Hence spectral properties b, are the same as
properties ofD restricted taH,.

Therefore spectral dimension of eath can be at most the same as that/af
which does not imply that it is exactBas we know in the classical case.
Actually, taking a paifH, @ H_j yields again a full, real spectral triple, which is,
however, reducible.

Remark 1. In the classical situation, when one is able to consider tirediover
points of the base space, there is no problem to define théhleriga fibre and,
consequently, to restrict the considerations to the casmah fibres are of equal
length. In the general noncommutative setup, this is nodopgssible. Instead, we
have proposed in the definitign #.2 above how to replace atahéthis property
in a way which links the length of fibres to the form of the Dikgmerator. There
may be, however, some other alternatives. We mention hstrefe other possible
definition, which will be illustrated later on the exampletbe noncommutative
tori.

We can say that thé&/(1) bundle A with the equivariant spectral triple and the
Dirac D has fibres of lengtld, if the restriction ofD to alU (1) invariant subspace
of H is an operator of spectral dimensiom— 1) and for any elemerit € B:

][ oD " = ¢ ][ bl Do,

whereD is the restriction ofD to the invariant Hilbert subspadé.

Although in the classical case it is obvious that this debnitmplies that the fibres
are indeed of equal length, in the noncommutative setugfatrisom being clear.

The advantage of this definition, is that it is not sensitwéhie bounded perturba-
tions of the Dirac operator, which do not commute with theehlg elements.

4.2 Twisted spectral triples

In this subsection we shall discuss how to twist real spkttigles by a left-
module.

Let M be a finitely generated projective left module ovérand let the data:
(B, Ho, ™, Do, 0, jo) define a real spectral triple ovBrof K R-dimensior2.

Dojo = joDo, j§=-1, jovo = —0jo-

We assume thal/ has a structure of pre-Hilbert module, wilavalued pairing.
First, we construct the linear spakg; = Ho ®p5 M, using the real structure of the
spectral triple for the righB-module structure ot:

hb = job*jo_lh.
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We equipV, with the natural scalar product:
(v1 ®p Mm1,v2 ®p ma) = (v1,v2(m2,m1)),
so that the completiof{;, of V), is a Hilbert space.

Lemma 4.4. V); = Ho ®p M carries a canonical left representatiorn,; of B
given by
mp(b) (h @ m) =m(b)h @ m.

Our aim is to construct a twisted Dirac operator o#8r using connections over
M. LetV be any connection of/ valued inQ}jO (B).

V:M— QL(B)®s M.
Lemma 4.5. The following defines on a dense domEjj in H;, an operatorD;:
Dyr(h @ m) = (Doh @ m) + hV(m),
where the last product is defined in the following way:
h(w @pm) = (jow*js )h ®5 m.

Proof. We need to show that the definition is well posed. Clearlg well defined
for the simple tensor produstxm, therefore it remains to check that,, vanishes
on the ideal generated i © m — h @ bm for anyh, b, m.

We use here extensively the right module structure ori{, set by the reality
operatorj, and the order one condition:

Vb, b, € B: [[D07b]7.70(b/)*«70_1] =0.

The latter is needed to show that the actionpf; on Hg ®p M is well-defined
and to calculate the action of a one-form

Dpr(hb @ m — h @ bm) =Dgy(hd) @ m + hb ® V(m)
— Dy(h) @ bm — h ® V(bm)
= ([Do, job"jg '1h + (Doh)b) ® m + hb @ V(m)
— Do(h) @ bm — h([Dyg, b)) @ m — h ®@ bV (m)
=(jo[Do, b]* g )h @ m — h([Dg,b]) ® m = 0.
Similarly one proofs that for any € B the commutator is bounded:
[Dar,blh @ m = Do(bh) @ m + bh ® V(m) — bDy(h) @ m — bh ® V(m)
= [Dy,blh @ m.

Notice that if " is a bounded operator ¢, which extends to an operator @ty
then the extension is also bounded. O
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5 Connections

In order to define a stron§j (1) connection over the bundle using the differential
calculus given by the Dirac operator, we need to imposeicectanditions on the
Dirac operator itself.

Definition 5.1. We say that the first order differential calculus ovegiven by the
Dirac operatorD is compatible with the standard de Rham calculus @) if
the following holds:

Vpi,gi € A pilD,a] =0=> pid(g;) = 0. (5.1)

We have:

Lemma 5.2. The image by the canonical map of the ideal defining the fidgror
differential calculus is ind ® (kere)2.

Proof. Indeed, assume that, p; ® ¢; € NV, where
NckermCc AR A,

is the subbimodule defined by the relati®r) p;[ D, ¢;] = 0.
Let us decomposg as a sum of homogeneous elements:

= a".
Then, using the identity (5.1) we have:
S opid” =0, > npig!” =o0.

(1)

)

Sopia == 3" npig”,

which we can solve fopiql(o) andp;q

i,n#l
0
Zpiqz( ) =— > pig" = > (n- Dpig".
i i;n#0 i,n£0,1

Applying canonical mag to ) p; ® ¢; we have:
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X(Zpi ® qi) = sz'qi(n) ® 2"

= Z p,-qi(") ®(z"—=1—n(z—-1)).
i,n7£0,1

Since the second factor on the right-hand side can be widtsgn — 1)(2" 1 +
-+ 42+ 1—n),itisin (kere)?, which means that the differential calculus over
A is compatible with the standard de Rham calculus &Ugr). O

Now, we are ready to define a strong connection for a prindifgd)) bundle with
a differential calculus set by the Dirac operator.

Definition 5.3. We say thatv € 1, (A) is a strong connection for tHé(1) bundle
B — A if the following conditions hold:

[0,w] =0, (U(1) invariance ofw)
if w=""pi[D,q] thend pié(g;) =1, (vertical field condition)
Va € A:[D,a) — 6(a)w € Q}(B)A, (strongness)

Observe that the second condition (which in the classicsé carresponds to the
value ofw on fundamental vertical vector field) makes sense due targssan

G.I).
5.1 Lifting the Dirac operator through connection

Let A%) be the left module of elements j#, which are homogeneous of degree
with respect to the action @f (1).

Proposition 5.4. The map:
Vo : A® 5 a1 [D,a] — naw € Q5 (B) @z AR,
defines &}, (B)-valued connection (covariant derivative) ovef*).

Indeed, observe first that by the strongness condition amdbttt thatw is U(1)-
invariant the elemeri,, (a) is indeed i}, (B) @5 A*). Since we have assumed
that the differential calculus ove?® are isomorphic forD and Dy, we easily see
thatV,, indeed satisfies the condition required for a connectionr{eotion should
be QBO(B) - valued and we used the commutator widhin the definition).
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Using the construction from the previous section we can nomsttuct Dirac op-
erators, which arise from the connecti®h, for #, @ A®*) for any k. Since we

have
A= DA
k

and? - A% is a dense linear subset #f;,, we can defineD,, on a dense linear
subspace oH an operator associated to the connection

Definition 5.5. For eachk € Z we use the construction of the twisted spectral triple
to define the Dirac operatdd.*’ on a dense subset #f;, identified asH, ©5.A*).

Taking D,, to be the closure of the operator given by the coIIectiorDé’?), we
obtain a Dirac operatab,, on #, twisted by the connectioa.

Note that from the construction it is not entirely obviousattthe Dirac operator
D,, has bounded commutators with the elements from the algéb¥se have:

Proposition 5.6. The twisted Dirac operataobD,, is selfadjoint ifw is an antiselfad-
joint one form and has bounded commutators with all elemefnts

Proof. To see it let us calculat®,, on an elemenkp, with i € H, andp € A™):

Dy, (hp) =(Doh)p + h[D, p] — nhpw
=Jp*J ' Doh + [D, Jp*J b — Jw* T nhp
=D(hp) + (Do — D)h) p — Jw* T~ 8(hp)
= (D — Jw*J 716 — Z) (hp),

where we have used the decomposition/binto the horizontal part, which re-
stricted toH, is Dy, the vertical part (which vanishes @y) and the bounded
perturbationZ. If the bounded perturbation commutes with the multiplmatoy
the elements of the commutant then we have (¥dt)p = Z(hp) and we obtain
the formula above.

Now, calculating the commutator with an arbitrary elemert A is an easy task.
D has bounded commutators and sincevas a one-form, from the order one
condition the commutator of the second term witis Jw*J~1§(a) and hence it
is bounded. The third term, as a commutator of two boundethexiés remains
bounded. HencéD,,, a] is bounded for any.

Next, observe that sinc® andZ are selfadjoint it suffices to havkv*.J~16 to be
selfadjoint. But sincé commutes withv and is antiselfadjoint, so must he O

It is interesting to see whether the operator we obtain etedl to the Dirac we
started with. We propose:

13



Definition 5.7. We say that the connectienis compatible with the Dirac operator
D if both D, and D,, coincide on a dense subset7ef

It is not difficult to see building on the results of [2] that fhe classical case
the Dirac operator, which gives the metric compatible witliveen connection is
indeed compatible with this connection in the sense of tlwelblefinition.

6 The noncommutative torus

To see how the definitions work in a noncommutative case, waysin detail

the case of thg-dimensional noncommutative torus a$/él) bundle over the
2-dimensional noncommutative torus.

We choose the generators of ffigto beU;, i = 1,2, 3, with the relationd/;U; =
™ U;U;, whered;; is an antisymmetric real matrix. We assume that neither
of its entries is rational. An element of the algebra of srhdoinctions on the
noncommutative torus is of the form:

k7l
a= Y ounUfULUS",
k,l,meZ
whereoy, ; ,, is a rapidly decreasing sequence. The canonical trace aaldbbra
is:

7(a) = aogo-
We start with the canonical Hilbert spagg of the GNS construction with respect

to the trace orfl3, and the associated faithful representation. WAl ,,, the
orthonormal basis of{y we have:

Ui€k,im = €(k41),1,m>

2kd
Usegim = €72 e (141),m>

27 (k031 +10:
U3ek,l,m =e€ m(kba1+ lﬁ)ek,l,(m—l—l)»

wherek,l,m are inZ or Z + % depending on the choice of the spin structure.
The projectable spin structures must have the trivial sppircture on the fibre, so
m € Z, which we assume from now on.

We double the Hilbert space takifigg = H,® C?, with the diagonal representation
of the algebra. The canonical equivariant spectral tripler d“g is given by the
Dirac operatorD and the reality structurd of the form:

3
D =Y iols;, J=ic®olJ, (6.1)
j=1
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wheres’ are Pauli matrice$ [9]J, here is the canonical Tomita-Takesaki antilinear
map on the Hilbert spack,,.

Jo€k,l,m = €—k,—1,—m>

andd; are the derivations acting diagonally on the basis:

0ekim = Kkekims 02k im = lerim, 03€k1m = Mekim-

Notice that/ D = DJ as required in the spectral triple of dimensian
We choose the followind/ (1) action on the torug3, defined through the action
on the generators:

€U, =Uy, €9>Uy=Us, €®pUs=e?Us, (6.2)
and the induced diagonal action on the Hilbert space:
e > epim = €M ek 1m,

The U(1) invariant subalgebra is generated Gy and Us, and can be identified
with the 2-dimensional noncommutative tord&, where the indices of;; run
over1,2. Itis straightforward to check that} is a Hopf-Galois extension @f2.
The chosen Dirac operator is one which is fully equivariéimdf is invariant under
threeU (1) symmetries. This is not necessary in our case, as we neednpaly
U (1) invariance, hence we shall allow for the fluctuationgof

Remark 2. The space of possible perturbations of the Dirac operattireofjauge
connection type (by one-forms) is given by:

Di=D+0d"A; + J(o' A)J L,
whereA; € T3, i = 1,2, 3, satisfy: 4; = A?.

If we further require that the Dirac operatdr, is U(1)-invariant then we must
restrict 4, to belong to the invariant subalgelsfg.

Before we proceed, observe that any one—form)']h_gA is (trivially) a one-form
in Q1,. This provides us with a more convenient description of timeddule of
one-forms.

We begin with:

Lemma 6.1. The differential calculus generated By, satisfies the compatibility
condition from the definition 5.1 il3 = 0.
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Proof. Takep;,q; such thaty", p;[D,¢;] = 0. Sinces’ are linearly independent,
we have foro3:

Zpi (03(qs) + [A3,4]) -

If A3 = 0 then the condition follows. O
We shall see that this is in agreement with the existendé of

Lemma 6.2. If A3 = 0 then there exists a unique operatBy which satisfies the
conditions of the definition 4.1, making the spectral geoyrmlerTg projectable
with constant length fibres:

=03

Proof. It is easy to see that inde&t= o3 does satisfy all conditions. Conversely,
any operatof’, which commutes with the algebra,lif1)-invariant, anticommutes
with J and is aZ, grading must be a linear combination of Pauli matrices. Then
the requiremerii 411 thdd has equal length fibres fix&sto bes3. O

Lemma 6.3. Note that in the case of the chosen general Dirac operatdn Wit =
0, T' = o3 satisfies the following orthogonality condition:

Froipal® =0, vpe ab(r), (6.3)

In fact,I" = o3 is a unique (up to sign)/(1)-invariant Z,-grading of the Hilbert
space, which commutes with the algebra and its commutansainsfies orthogo-
nality condition [6.8).

Proof. Take an arbitrary one forfi = >~ o?p;. From the orthogonality require-
ment [6.8), taking ag = bo! andbo? respectively, fob € T2 we obtain:

f orbID1 = f pubiD| =0,

as in the noncommutative integral we can usénstead ofD 4. As this holds for
anyb thenp; = po = 0. Therefore, the only nonvanishing coefficienpisand
sincep? = 1 we recovel” = o3 (up to the sign, of course). O

Furthermore, we have:

Lemma 6.4. If A3 =0 andI = o3, then the projection oD ontoT?% gives a real
spectral triple over the two-dimensional torus and theed#@htial calculi ovesz
have the property (413).
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Proof. Itis easy to recognize the general (perturbed) Dirac opesatver the two-
torus. To see that for evetye T% we have:

[D,b] = [Dh>b]>

it is sufficient to see thai(b) = 0 and sinceds = 0, only the horizontal part has
non-trivial commutators. O

Note that, so far, there is a remarkable consistency in @alttnditions that we are
imposing on the Dirac operator and the spectral geometrgeohbncommutative
three-torus, viewed asla(1) bundle over the noncommutative two-torus. As a last
note, observe:

Remark 3. The Dirac operatoD 4, with A3 = 0, satisfies the condition of equal
length fibres proposed in the rematk 1.

Indeed, using the results of the explicit calculations & #pectral action, note
that the noncommutative integral of the perturbed Diracatpe|D 4|~ does not
depend omd. Hence, we can work witlh alone and its restriction télg. Then,
the proof is reduced to a simple exercise. In fact, an easgkcheggests that we
could have taken remafk 1 as a defining condition[f¢at least in that case).

6.1 Compatible strong connections ovef;

Next, we turn to the space of possible connecti@ng-or simplicity, we consider
the usual unperturbed Dirac operafor16.1) cugr
Here is the full characterization of the possible connesti@ccording to the defi-

nition (5.3):

Lemma 6.5. A U(1) connection ovefl; with theU (1) action defined as i (6l.2)
is a one-form:
w = 0>+ 02wy + olwy, (6.4)

wherew!, w? € T? are U(1) invariant elements of the algebrB. Every such
connection is strong.

Proof. Any U (1)-invariant one-form could be written g5, o'w;, where allw;
are fromT?. Sinceo® = U; ' [D, U], from the condition related t6 we obtain
w3 = 1. O

Finally, let us calculate the Dirac operators associateshtarbitrary antiselfadjoint
connectionu on the noncommutative three-torus, = (w?)*.
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Lemma 6.6. For any antiselfadjoint connection the associated Dirac operator
D, has the form:

D, =D — (6?JwyJ ' + ot Jw J71)ds. (6.5)

The proof follows straight from direct calculation basedloa proof of proposition
[5.6. We have an immediate corollary:

Corollary 6.7. The only connection, compatible with the fully(()*) equivariant
Dirac operator [6.1) on the noncommutative three-tofiiisis: w = 0.

Finally, observe that the new family of Dirac operators gigelass of new, spectral
geometries over the noncommutative torus. Although theynat real, ad,, is
not compatible with the real structure, we needeea spectral tripleas a a back-
ground geometry providing us with necessary tools (in paldi, the differential
calculus).

The properties of the new class of Dirac operators are yet fouestigated, how-
ever we expect that they will correspond to some locally flahgeometries.

7 Conclusions

We have attempted to reconstruct the compatibility coodgibetween the met-
ric geometry (as given by the Dirac operator) and connestias defined in the
algebraic setup for the Hopf-Galois extensions) on noncuotativeU (1) bundles.
Although this project has still to be further developed, vagdencountered several
new and interesting phenomena. First of all, we observethiga¢xistence of real
spectral triples is necessary to provide a kind of backgitogeometry. Further-
more, there are many compatibility conditions, which areessary to impose on
the spectral triple, apart from the simple requirement/¢f )-equivariance. We
have demonstrated that in the case, where all assumptiensetrit is possible
to consistently extend the algebraic definition of strongnaztions to the case of
differential calculi given by Dirac operators.

The requirement of compatibility condition between thergxtion and the metric
(given implicitly by the Dirac operator) has led us to thecdigery of a new family
of Dirac operators. This indicates that these are not abjaettoducedad hocbut
have a deeper geometrical meaning. We postpone the stutigiofproperties to
future work.
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