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Abstract. This paper concerns with two issues. The first issue is the
existence and the uniqueness of the ergodic type number d which appears in
the oblique boundary condition. The second issue is the application of the
number for the study of homogenizations of oscillating Neumann boundary
conditions.

Résumé. Dans cette article, nous traitons deux problèmes. Le premier
est l’existence et l’unicité d’un nombre du type ergodique d qui apparâıt dans
la condition oblique sur le bord. Le second est l’application de ce nombre
pour la recherche des homogénéizationses conditions Neumann sur des bords
oscillants.
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1 Introduction

First, we are concerned with the existence and uniqueness of the number d
in the following problem.

F (x,∇u,∇2u) = 0 in Ω, (1)

d+ < ∇u, γ(x) > −g(x) = 0 on ∂Ω, (2)

where Ω is a domain inRn, F is a fully nonlinear uniformly elliptic Hamilton-
Jacobi-Bellman (HJB in short) operator:

F (x,∇u,∇2u) = sup
α∈A

{−
n
∑

i,j=1

aαij(x)
∂2u

∂xi∂xj
−

n
∑

i=1

bαi (x)
∂u

∂xi
}, (3)

satisfying the following conditions. A is a set of controls, and by denoting
n× n matrices Aα = (aαij(x))ij (α ∈ A), there exist n×m matrices σα such
that

Aα(x) = σα(σα)t(x) any x ∈ Ω, α ∈ A,

λ1I<A
α(x)<Λ1I any x ∈ Ω, α ∈ A, (4)

where 0 < λ1<Λ1 positive constants, I the n × n identity matrix. There
exists a positive constant L > 0 such that

|aαij(x)− aαij(y)| < L|x− y| any 1<i, j<n, x ∈ Ω, α ∈ A,

|bαi (x)− bαi (y)| < L|x− y| any 1<i<n, x ∈ Ω, α ∈ A. (5)

There also exists a positive constant γ0, such that for the outward unit normal
vector n(x) (x ∈ ∂Ω), γ(x) satisfies

< γ(x),n(x) > ≥ γ0 > 0 any x ∈ ∂Ω. (6)

The domain Ω is assumed to be either one of the following:

Bounded open domain in Rn with C3,1 boundary, (7)

or

Half space in Rn, periodic in the first n− 1 variables with C3,1

boundary

: {(x′, xn)| periodic in x′ = (x1, ..., xn−1) ∈ (R/Z)n−1, xn ≥ f1(x
′)},

where f1 ∈ C3,1((R/Z)n−1)). (8)
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(In the latter case (8), a supplement boundary condition at xn = ∞ will
be added to (1)-(2).)

The following example implies the qualitative meaning of the number d.

Example 1.1. Let Ω be a domain in (7), and g(x) be a Lipschitz con-
tinuous function on ∂Ω. Assume that there exists a number d such that the
following problem has a viscosity solution.

−∆u = 0 in Ω,

d+ < ∇u,n(x) > −g(x) = 0 on ∂Ω.

Then,

d =
1

|∂Ω|

∫

∂Ω
g(x)dS.

Proof of Example 1.1. In the Green’s first identity:

∫

Ω
∆uvdx+

∫

Ω
∇u · ∇vdx =

∫

∂Ω
v
∂u

∂n
dS,

we put v = 1, and get d|∂Ω| =
∫

∂Ω g(x)dS.

Thus, d is a kind of the averaged quantity on ∂Ω. For general Hamiltoni-
ans F , the way to construct the number d and u(x) in (1)-(2) is the following.
Here we assume that (7) holds. (The case (8) is more complicated, and will
be treated in Section 3 below.) For any λ > 0, consider

F (x,∇uλ,∇
2uλ) = 0 in Ω, (9)

λuλ+ < ∇u, γ(x) > −g(x) = 0 on ∂Ω. (10)

The regularity of uλ (λ ∈ (0, 1)) which will be shown in Section 2 yields, for
any fixed x0 ∈ Ω

lim
λ↓0

λuλ(x) = d uniformly in Ω, (11)

and by taking a subsequence λ′ ↓ 0,

lim
λ′↓0

(uλ′(x)− uλ′(x0)) = u(x) uniformly in Ω. (12)
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The limit number d is unique in the sense that with which (1)-(2) has a
viscosity solution. The above limit function u(x) is one of such solutions.
(The solution of (1)-(2) is not unique, for u + C (C constant) is also a
solution.) We shall show in Section 2 these facts. Now, the meaning of the
number d can be stated by using (11). For any fixed measurable function
α(t) : [0,∞) → A (control process), let (Xα

t , A
α
t ) be the stochastic process

defined by

Xα
t = x+

∫ t

0
σα(Xα

s )dWs +
∫ t

0
bα(Xα

s )ds−
∫ t

0
γ(Xα

s )dAs t ≥ 0,

Aα
t =

∫ t

0
1∂Ω(X

α
s )dAs is continuous, non decreasing in t ≥ 0, (13)

where bα = (bαi )i, 1∂Ω(·) a characteristic function on ∂Ω, Wt (t ≥ 0) an
m−dimensional Brownian motion. The study of the existence and the unique-
ness of (Xα

t , A
α
t ) is called the Skorokhod problem, and its solvability is known

under the preceding assumptions. We refer the readers to P.-L. Lions and
A.S. Sznitman [30], P.-L. Lions, J.M. Menaldi and A.S. Sznitman [28], and
P.-L. Lions [27]. Let

Jα
λ (x) = Ex

∫ ∞

0
e−λtg(Xα

t )1∂Ω(X
α
t )dAt,

and define
uλ(x) = inf

α(·)
Jα
λ (x) in Ω, (14)

where the infimum is taken over all possible control processes. It is known
that uλ is the unique solution of (9)-(10). (See, P.-L. Lions and N.S. Trudinger
[31], and M.I. Freidlin and A.D. Wentzell [21].) Thus,

d = lim
λ↓0

inf
α(·)

λEx

∫ ∞

0
e−λtg(Xα

t )1∂Ω(X
α
t )dAt, (15)

if the right hand side of (11) exists, which represents the fact that the number
d is the long time averaged reflection force on the boundary. (Each time the
tragectory reaches to ∂Ω, it gains the force g(x) and is pushed back in the
direction of −γ(x).) We remark the similarity of the convergence (11) to the
so-called ergodic problem for HJB equations. That is, by considering,

λuλ(x) + F (x,∇uλ,∇
2uλ) = 0 in Ω,

< ∇uλ(x), γ(x) >= 0 on ∂Ω,
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it is known that an unique number d′ exists such that

lim
λ↓0

λuλ(x) = d′ uniformly in Ω.

We refer the readers to M. Arisawa and P.-L. Lions [6], M. Arisawa [1], [2], A.
Bensoussan [10] for the various types (operators and boundary conditions) of
ergodic problems. As the above ergodic problem ”in the domain”, the exis-
tence of d in (2) ”on the boundary” relates to the ergodicity of the stochastic
process (13). Even for some classes of degenerate elliptic operators F , the
number d in (2) exists. We remark this in Section 4, below.

Next, we turn our interests to the homogenization. The unique existence
of d in (1)-(2) plays an essential role to study the homogenization of oscillat-
ing Neumann boundary conditions. The simplest example is as follows.

Example 1.2. Let c, g, f1(x, ξ1) be functions defined in (x, ξ1) ∈ R2 ×
R\Z (periodic in ξ1 with period 1). Assume that f1 ≥ 0, and that there exists
a constant c0 > 0 such that c > c0 > 0. For any ε ≥ 0, let

Ωε = {(x1, x2)| εf1(x,
x1
ε
)<x2<b, |x1|<a},

Γε = {(x1, x2)| x2 = εf1(x,
x1
ε
)} ∩ ∂Ωε.

Let uε(x) (ε > 0) be the solution of

−∆uε = 0 in Ωε, (16)

< ∇uε(x),nε(x) > +c(x,
x1
ε
)uε = g(x,

x1
ε
) on Γε, (17)

uε = 0 on ∂Ωε\Γε, (18)

where nε(x) is the outward unit normal to Γε. Then, as ε ↓ 0, uε converges
to a unique functiont u(x) uniformly in Ω0, which is the solution of

−∆u = 0 in Ω0,

< ∇u(x), ν(x) > +L(x, u,∇u) = 0 on Γ0, (19)

u = 0 on ∂Ω0\Γ0,
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where ν is the outward unit normal to Γ0, and L is defined as follows.
Let O(x) = {(ξ1, ξ2)| ξ2 ≥ f1(x, ξ1), ξ1 ∈ R\Z}. Then, for any fixed
(x, r, p)∈ Ω×R×R2, there exists a unique number d(x, r, p) such that

−∆ξv ≡ −(
∂2v

∂ξ21
+
∂2v

∂ξ22
) = 0 in O(x),

d(x, r, p)+ < ∇ξv, γ(ξ) > −(

√

1 + (
∂f1
∂ξ1

)2g −

√

1 + (
∂f1
∂ξ1

)2cr − p1
∂f1
∂ξ1

) = 0

on ∂O(x), where γ(ξ) = (∂f1
∂ξ1
,−1) (ξ ∈ ∂O(x)), and

L(x, r, p) = −d(x, r, p). (20)

In A. Friedman, B. Hu, and Y. Liu [22], a similar problem to the above
example (linear, three scales case) was treated by the variational approach.
(See also [13].) We shall extend the result (including Example 1.2.) to non-
linear problems by using the existence of the long time averaged reflection
number d in (1)-(2). As Example 1.2 indicates, the effective limit boundary
condition (19) is defined by using the long time averaged number in (20). Our
present approach was inspired by the classical method of formal asymptotic
expansions of A. Bensoussin, J.L. Lions, and G. Papanicolaou [11]. This ap-
proach is closely related to the ergodic problem for HJB equations described
in the preceding part of this introduction. For the application of the ergodic
problem ( [6], [1], [2]) to obtain the effective P.D.E. in the domain, we refer
the readers to M. Arisawa [3], [4], M. Arisawa and Y. Giga [5], L.C. Evans
[18], [19], and P.-L. Lions, G, Papanicolaou, and S.R.S. Varadhan [29]n. As
far as we know, there is no existing reference which treats the homogeniza-
tion of the oscillating Neumann boundary conditions from the view point of
the ergodic problem.

The plan of this paper is the following.
§1. Introduction.
§2. Existence and uniqueness of the number d in the case of the bounded
domain.
§3. Existence and uniqueness of the number d in the case of the half space.
§4. Some remarks on the degenerate elliptic operators case.
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§5. Homogenization of the oscillating Neumann boundary conditions.

Throughout of this paper, the gradient and the Hesse matrix of u(x)
(x ∈ Ω ⊂ Rn) ( resp. v(ξ) (ξ ∈ Ω′ ⊂ Rn)) are denoted by ∇u(x), ∇2u(x)
( resp. ∇ξv(ξ), ∇

2
ξv(ξ) or D2

ξv(ξ)). For u(x) (x ∈ Ω ⊂ Rn), the partial

derivatives in xi, xj (1<i, j<n) are denoted by ∂u
∂xi

= Diu,
∂2u

∂xi∂xj
= Diju,

etc., and the derivatives in the directions of y, z ∈ Rn are denoted by
Dyu =

∑n
i=1 yi

∂u
∂xi

, Dyzu =
∑n

i,j=1 yizj
∂2u

∂xi∂xj
, etc.. When a function w(x, ξ)

depends on both variables of x ∈ Rn and ξ ∈ Rn, and when we consider

the derivatives ∂2w(x,ξ)
∂xk∂ξl

etc., we denote them by Dijw(x, ξ) (1<i, j<2n), etc..

For the twice continuously differentiable function u(x) (x ∈ Ω ⊂ Rn), we de-
note |u|L∞(Ω)= supx∈Ω |u|, |∇u|L∞(Ω)= supx∈Ω sup1<i<n |

∂u
∂xi

(x)|, |∇2u|L∞(Ω)=

supx∈Ω sup1<i,j<n |
∂2u

∂xi∂xj
(x)|,

|u|β;Ω = sup
(x,y)∈Ω×Ω

|u(x)− u(y)|

|x− y|β
, |∇u|β;Ω = sup

1<i<n

sup
(x,y)∈Ω×Ω

| ∂u
∂xi

(x)− ∂u
∂xi

(y)|

|x− y|β
0 < β<1,

|u|j,β;Ω = |∇ju|L∞(Ω) + sup
x 6=y∈Ω

|∇ju(x)−∇ju(y)|

|x− y|β
0 < β<1, j = 1, 2.

We consider the solvability of PDEs in the framework of viscosity solutions,
and treat the second-order sub and super differentials of upper and lower
semi continuous functions u(x) and v(x) (x ∈ D ⊂ Rn) at a point x in the
domain D. We denote them by J2,+

D u(x) (the second-order superjets of u
at x) and J2,−

D v(x) (the second-order subjets of v at x) respectively. (See
M.G. Crandall and P.-L. Lions [16], M.G. Crandall, H. Ishii and P.-L. Lions
[15], and W.H. Fleming and H.M. Soner n[20].) We use the notation B(x, r)
(x ∈ Ω, r > 0) for the open ball centered at x with radius r > 0.

The author is grateful to Professors P.-L. Lions, H. Ishii and Y. Giga for
their helpful comments and encouragements. She thanks to Professors O.
Alvarez, G. Barles and T. Mikami for the discussions and suggestions on this
subject. Finally, she also thanks to anonymous referee for his kind comments
and interesting suggestions.
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2 Existence and uniqueness of the long time

averaged reflection force in the bounded

domain.

In this section, the existence and uniqueness of the number d in (1)-(2) is
shown in the case that Ω satisfies (7). The Hamiltonian F (x,∇u,∇2u), given
in (3), positively homogeneous in degree one, is assumed to satisfy (4) and
(5); the vector field γ on ∂Ω is assumed to satisfy (6). For the existence, we
further assume that

|aαij, |∇a
α
ij|, |∇

2aαij |, |b
α
i |, |∇b

α
i |, |∇

2bαi |<K any x ∈ Ω, 1<i, j<n, α ∈ A,
(21)

whereK > 0 is a constant, and that γ, g can be extendable in a neighborhood
U of ∂Ω to twice continuously differentiable functions so that

|∇γ|, |∇2γ|, |∇2g|, |∇2g|<K in U, (22)

where K > 0 is the constant in (21). For the existence of d, we approximate
(1)-(2) by (9)-(10) (λ ∈ (0, 1)) and examine the regularity of uλ, uniformly
in λ. In order to have (11)-(12), we need the following estimates.

Theorem 2.1. Assume that Ω is (7), and that (4), (6), (21) and (22)
hold. Then there exists a unique solution uλ ∈ C1,1(Ω)∩C2,β(Ω) of (9)-(10),
where β > 0 depends on n and Λ1/λ1. Moreover for any fixed x0 ∈ Ω, there
exists a constant C > 0 such that the following estimates hold.

|uλ − uλ(x0)|L∞(Ω)<C any λ ∈ (0, 1), (23)

|∇uλ|L∞(Ω)<C any λ ∈ (0, 1), (24)

|∇uλ|1;Ω<C any λ ∈ (0, 1). (25)

Remark 2.1 One can replace the conditions (21)-(22) to other conditions
,for example those in [24]n, to have

|uλ(x)− uλ(y)|<C|x− y|θ any x, y ∈ Ω, λ ∈ (0, 1),

where C > 0, θ ∈ (0, 1) are independent on λ > 0. The proof of this in-
equality can be done in a similar way to [24], but by taking account of the
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Neumann type boundary conditions, and also by using the estimate (23). We
do not write the proof in this direction here, but shall use the method in a
future occassion.

Proof of Theorem 2.1. For each λ > 0, the existence and uniqueness
of uλ ∈ C1,1(Ω) ∩ C2,β(Ω) is established in P.-L. Lions and N.S. Trudinger
[31]n. We are to show the uniform (in λ ∈ (0, 1)) regularity (23)-(25) in the
following two steps. In Step 1, (23) will be shown, and in Step 2, (24) and
(25) will be shown.

Step 1. We prove (23) by a contradiction argument. Let x0 ∈ Ω be fixed.
Assume, as λ > 0 goes to 0

|uλ − uλ(x0)|L∞(Ω) → ∞.

Set
ελ ≡ |uλ − uλ(x0)|

−1
L∞(Ω)

λ ∈ (0, 1),

and let vλ ≡ ελ(uλ − uλ(x0)). Then,

|vλ|L∞(Ω) = 1, vλ(x0) = 0 any λ ∈ (0, 1).

From (3), vλ satisfies F (x,∇vλ,∇
2vλ) = 0 in Ω, and from (4) the Krylov-

Safonov inequality (see [12]n for instance) leads: for any compact set V ⊂⊂
Ω, there exists a constant MV > 0 such that

|∇vλ|L∞(V )<MV any λ ∈ (0, 1). (26)

We denote
v∗(x) = lim sup

λ↓0,y→x

vλ(y), v∗(x) = lim inf
λ↓0,y→x

vλ(y).

Then, since vλ(x0) = 0 (∀λ ∈ (0, 1)), from (26) we have

v∗(x0) = v∗(x0) = 0, (27)

|v∗|L∞(Ω) = 1, or |v∗|L∞(Ω) = 1. (28)

From (2), vλ satisfies

< ∇vλ, γ(x) >= ελg − λ(vλ + ελuλ(x0)),

9



and by the comparison result for (9)-(10)

|λuλ(x0)|L∞(Ω)<C any λ ∈ (0, 1),

where C > 0 is a constant. By letting λ ↓ 0, v∗ and v∗ are viscosity solutions
of

< ∇v∗, γ(x) > <0 on ∂Ω, (29)

< ∇v∗, γ(x) >≥ 0 on ∂Ω, (30)

and v∗(x) (resp. v∗(x)) (x ∈ Ω) satisfies

F (x,∇v∗,∇2v∗)<0, (resp. F (x,∇v∗,∇
2v∗) ≥ 0) in Ω. (10)’

(We refer the readers to [15] and G. Barles and B. Perthame [9]n for this
stability result.)

Now we employ the strong maximum principle of M. Bardi and F. Da-Lio
[7]. Remark that F (x, p, R) given in (3), satisfying (4) and (21) enjoys the
following two properties of (31) and (32).

(Scaling property) For any x0 ∈ Ω, for any η > 0, there exists a function
φ: (0, 1) → (0,∞) such that

F (x, ξp, ξR) ≥ φ(ξ)F (x, p, R) any ξ ∈ (0, 1), (31)

holds for any x ∈ B(x0, η), 0 < |p|<η, |R|<η.

(Nondegeneracy property) For any x0 ∈ Ω, for any small vector ν 6= 0,
there exists a positive number r0 such that

F (x0, ν, I − rν ⊗ ν) > 0 any r > r0. (32)

We cite the following result for our present and later purposes.

Lemma A. (n[7]n) (Strong maximum priciple) Let Ω ⊂ Rn be an open
set and let u be an upper semicontinuous viscosity subsolution of

F (x,∇u,∇2u) = 0 in Ω,

which attains a maximum in Ω. Assume that F satisfies (31), (32), and
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for any x0 ∈ Ω there exists ρ0 > 0 such that for any ν ∈ B(0, ρ0)\{0},
(32)

holds for some r0 > 0.
(33)

Then, u is a constant.

We go back to the proof of (23). Assume that |v∗|L∞(Ω) = 1 holds in (28).
(The another case of |v∗|L∞(Ω) = 1 can be treated similarly.) Thus from
(27), v∗ is not constant, and from (10)’ and the strong maximum principle
(Lemma A), v∗ attains its maximum at a point x1 ∈ ∂Ω:

v∗(x1) > v∗(x) any x ∈ Ω.

Since ∂Ω is C3,1, the interior sphere condition (see D. Gilbarg and N.S.
Trudinger [23]n) is satisfied : there exists y ∈ Ω such that for R = |x1 − y|

B(y, R) ∈ Ω, x1 ∈ ∂B(y, R).

Let
φ(x) = e−cR2

− e−c|x−y|2 x ∈ Ω,

where c > 0 is a constant large enough so that

F (x1,∇φ(x1),∇
2φ(x1))

= F (x1, 2c(x1 − y)e−c|x1−y|2 , 2ce−c|x1−y|2(I − 2c(x1 − y)⊗ (x1 − y)))

= 2ce−c|x1−y|2F (x1, x1 − y, I − 2c(x1 − y)⊗ (x1 − y)) > 0

holds. (Here, we used (3), (32) and (33).) By the lower semicontinuity of F
in x, there exists r ∈ B(0, R) and C ′ > 0 such that

F (x,∇φ(x),∇2φ(x)) ≥ C ′ > 0 in B(x1, r) ∩ Ω. (34)

We claim that

v∗(x)− v∗(x1)− φ(x)<0 in B(x1, r) ∩ Ω. (35)

In fact, if x ∈ B(y, R)c, φ(x) ≥ 0 and (35) holds. Assume that for x′ ∈
B(x1, r) ∩ B(y, R) (35) does not hold, and

v∗(x′)− v∗(x1)− φ(x′) = max
B(x1,r)∩B(y,R)

v∗(x)− v∗(x1)− φ(x).

11



Then by the definition of the viscosity solution,

F (x′,∇φ(x′),∇2φ(x′))<0,

which contradicts to (34). Therefore, (35) holds. By remarking that φ(x1) =
0, (35) indicates that v∗−φ takes its maximum at x1 ∈ ∂Ω. Since v∗ satisfies
(29) in the sense of viscosity solutions, either

< φ(x1), γ(x1) > <0,

or
F (x1,∇φ(x1),∇

2φ(x1))<0

must be satisfied. However from the definition of φ, (6) and (34), both of the
above are not satisfied. We got a contradiction, and proved (23).

Step 2. To obtain (24) and (25), we appply (23) in the argument of [31]n.
First, we regularlize the Hamiltonian F . Let ρ be a mollifier on Rn (ρ ≥ 0,
ρ ∈ C∞

0 (Rn),
∫

ρ = 1). For any δ > 0, set

hδ(y) = δ−n

∫

RN
ρ(
y − z

δ
)( inf

1<k<N
zk)dz,

FN
δ [u] ≡ hδ(L

α1u, ..., LαNu),

where

Lαlu = −
n
∑

i,j=1

aαl
ij

∂2u

∂xi∂xj
−

α
∑

i

bαl
i

∂u

∂xi
1<l<N.

Remark that for any δ ∈ (0, 1), the operator FN
δ (x, p, R) satisfies

λ1I<(
∂FN

δ

∂rij
(x, p, R))1<i,j<n<Λ1I x ∈ Ω, R ∈ Sn, (36)

FN
δ (x, p, R)<µ0(1 + |p|+ |R|) x ∈ Ω, R ∈ Sn, (37)

|
∂FN

δ

∂x
|, |
∂FN

δ

∂p
|, |
∂FN

δ

∂R
|<µ1{(1+ |p|+ |R|)|x|+ |p|+ |R|} x ∈ Ω, R ∈ Sn,

(38)

|
∂2FN

δ

∂x2
|, |
∂2FN

δ

∂x∂p
|, |
∂2FN

δ

∂x∂R
|<µ2{(1+|p|+|R|)|x|+|p|+|R|}×|x| x ∈ Ω, R ∈ Sn,

(39)

12



where µi (i = 0, 1, 2) are positive constants, and |p| = max1<i<n |pi| (p =
(pi)1<i<n), |R| = max1<i,j<n |rij| (R = (rij)1<i,j<n).

We need the following a priori estimates.

Lemma 2.2. Let uδλ,N ∈ C4(Ω) ∩ C3(Ω) be a solution of

FN
δ (x,∇uδλ,N ,∇

2uδλ,N) = 0 in Ω, (40)

λuδλ,N+ < ∇uδλ,N , γ(x) > −g(x) = 0 on ∂Ω. (41)

Then, there exists C > 0 such that

|∇uδλ,N |L∞(Ω), |∇2uδλ,N |L∞(Ω)<C any δ, λ ∈ (0, 1), N ∈ N, (42)

where C > 0 depends on n, λ1, Λ1, µi (i = 0, 1, 2), Ω, and K.

Remark 2.2. In the estimates of [31], Theorem 2.1n, the above constant
C depends also on λ ∈ (0, 1).

By delaying the proof of Lemma 2.2, we shall show how (42) leads (24)
and (25). By the method of continuity, for each δ > 0 the a priori estimate
(42) yields the existence of uδλ,N ∈ C3(Ω)∩C2,α(Ω) of (40)-(41). Put wδ

λ,N =
uδλ,N − uδλ,N(x0). The same argument as in Step 1 works for wδ

λ,N , and

|wδ
λ,N |L∞(Ω)<C any δ, λ ∈ (0, 1), N ∈ N.

From (42), by extracting a subsequence of δ′ ↓ 0, there exists wλ,N ∈ C1,1(Ω)
such that

lim
δ′↓0

wδ
λ,N = wλ,N uniformly in Ω,

lim
δ′↓0

∇wδ
λ,N = ∇wλ,N uniformly in Ω,

and

|wλ,N |L∞(Ω), |∇wλ,N |L∞(Ω), |∇wλ,N |1;Ω<C any λ ∈ (0, 1), N > 0.

On the other hand, from (36) and the Evans-Krylov interior estimate (see,
e.g. L.C. Evans [17], X. Cabre and L.A. Caffarelli [12], N.V. Krylov [25],
[26], and [31]n,) leads for any Ω′ ⊂⊂ Ω

|∇2wδ
λ,N |α;Ω′<C any δ ∈ (0, 1),
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where C > 0 depends on Ω′ and α ∈ (0, 1). Thus, we obtain wλ,N ∈C1,1(Ω)∩
C2,β(Ω) of

max
1<l<N

{Lαlwλ,N} = 0 in Ω,

λwλ,N+ < ∇wλ,N , γ(x) > −g(x) = 0 on ∂Ω.

Letting N → ∞, we obtain (24) and (25) from the preceding estimates.

In the following, we shall prove Lemma 2.2.

Proof of Lemma 2.2. Set

vδλ,N ≡
uδλ,N − uδλ,N(x0)

|∇(uδλ,N − uδλ,N(x0))|L∞(Ω)

. (43)

From (23), there exists a constant M1 > 0 such that

|vδλ,N |L∞(Ω), |∇vδλ,N |L∞(Ω)<M1 any δ, λ ∈ (0, 1), N ∈ N. (44)

It is clear that
FN
δ (x,∇vδλ,N ,∇

2vδλ,N) = 0 in Ω, (45)

λvδλ,N+ < ∇vδλ,N , γ(x) > −g = 0 on ∂Ω, (46)

where

g =
g − λuδλ,N(x0)

|∇(uδλ,N − uδλ,N(x0))|L∞(Ω)

.

We need the following Lemma.

Lemma 2.3. Let vδλ,N be defined in (43). Then, there exists C > 0 such
that

|∇2vδλ,N |L∞(Ω)<C any δ, λ ∈ (0, 1), N ∈ N. (47)

Lemma 2.3 will lead our present goal (42) in Lemma 2.2. In fact, from
(43), (47), we have

sup
Ω

|∇2uδλ,N |<C(1 + sup
Ω

|∇uδλ,N |). (48)

We use the following interpolation inequality in the above.
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Lemma B. ([23], Lemma 6.35) Suppose j + β < k + α, where j =
0, 1, 2, ...; k = 1, 2, ..., and 0<α, β<1. Let D be a Ck,α domain in Rn, and as-
sume u ∈ Ck,α(D). Then, for any ε > 0 and some constant C = C(ε, j, k,D)
we have

|u|j,β;D<C|u|L∞(D) + ε|u|k,α;D.

By putting j = 1, k = 2, α = β = 0 in Lemma B, (48) leads (42) in
Lemma 2.2. Finally, we are to prove Lemma 2.3.

Proof of Lemma 2.3. For simplicity, write F = Fδ, v = vδλ,N . First, we
examine the regularity of v on ∂Ω. By differentiating (45) twice with respect
to a vector ξ ∈ Rn, |ξ| = 1,

n
∑

i,j=1

∂F

∂rij

∂2

∂xi∂xj
Dξv +

n
∑

i=1

∂F

∂pi

∂

∂xi
Dξv +

∂F

∂ξ
= 0,

n
∑

i,j=1

∂F

∂rij

∂2

∂xi∂xj
Dξξv +

n
∑

i=1

∂F

∂pi

∂

∂xi
Dξξv + FXX = 0,

where FXX is the derivarives of F with respect to X = (ξ,∇(Dξv),∇
2(Dξv)).

Using the structure conditions (36)-(39), we obtain from above inequalities

|
n
∑

i,j=1

∂F

∂rij

∂2

∂xi∂xj
Dξv|<C(1 + |∇2v|), (49)

n
∑

i,j=1

∂F

∂rij

∂2

∂xi∂xj
Dξξv<C(1 + |∇2v|+ |∇2Dξv|), (50)

where C > 0 depends on n, M1, µ1 and µ2. By the usual argument of
flattening the boundary, we may assume that ∂Ω= {(x′, xn)|xn ≥ 0} in a
neighborhood of x = 0 ∈ ∂Ω. Although by the change of variables, (45)-
(46) is transformed into F = 0 (F is the new Hamiltonian) etc., we keep to
denote F = F , etc., for simplicity. Denote B+

r = {x ∈ B(0, r)|xn > 0}, and
for ξ = (ξ1, ..., ξn−1, 0) ∈ Rn−1, |ξ|<1, consider

w(x, ξ) ≡ η2(x, ξ)(z(x, ξ) + Av′), (51)
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where η is a smooth cut-off function to be precised in below, A a constant,

z(x, ξ) ≡ Dξξv(x) =
∑

ij

∂2v

∂xi∂xj
ξiξj, v′ ≡

n−1
∑

i=1

|
∂v

∂xi
|2.

By introducing (36), (37), (44) and (45) into (49), we obtain

n
∑

i,j=1

(
∂F

∂rij

∂2z

∂xi∂xj
+ Cij

∂2

∂xi∂xj
Dξv)<C(1 + |∇2v|′)

where the coefficients Cij are such that Cin = 0, |Cij|<C depending on n, λ1,

µi (i = 0, 1, 2), M1, and |∇2v|′ = (
∑

i+j<2n |
∂2v

∂xi∂xj
|2)

1

2 . Using the relations

∂

∂xi
Dξjz = 2

∂2

∂xi∂xj
Dξv, Dξiξjz = 2

∂2v

∂xi∂xj
,

we can take constants C0 and C such that the following (2n− 1)× (2n− 1)
matrix (F ′

ij)ij :

2n−1
∑

i,j=1

F ′
ijDijz ≡

n
∑

i,j=1

∂F

∂rij

∂2z

∂xi∂xj
+

1

2

n
∑

i=1

n−1
∑

j=1

Cij

∂

∂xi
Dξjz + C0

n−1
∑

j=1

Dξjξjz

<C(1 + |∇2v|′)

is uniformly elliptic with minimum eigenvalue λ′ ≥ λ1

2
. From (49),

n−1
∑

k=1

∂F

∂rij

∂2v

∂xi∂xk

∂2v

∂xj∂xk
+

1

2

∂F

∂rij

∂2v′

∂xi∂xj
<C(1 + |∇2v|′).

By combining the above two inequalities, we arrive at

η2
2n−1
∑

i,j=1

F ′
ijDijw − 2

2n−1
∑

i,j=1

F ′
ijDiη

2Djw< (52)

−2Kλ(|∇2v|′)2η4+6(
2n−1
∑

i,j=1

F ′
ijDiηDjη)w−2η(

2n−1
∑

i,j=1

F ′
ijDijη)w−C(1+K)η4(1+|∇2v|′)

<− Aλw2 + CA,

where the constant CA depends on n, λ1, µi (i = 0, 1, 2) and M1. (Remark
that CA does not depend on λ ∈ (0, 1), for we have not yet used the boundary
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condition (46)).
Next, by differentiating (46) in the direction of ξk, ξl,

λDξkv+ < ∇(Dξkv), γ > + < ∇v,Dξkγ >= Dξkg, (53)

λDξkξlv+ < ∇(Dξkξlv), γ > + < ∇(Dξkv), Dξlγ > + < ∇(Dξlv), Dξkγ >
(54)

+ < ∇v,Dξkξlγ >= Dξkξlg.

Since
∂w

∂xi
= 2

w

η

∂η

∂xi
+ η2(

∂z

∂xi
+ A

∂v′

∂xi
),

λw+ < ∇w, γ > −2
w

η
< ∇η, γ >

= η2 < ∇z, γ > +η2A < ∇v′, γ > +λη2(z + Av′),

and from (54),

= η2A < ∇v′, γ > +λη2Av′ − η2 < ∇v,Dξkξlγ > −2η2 < ∇(Dξkv), Dξkγ > .

From (22) and (44),

|v′|, |Dξkγ|, |Dξkξlγ|<K any 1<k, l<n− 1,

and by (53) < ∇v′, γ > and < ∇(Dξkv), Dξkγ > are bounded. Therefore, we
can fix A so that

λw+ < ∇w, γ > −2
w

η
< ∇η, γ > <C1η

2,

where C1 > 0 depends on n, λ1, µi (i = 0, 1, 2), K and M1. (In particular,
C1 is independent of λ ∈ (0, 1).) Now, fix

η(x, ξ) = [1− 4{|x′|2 + (xn − εr)2}/r2 − |ξ|2}+,

where for

T = {x ∈ Br, xn = 0}, N = {(x, ξ) ∈ R2n−1| η(x, ξ) > 0},

ε = ζ/
√

1 + ζ2, ζ = sup
T

|γ|

γn
<C.
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Then, on T ∩ ∂N ∩ {w ≥ 0}

< ∇w, γ > +λw<C2,

where C2 is independent of λ ∈ (0, 1). We take w = w + C3λ1
−1xn so that

< ∇w, γ >=< ∇w, γ > +γn
C3

λ1
γ<C2 − λw + γn

C3

λ1
<0.

From the definition of w, the above constant C3 can be taken uniformly in
λ ∈ (0, 1). By applying the maximum principle to w, instead of w, we obtain

Dξξv(0)<C, (55)

for any ξ = (ξ1, ..., ξn−1, 0) (|ξ| = 1), where C > 0 depends only on η, λ1,
µi (i = 0, 1, 2), M1, Ω and K. ( C is independent of λ ∈ (0, 1).) As for the
remaining inequalities, the same argument in [31]n is available. That is, by
regarding

G(x) = λv+ < ∇v, γ > −g(x)

as a function in B(0, r) (0 ∈ ∂Ω, γ and g are extendable to some neighbor-
hood of ∂Ω (22)),

|
n
∑

i,j=1

∂F

∂rij

∂2G

∂xi∂xj
|<C(1 +M2) (M2 = sup

Ω
|∇2v|) in B(0, r),

G = 0 on ∂Ω,

where C depends on n, M1, µ1, K, and does not depend on λ ∈ (0, 1). From
this, the barrier argument leads

|DG(0)|<C
√

1 +M2, (56)

and we can extend the inequality (55) to

Dξξv(0)<C any |ξ| = 1, ξ ∈ Rn. (57)
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Then, by the uniform ellipticity (36), the usual argument leads

sup
∂Ω

|∇2v|<C any |ξ| = 1, ξ ∈ Rn, (58)

where C is independent of λ ∈ (0, 1). From (36), by coupling (58) with the
global Dirichlet bound for (45)-(46) leads (47), and Lemma 2.3 was proved.

We complete the proof of Theorem 2.1.

Theorem 2.4. Assume that Ω is (7), and that (4), (6), (21) and (22)
hold. Then there exists a number d and a function u(x) ∈ C1,1(Ω) ∩C2,α(Ω)
(α ∈ (0, 1)) which satisfy (1)-(2).

Proof of Theorem 2.4. From (23)-(25) and the Evans-Krylov estimate,
we can extract a subsequence λ′ ↓ 0 such that there exist a number d and
u(x) ∈ C1,1(Ω)∩C2,β(Ω), and

lim
λ′↓0

λ′uλ′(x) = d, lim
λ′↓0

(uλ′ − uλ′)(x0) = u(x) uniformly on Ω. (59)

From the usual stability result ([15]n), it is clear that the pair (d, u) satisfies
(1)-(2).

As for the uniqueness of the number d, we give the following theorem in
which we consider (1)-(2) in the framework of viscosity solutions.

Theorem 2.5. Assume that Ω is (7), and that (4), (5), (6) and (22)
hold. Then, the number d such that (1)-(2) has a viscosity solution u is
unique.

Proof of Theorem 2.5. We argue by contradiction. Let (d1, u1) and (d2, u2)
be two pairs satisfying (1)-(2) in the sense of viscosity solutions. We assume
d1 > d2. First, we show the following Lemma.

Lemma 2.6. Let v = u1 − u2. Then, v satisfies

−M+(∇2v) + inf
α∈A

{−
n
∑

i=1

bαi
∂v

∂xi
}<0 in Ω, (60)

< ∇v, γ > <d2 − d1 < 0 on ∂Ω, (61)
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where
M+(X) = sup

λ1I<A<Λ1I

Tr(AX) X ∈ Sn. (62)

Proof of Lemma 2.6. Let φ ∈ C2(Ω) be such that u − φ takes its local
strict maxixum at x ∈ Ω. From the definition of viscosity solutions, we are
to show the following.

(i) If x ∈ Ω,

−M+(∇2φ(x)) + inf
α∈A

{< −bα(x), φ(x) >}<0.

(ii) If x ∈ ∂Ω,

−M+(∇2φ(x)) + inf
α∈A

{< −bα(x), φ(x) >}<0,

or
< φ(x), γ(x) > <d2 − d1.

Step 1. We shall show (i) by the contradiction argument. Thus, assume

−M+(∇2φ(x)) + inf
α∈A

{< −bα(x), φ(x) >} > 0, (63)

and we shall look for a contradiction. Define, for β > 0

Ψβ(x, y) = u1(x)− u2(y)− φ(
x+ y

2
)− β|x− y|2 in Ω× Ω,

and let (xβ, yβ) be the maximum point of Ψβ. It is well known (see [15]n)
that

(xβ, yβ) → (x, x), β|xβ − yβ|
2 → 0 as β → ∞,

and that for any ε > 0, there exist X , Y ∈ Sn such that

(
1

2
∇φ(

xβ + yβ
2

) + 2β(xβ − yβ), X) ∈ J2,+
Ω u1(xβ),

(−
1

2
∇φ(

xβ + yβ
2

) + 2β(xβ − yβ), Y ) ∈ J2,−
Ω u2(yβ),

and

−(
1

ε
+ ‖A‖)I<

(

X O
O −Y

)

<A+ εA2, (64)
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where by denoting ψ(x, y) = φ(x+y

2
) + β|x− y|2,

A = D2ψ(xβ , yβ) ∈ S2n, ‖A‖ = sup{| < Aξ, ξ > | : |ξ|<1}.

Now, by using the definition of viscosity solution for ui (i = 1, 2),

F (xβ,
1

2
∇φ(

xβ + yβ
2

) + 2β(xβ − yβ), X)<0,

F (yβ,−
1

2
∇φ(

xβ + yβ
2

) + 2β(xβ − yβ), Y ) ≥ 0,

and by taking the differences of two inequalities, using the form of (3), for
any small δ > 0 there exists a control α′ ∈ A such that

{−Tr(Aα′

(xβ)X)− <
1

2
∇φ(

xβ + yβ
2

), bα
′

(xβ) >}

−{−Tr(Aα′

(yβ)Y )− <
1

2
∇φ(

xβ + yβ
2

), bα
′

(yβ) >}<δ. (65)

By taking ε = 1
β
in (64), and multiplying the rightmost inequality in (64) by

the symmetric matrix
(

σα′

(xβ)
tσα′

(xβ) σα′

(yβ)
tσα′

(xβ)
σα′

(xβ)
tσα′

(yβ) σα′

(yβ)
tσα′

(yβ)

)

,

and taking traces, we have

Tr(Aα′

(xβ)X)− Tr(Aα′

(yβ)Y )− Tr(∇2φ(x)Aα′

(x))<L2β|xβ − yβ|
2 + o(β−1)

as β → ∞, where L > 0 is the Lipschitz constant in (5) ( or K in (21)). (See
[15], H. Ishii and P.-L. Lions [24]n for this techniques.) Therefore from (65),
for any ε > 0 there exists α′ ∈ A such that

−Tr(∇2φ(x)Aα(x))− < ∇φ(x), bα
′

(x) > <δ + o(β−1),

which contradicts to (63), since δ > 0 is arbitrary. Thus, we showed (i).

Step 2. We shall prove (ii). First of all, from the usual technique to treat
the Neumann boundary condition in the theory of viscosity solutions, we
may replace the conditions to

d1+ < ∇u1, γ > −g(x)<− δ on ∂Ω, (66)
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d2+ < ∇u2, γ > −g(x) ≥ δ on ∂Ω, (67)

where δ > 0 is a small number. (See [15]n.) Then, we assume that (ii) does
not hold, and shall look for a contradiction. So, let

−M+(∇2φ(x)) + inf
α∈A

{< −bα(x),∇φ(x) >} > 0, (68)

< ∇φ(x), γ(x) >> d2 − d1. (69)

It is well known ([27]n) that since ∂Ω is C3,1, by putting

L(x, y) = inf{
∫ 1

0
cij(ξ(t))ξ̇iξ̇jdt | ξ ∈ C1([0, 1];Rn), ξ(0) = y, ξ(1) = x},

where cij(x) is a smooth function, say in C3(Ω) such that for n = (ni)i
∑

j

cij(x)γj(x) = ni(x) any 1<i<n, x ∈ ∂Ω,

we have:

< γ(x),∇xL(x, y) ><
1

C
|y − x|2 any x ∈ ∂Ω, y ∈ Ω, (70)

where C > 0 is a constant. Define, for β > 0

Ψβ(x, y) = u1(x)−u2(y)−φ(
x+ y

2
)−βL(x, y)

+(d1 − g) < γ(x), x− y > +|x− x|4 +
1

2
< ∇φ(x), x− y > in Ω× Ω.

Set

ψ(x, y) = φ(
x+ y

2
) + βL(x, y)− (d1 − g) < γ(x), x− y > −|x− x|4

−
1

2
< ∇φ(x), x− y > .

Let (xβ , yβ) be the maximum point of Ψβ. As in Step1, it is known (see [15])
that

(xβ, yβ) → (x, x), β|xβ − yβ|
2 → 0 as β → ∞,

and that for any ε > 0, there exist X , Y ∈ Sn such that

(∇xψ(xβ, yβ), X) ∈ J2,+
Ω u1(xβ), (−∇yψ(xβ , yβ), Y ) ∈ J2,−

Ω u2(yβ),
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which satisfy (64) with A = D2ψ ∈ S2n.
If (xβ , yβ) ∈ ∂Ω, by using (70) we calculate

< ∇ψ(xβ , yβ), γ(xβ) > +d1 − g(xβ) =<
1

2
∇φ(

xβ + yβ
2

), γ(xβ) >

+2β < γ(xβ),∇xL(xβ , yβ) > −(d1 − g) < γ(xβ), γ(x) >

−4|xβ − x|2 < γ(xβ), xβ − x > − < γ(xβ),
1

2
∇φ(x) > +d1 − g

≥ −
β

C
|xβ − yβ|

2 +O(|xβ − z|3) ≥ o(1) as β → ∞.

< −∇ψ(xβ , yβ), γ(yβ) > +d2 − g(yβ) =< −
1

2
∇φ(

xβ + yβ
2

), γ(yβ) >

−2β < γ(yβ),∇yL(xβ , yβ) > −(d1 − g) < γ(yβ), γ(x) >

+ < γ(yβ),
1

2
∇φ(x) > +d2 − g

<
β

C
|xβ − yβ|

2 + d2 − d1 + o(1)<o(1) as β → ∞.

(In the last inequality, we used the assumption d1 > d2.)
Therefore, by taking account of (66) and (67), regardless the fact that xβ, yβ
∈ Ω or ∈ ∂Ω, we have the following.

F (xβ,∇ψ(xβ, yβ), X)<o(1) as β → ∞,

F (yβ,−∇ψ(xβ , yβ), Y ) ≥ o(1) as β → ∞.

The rest of the argument to obtain a contradiction from the above two in-
equalities is similar to that of Step 1, and we omit it here.

Now, we go back to the proof of Theorem 2.5, which is immediate from
Lemma 2.6. From the strong maximum principle (Lemma A), v, which is
not constant, attains its maximum at some point x1 ∈ ∂Ω

v(x1) > v(x) any x ∈ Ω.

However, as we have seen in the proof of Theorem 2.1 in Step 1, this is not
compatible with < ∇v, γ > <d2 − d1 on ∂Ω, in the sense of viscosity solu-
tions. Thus, we have proved d1 = d2 must be hold.
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If we consider the uniqueness of d in the framework of the C1,1(Ω) solu-
tions, the proof is much simpler. We add this as follows.

Proposition 2.7. Assume that Ω is (7), and that (4), (5) and (6) hold.
Moreover, assume that F satisfies the following comparison: for a subsolution
u and a supersolution v of (1) such that u<v on ∂Ω, u<v in Ω. Then, the
number d such that (1)-(2) has a solution u ∈ C1,1(Ω) is unique.

Proof of Proposition 2.7. We assume that there are two pairs (d1, u1) and
(d2, u2) which satisfy (1)-(2) such that d1 > d2 and ui ∈ C1,1(Ω) (i = 1, 2). By
adding a constant if necessary, we may assume that there is a point x0 ∈ ∂Ω
such that u1(x0) = u2(x0) and

u1(x)<u2(x) on ∂Ω.

Put v = u2 − u1, which satisfies

< ∇v(x), γ(x) >= d1 − d2 > 0, v(x) ≥ 0 on ∂Ω.

From the comparison for (1),

v(x) ≥ 0 any x ∈ Ω.

However, at x0 ∈ ∂Ω, v(x0) = 0 and < ∇v(x0), γ(x0) >> 0 in the classical
sense. Thus, we get a contradiction and d1 = d2.

3 Long time averaged reflection force in half

spaces.

In this section, the existence and uniqueness of the number d in (1)-(2) is
shown in the case that Ω satisfies (8), with a supplement boundary condition
at xn = ∞. We denote

Ω = {(x′, xn)| xn ≥ f(x′), x′ ∈ (R\Z)n−1},

Γ0 = ∂Ω = {(x′, xn)| xn = f(x′), x′ ∈ (R\Z)n−1},
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where f(x′) is periodic in x′ ∈ (R\Z)n−1 and is C3,1. Our goal is to find
a unique number d which admits a viscosity solution u of (1)-(2) such that

u is bounded and periodic in x′. (71)

We begin with the uniqueness of d.

Theorem 3.1. Assume that Ω is (8), and that (4), (5), (6) and (22)
hold. Moreover, assume that

bαn(x)<0 any x ∈ Ω, α ∈ A. (72)

Then, the number d such that (1)-(2) and (71) has a viscosity solution u is
unique.

Proof of Theorem 3.1. We argue by contradiction. Assume that there
exist two pairs (d1, u1) and (d2, u2) which satisfy (1)-(2) and (71), and that
d1 > d2. By using a similar argument to the proof of Lemma 2.6, v = u1−u2
is a subsolution of

−M+(∇2v) + inf
α
{< −bα(x),∇v >}<0 in Ω, (73)

< ∇v, γ(x) >= d2 − d1 < 0 on ∂Ω, (74)

where M+ is the Pucci operator defined in (62) (See [14]n). For R > 0 large
enough, let

ΩR = {(x′, xn)| f(x′)<xn<R},

and define
MR = sup

ΩR

|v|.

(Remark that v is periodic in x′ ∈ (R\Z)n−1 and the above supremum is
well-definded.) Let x0 ∈ Γ0 be a point such that v(x0) = supx∈Γ0

v(x) ≡M0.
Let (x′c, c) ∈ Γ0 be a point such that

c<xn any (x′, xn) ∈ Γ0.

We take

wR(x
′, xn) ≡

MR −M0

R− c
(xn − c) +M0 (x′, xn) ∈ Ω. (75)
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Since MR−M0

R−c
≥ 0, from (72)

−M+(∇2wR) + inf
α
{< −bα(x),∇wR >} ≥ 0 in ΩR,

wR|Γ0
=
MR −M0

R− c
(xn − c) +M0 ≥M0,

wR|ΓR
=MR.

Thus, by using the comparison argument, we get

v<wR in ΩR, any R > 0 large enough.

By (71), tending R → ∞, this yields

v<M0 in Ω.

Therefore, v takes its maximum on Γ0. Finally, by using the strong maxi-
mum principle (Lemma A), (73) and (74) yields a contradiction as we argued
in the proof of Theorem 2.1, Step1. Thus, d1 = d2 must hold.

Remark 3.1. (Counter example.) If we do not assume the boundary
condition at infinity (71), d is not unique in general. For example, consider

−∆u = 0 in {xn ≥ 0} ⊂ Rn, (76)

d+ < ∇u,n(x) >= 0 on {xn = 0} ⊂ Rn, (77)

where n is the outward unit normal, and the solution u is periodic in x′=
(x1, ..., xn−1). Then, for any c, d ∈ R, u = −dxn + c is the solution of (76)-
(77). Thus, the number d in (77) is not unique. (Green’s first identity does
not hold in the half space.)

Next, for the existence of d we approximate (1)-(2) and (71) by

F (x,∇uRλ ,∇
2uRλ ) = 0 in ΩR = {(x′, xn)| f(x′)<xn<R},

< ∇uRλ ,n(x) >= 0 on ΓR = {(x′, xn)| xn = R}, (78)

λuRλ+ < ∇uRλ , γ(x) > −g(x) = 0 on ∂Ω = Γ0 = {xn = f(x′)},

where R > 0 is large enough so that ΓR and Γ0 do not intersect, say R ≥ R0.
We examine the regularity of uRλ uniformly in λ ∈ (0, 1) and R > R0.
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Proposition 3.2. Assume that Ω is (8), and that (4), (6), (21) and (22)
hold. Let R > R0 be fixed, and let uRλ be the solution of (78). Then, there
exists a number dR and a function uR such that

lim
λ↓0

λuRλ (x) = dR,

lim
λ′↓0

(uRλ′(x)− uRλ′(x0)) = uR(x) uniformly in ΩR, (79)

where λ′ → 0 is a subsequence of λ → 0, and x0 is an arbitrarily fixed point
in ΩR0

. The pair (dR, uR) satisfies

F (x,∇uR,∇
2uR) = 0 in ΩR,

< ∇uR,n(x) >= 0 on ΓR, (80)

dR+ < ∇uR, γ(x) > −g(x) = 0 on ∂Ω = Γ0.

The number dR is the unique number such that (80) has a viscosity solution.
Moreover, there exists a constant M > 0 such that

|uR − uR(x0)|L∞(ΩR) < M any R > R0, (81)

|∇uR|L∞(ΩR) < M any R > R0. (82)

Proof of Proposition 3.2. We devide the proof into three steps.
Step 1. First, we shall see

|uRλ (x)− uRλ (x0)|<M any λ ∈ (0, 1), R > R0. (83)

So, put vR = uR − uR(x0). Assume that

(εRλ )
−1 ≡ |vRλ |L∞(ΩR) → ∞ as λ→ 0, R → ∞,

and we seek a contradiction. Put wR
λ ≡ εRλ v

R
λ which satisfies

F (x,∇wR
λ ,∇

2wR
λ ) = 0 in ΩR,

< ∇wR
λ ,n(x) >= 0 on ΓR,

< ∇wR
λ , γ(x) >= εRλ (g − λuRλ ) on Γ0.

27



Since |wR
λ |L∞(ΩR) = 1 (wR

λ (x0) = 0),

w∗(x) = lim sup
R→∞,λ↓0,y→x

wR
λ (y), w∗(x) = lim inf

R→∞,λ↓0,y→x
wR

λ (y),

are well-definded. From the uniform ellipticity (4) and the Krylov-Safonov
interior estimate, for any V ⊂⊂ Ω there exists a constant MV > 0 such that

|∇wR
λ |L∞(V )<MV any λ ∈ (0, 1), R > R0.

Thus, since wλ(x0) = 0 (∀λ ∈ (0, 1)),

w∗(x0) = w∗(x0) = 0. (84)

Moreover from the strong maximum principle (Lemma A), for any R > R0

and λ ∈ (0, 1), wR
λ must take its maximum and minimum on Γ0. (If it takes a

maximun or a minimum on ΓR, we have a contradiction to< ∇wR
λ ,n(x) >= 0

(x ∈ ΓR) in the sense of viscosity solutions as we have seen in the proof of
Theorem 2.1, Step 1.) Hence,

|w∗|L∞(ΩR) = 1 or |w∗|L∞(ΩR) = 1 any R > R0. (85)

Hereafter, we assume that |w∗|L∞(ΩR) = 1. (The case of |w∗|L∞(ΩR) = 1 can
be treated similarly.) The upper semicontinuous function w∗ is a viscosity
solution of

F (x,∇w∗,∇2w∗)<0 in Ω, (86)

< ∇w∗, γ(x) > <0 on Γ0. (87)

We remark that w∗ takes its maximum on Γ0, as w
R
λ (R > R0, λ ∈ (0, 1))

does so. (w∗ is periodic in x′ ∈ (R\Z)n−1.) Then, by the strong maximum
principle (Lemma A) and the fact that w∗ is not constant ((84), (85)), (86)-
(87) lead a contradiction. (See the proof of Theorem 2.1, Step 1.) Therefore,
there exists a constant M > 0 such that

|uRλ (x)− uRλ (x0)|<M any λ ∈ (0, 1), R > R0.

Step 2. Next, we shall show (79) and (82). For this purpose, we are to
have the a priori estimates of |∇uRλ | and |∇2uRλ |. Put

wR
λ =

uRλ − uRλ (x0)

|∇(uRλ − uRλ (x0))|L∞(ΩR)

. (88)
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Remark that wR
λ is a solution of

F (x,∇wR
λ ,∇

2wR
λ ) = 0 in ΩR,

< ∇wR
λ ,n(x) >= 0 on ΓR, (89)

λwR
λ+ < ∇wR

λ , γ(x) > −g = 0 on Γ0, (90)

where
g =

g

|∇(uRλ − uRλ (x0))|L∞(ΩR)

.

Taking account of the periodicity in xi (i = 1, ..., n−1), the above problem is
reduced to the case of bounded domains treated in § 2. Despite the existence
of the different boundary condition (89) on ΓR, the argument in § 2 (and
[31]n) works with a minor modification. (We do not rewrite it here.) Thus,
the a priori estimate:

|∇2wR
λ |L∞(ΩR)<M any λ ∈ (0, 1), R > R0,

where M > 0 is a constant, which leads

|∇2uRλ |L∞(ΩR)<M(|∇uRλ |L∞(ΩR) + 1) any λ ∈ (0, 1), R > R0. (91)

As in § 2, we use the interpolation inequality in Lemma B, with the function
uRλ −u

R
λ (x0), D = ΩR, j = 1, k = 2 and α = β = 0. That is, the interpolation

inequality becomes:

|∇uRλ |L∞(ΩR)<Cε|u
R
λ − uRλ (x0)|L∞(ΩR) + ε|∇2uRλ |L∞(ΩR). (92)

By combining (81), (91) and (92),

|∇2uRλ |L∞(ΩR)<M any λ ∈ (0, 1), R > R0,

|∇uRλ |L∞(ΩR)<M any λ ∈ (0, 1), R > R0.

Thus, by extracting a subsequence λ′ ↓ 0, there exists a number dR and a
function uR such that

λ′uRλ′ → dR, uRλ′ − uRλ′(x0) → uR,

and
|∇uR|L∞(ΩR)<M any R > R0.
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Thus, we proved (79) and (82).

Step 3. We shall complete the proof by showing that the above limit dR is
the unique number such that (80) has a viscosity solution (and is independent
of the choice of λ′ → 0). We argue by contradiction, and assume that there
exist two pairs (dR, uR) and (d′R, u

′
R) (dR > d′R) satisfying (80). Denote

v = uR − u′R. A similar argument used in the proof of Lemma 2.6 leads

−M+(∇2v) + inf
α∈A

{< −bα(x),∇v >}<0 in ΩR,

< ∇v,n(x) > <0 on ΓR,

< ∇v, γ(x) > <d′R − dR on Γ0.

Since v is not constant, from the strong maximum principle (Lemma A), v
attains its maximum at x0 ∈ Γ0:

v(x0) > v(x) any x ∈ ΩR.

However, as we have seen in the proof of Theorem 2.1 Step1, since d′R−dR <
0, it is not compatible with the preceding boundary conditions on Γ0 and
ΓR. Therefore, we get a contradiction and dR = d′R must hold.

Theorem 3.3. Assume that Ω is (8), and that (4), (6), (21) and (22)
hold. Then, there exists a unique number d such that (1)-(2) and (71) has a
viscosity solution u.

Proof of Theorem 3.3. By comparison, there exists a constant C > 0 such
that

|λuRλ |L∞(ΩR)<C any λ ∈ (0, 1), R > R0,

and thus |dR| < C for any R > R0. Therefore, by using (81) and (82), we
can extract a subsequence R′ → ∞ such that there exist a number d and a
function u such that

dR′ → d as R′ → ∞,

uR′ → u as R′ → ∞, locally uniformly in Ω.

From the stability results,

F (x,∇u,∇2u) = 0 in Ω,
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d+ < ∇u, γ(x) > −g(x) = 0 on Γ0,

|u|L∞(Ω) < M.

The uniqueness of d was proved in Theorem 3.1, and we can end the proof.

Remark 3.2. From the view point of the stochastic process (13), the
approximating system (80) gives a kind of boundary condition at infinity.
It forces the admissible trajectories of (13) (corresponding to (1)-(2) and
(71)) to be pushed back inward at some finite xn = R. Therefore, the
condition (72) is quite reasonable. (In [10]n, the ergodic problem in un-
bounded domain (not on the boundary like (2)) is solved with the condition
limx→∞ bαn(x) = −∞, which is stronger than (72).)

4 Remarks on some degenerate cases.

The number d in (1)-(2) exists even for degenerate operators. In this sec-
tion, we give a sufficient condition for the existence (in a weeker sense) and
two classes of operators satisfying the sufficient condition. The following two
examples illustrate the existence and non-uniqueness of d. In the case of
degenerate operators, the uniqueness does not hold in general.

Example 4.1. Consider

|∇u| = 0 in Ω,

d+ < ∇u,n(x) > −g(x) = 0 on ∂Ω, (93)

where Ω ⊂ Rn is a bounded open domain with a smooth boundary ∂Ω, n is
the outward unit normal to Ω, and g is Lipschitz continuous on ∂Ω. Then,
any d such that

d<min
x∈∂Ω

g(x)

and u ≡ C (constant) satisfies (93) in the sense of viscosity solutions. In fact,
it is clear that u satisfies the equation in Ω. To see the boundary condition
in the viscosity sense,

max{|∇u|, d+ < ∇u,n(x) > −g(x)} ≥ 0 on ∂Ω,
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shows that u is a supersolution on ∂Ω. For any φ ∈ C1 such that u−φ takes
its strict maximum at x0 ∈ ∂Ω, if d<min∂Ω g then

< ∇φ,n(x) > <0 <g(x)− d on ∂Ω.

Thus,
min{|∇u|, d+ < ∇u,n(x) > −g(x)}<0 on ∂Ω,

in the sense of viscosity solutions, and u is a subsolution on ∂Ω.

Example 4.2. Let Ω= (R/Z)× (0, 1)⊂ R2 (periodic in x1). Consider

−
∂2u

∂x21
+ |

∂u

∂x2
| = 0 in Ω,

(94)

d+ < ∇u,n(x) > −g(x) = 0 on ∂Ω,

where n is the outward unit normal to Ω, g is Lipschitz continuous on ∂Ω.
Then, any d such that

d<min
x∈∂Ω

g(x)

and u ≡ C (constant) satisfies (94) in the sense of viscosity solutions. In
fact clearly, u is a viscosity solution in Ω. To see that u is a supersolution
on ∂Ω, suppose for φ ∈ C1, u − φ takes its strict minimum at x0 ∈ ∂Ω.
Since u = C on x1 = 0, 1, we remark that such φ ∈ C2 must not satisfy
−∂2φ

∂x2

1

(x0)<0. Thus,

−
∂2φ

∂x21
(x0) + |

∂φ

∂x2
(x0)| ≥ 0,

and u is a viscosity super solution on ∂Ω. The fact that u is a subsolution
on ∂Ω is same to Example 4.1.

Remark 4.1. In the above examples the numbers d are not unique.

The operators F studied here are given in (3) with degenerate coefficients.
For such operators, we approximate (1)-(2) by

−ε∆uε + F (x,∇uε,∇
2uε) = 0 in Ω, (95)

dε+ < ∇uε, γ(x) > −g(x) = 0 on ∂Ω, (96)
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where ε ∈ (0, 1). The domain Ω is either (7) or (8), and in the case of (8)
the condition at infinity (71) is added. For any ε > 0, the existence and the
uniqueness of dε and the existence of uε come from Theorems 2.4, 2.5, and
3.3, for (95) is uniformly elliptic.

Proposition 4.1. Let Ω be a domain either (7) or (8). In the case
of (7), assume all conditions but (4) in Theorems 2.4 and 2.5. In the case
of (8), assume all conditions but (4) in Theorem 3.3. (Thus, F is possibly
degenerate.) Let dε (ε > 0) be the number such that (95)-(96) (and (71) in
the case of (8)) has a viscosity solution uε. Assume that there is a number
M > 0 such that

|uε − uε(x0)|L∞(Ω) < M any ε ∈ (0, 1). (97)

Then, there exists a number d (not necessarily unique) such that (1)-(2) (and
(71) in the case of (8)) has a viscosity subsolution u and a supersolution u.

Proof of Proposition 4.1. Put vε = uε − uε(x0). Since dε is bounded in
ε ∈ (0, 1), we can take a subsequence ε′ → 0 such that limε′→0 dε = d holds
for a constant d. From (97),

v∗(x) = lim sup
ε′↓0,y→x

vε(y), v∗(x) = lim inf
ε′↓0,y→x

vε(y)

are well-definded. Then, from the usual stability result (see [15]n), (d, v∗)
and (d, v∗) are respectively viscosity sub and super solutions of (1)-(2) (and
(71) in case of (8)).

Remark 4.2. In the above proposition v∗ 6= v∗ in general, and thus the
result is weaker than uniformly elliptic cases.

Next, we give a class of operators satisfying (97). The first class admits
the existence of the uniformly elliptic part:

there exists a point x0 ∈ Ω such that in a small neighborhood B(x0, r) ⊂
Ω (r > 0), there exist constants λ2 and Λ2 such that 0 < λ2<Λ2 and

λ2I<(a
α
ij)1<i,j<n<Λ2 any α ∈ A, x ∈ B(x0, r). (98)
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The second class admits the existence of the ”controllability” part (see
[2]):

there exists a point x0 ∈ Ω such that for a small neighborhood B(x0, r) ⊂
Ω (r > 0),

lim
|p|→∞

F (x, p,X) → ∞ uniformly in x ∈ Ω, X ∈ Sn. (99)

Thorem 4.2. Let Ω be a domain either (7) or (8). In the case of
(7), assume all conditions but (4) in Theorems 2.4 and 2.5. In the case
of (8), assume all conditions but (4) in Theorem 3.3. (Thus, F is possibly
degenerate.) Assume also that F satisfies (31), (32) and (33), and that
either (98) or (99) holds. Then, the solutions uε (ε > 0) of (95)-(96) (and
(71) in the case of (8)) satisfy (97). Moreover, there exists a number d (not
necessarily unique) such that (1)-(2) (and (71) in the case of (8)) has a
viscosity subsolution u and a supersolution u.

Proof of Theorem 4.2. Assume that (97) does not hold, and we shall look
for a contradiction. Let x0 be a point satisfying (98) or (99), and assume
that |uε − uε(x0)|L∞(Ω) → ∞ as ε > 0 goes to 0. Put

vε =
uε − uε(x0)

|uε − uε(x0)|L∞(Ω)

.

The function vε satisfies

−ε∆vε + F (x,∇vε,∇
2vε) = 0 in Ω,

< ∇vε, γ >=
g(x)− dε

|uε − uε(x0)|L∞(Ω)
on ∂Ω.

Since |vε|L∞(Ω) = 1,

v∗(x) = lim sup
ε↓0,y→x

vε(y), v∗(x) = lim inf
ε↓0,y→x

vε(y),

are well definded. Now, in the case of (98), we use the Krylov-Safonov
inequality as before to have

v∗(x0) = v∗(x0) = 0. (100)
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In the case of (99), by using the argument in [24], [27]n we have also the uni-
form continuity of uε (ε ∈ (0, 1)) in B(r, x0), and (100) holds. In conclusion,
(100) holds in both cases of (98) and (99).
We continue the proof, and see easily either |v∗|

L∞(Ω) = 1 or |v∗|L∞(Ω) = 1

holds. If |v∗|
L∞(Ω) = 1, since

F (x,∇v∗,∇2v∗)<0 in Ω,

< ∇v∗, γ > <0 on ∂Ω,

the strong maximum principle (Lemma A) leads a contradiction, for v∗ is not
constant (100). (See the proof of Theorem 2.1, Step 1.) If |v∗|L∞(Ω) = 1, the
same argument works, too. Therefore, uε satisfies (97), and Proposition 4.1
leads the remained claim.

As for the uniqueness of d, we do not have the general result, and shall
give the following Example in which the uniqueness holds.

Example 4.3. Let Ω= {(x1, x2)| x1 ∈ R\Z, x2 > 0}⊂ R2 (periodic in
x1). Assume that there exists a number d such that

−
∂2u

∂x22
−

∂u

∂x1
= 0 in Ω,

d+ < ∇u,n(x) > −g(x) = 0 on ∂Ω,

where u is bounded, and n is the outward unit normal to Ω. Then, d =
∫ 1
0 g(x1, 0)dx1.

In fact, by integrating the above problem in x1 ∈ [0, 1], u(x2) =
∫ 1
0 u(x1, x2)dx1

satisfies

−
∂2u(x2)

∂x22
= 0 in (0,∞),

d−
∂u(0)

∂x2
−
∫ 1

0
g(x1, 0)dx1 = 0 on x2 = 0,

and u is bounded. From Theorem 3.3, we know that such a number d is
unique. Since d =

∫ 1
0 g(x1)dx1 and u ≡ C (constant) satisfy the above, we

proved the claim.
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5 Homogenization of oscillating Neumann type

boundary conditions.

In this section, we study the following homogenization problem.

G(x,∇uε,∇
2uε) = sup

α∈A
{−

2
∑

ij=1

aαij(x)
∂2uε
∂xi∂xj

−
2
∑

i=1

bαi (x)
∂uε
∂xi

} = 0 (101)

in Ωε = {(x1, x2)| − a<x1<a, f0(x1) + εf1(x1,
x1
ε
)<x2<b} ⊂ R2,

< ∇uε,nε > +c(x1,
x1
ε
)uε = g(x1,

x1
ε
) (102)

on Γε = {(x1, x2)| − a<x1<a, x2 = f0(x1) + εf1(x1,
x1
ε
)},

uε = 0 on ∂Ωε\Γε, (103)

where ε > 0, aαij(x), b
α
i (x) are Lipschitz in x satisfying (5), nε(x) is the

outward unit normal to Ωε,

c, g, f1(x1, ξ1) are defined in Ωε ×R, periodic in ξ1 ∈ R\Z,
(104)

0<f1(x1, ξ1), 0 < C < c(x, ξ1) in Ωε ×R\Z, (105)

where C > 0 is a constant,

f ′
0(±a) = 0,

∂f1
∂ξ1

(±a, ξ1) = 0, (106)

denoting Aα = (aαij(x))1<i,j<n,

λ1<Aα<Λ1 any α ∈ A. (107)

We are interested in the limit of uε of (101)-(103) as ε goes to 0. Re-
mark that this problem is a straightforward generalization of Example 1.2,
a similar case of which was treated in [22] by the variational method. For
our nonlinear problem, we need further assumptions listed in the following.
These assumptions come from the formal asymptotic expansion of uε which
we describe in below. (See also Remark 5.1 and Lemma 5.1 in below.)
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bα1 ≡ 0, bα2 = aα11f
′′
0 any α ∈ A, x ∈ Ωε, (108)

{aα11(1+ f ′2
0 )− 2aα12f

′
0 + aα22}

2 ≥ 4(aα11a
α
22 − aα12

2) forall α ∈ A, x ∈ Ωε,
(109)

and for

O(x1) = {(ξ1, ξ2)| ξ2 ≥ f1(x1, ξ1), periodic in ξ1},

∂O(x1) is C3,1. (110)

The existence and uniqueness of uε (ε > 0) is established in the general
viscosity solutions theory. (See [15]n.) Our goal is to show the existence of
u(x) such that

lim
ε→0

uε(x) = u(x) uniformly in Ω, (111)

where Ω= {(x1, x2)| − a<x1<a, f0(x1)<x2<b}, and to find the effective
limit P.D.E. and B.C. for u. As for (111), we remark that our convergence is
in L∞, while in [22]n the convergence was in H1. The limit (effective) P.D.E.
and B.C. are given by using the long time averaged result in § 3. Let us
begin by deriving the cell problem for (101)-(103) by the formal asymptotic
expansions method:

uε = u(x) + εv(
x1
ε
,
x2 − f0(x1)

ε
) +O(ε2), (112)

where we are assuming that ”the corrector” v depends only on ξ1 =
x1

ε
and

ξ2 =
x2−f0(x1)

ε
(ξ1, ξ2 are rescaled variables.) From (112), we obtain

∂uε
∂x1

=
∂u

∂x1
+
∂v

∂ξ1
− f ′

0(x1)
∂v

∂ξ2
+O(ε),

∂uε
∂x2

=
∂u

∂x2
+
∂v

∂ξ2
+O(ε), (113)

∂2uε
∂x21

=
∂2u

∂x21
− f ′′

0 (x1)
∂v

∂ξ2
+

1

ε
{
∂2v

∂ξ21
− 2f ′

0(x1)
∂2v

∂ξ1∂ξ2
+ (f ′

0)
2∂

2v

∂ξ22
}+O(ε),

∂2uε
∂x1∂x2

=
∂2u

∂x1∂x2
+

1

ε
(
∂2v

∂ξ1∂ξ2
− f ′

0(x1)
∂2v

∂ξ22
) +O(ε),

∂2uε
∂x22

=
∂2u

∂x22
+

1

ε

∂2v

∂ξ22
+O(ε), (114)
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First, by introducing (113) and (114) into

−
2
∑

i,j=1

aαij
∂2uε
∂xi∂xj

−
2
∑

i=1

bαi
∂uε
∂xi

=

= −{aα11
∂2u

∂x21
+ 2aα12

∂2u

∂x1∂x2
+ aα22

∂2u

∂x22
− aα11f

′′
0 (x1)

∂v

∂ξ2

+bα1 (
∂u

∂x1
+
∂v

∂ξ1
− f ′

0

∂v

∂ξ2
) + b2(

∂u

∂x2
+
∂v

∂ξ2
)}

−
1

ε
[aα11{

∂2v

∂ξ21
− 2f ′

0(x1)
∂2v

∂ξ1∂ξ2
+ (f ′

0)
2∂

2v

∂ξ22
}+ 2aα12(

∂2v

∂ξ1∂ξ2
− f ′

0(x1)
∂2v

∂ξ22
)

+aα22
∂2v

∂ξ22
]

and by using (108),

= −(aα11
∂2u

∂x21
+ 2aα12

∂2u

∂x1∂x2
+ aα22

∂2u

∂x22
) (115)

−
1

ε
[aα11

∂2v

∂ξ21
+ 2(aα12 − aα11f

′
0(x1))

∂2v

∂ξ1∂ξ2
+ {aα11(f

′
0)

2 − 2aα12f
′
0 + aα22}

∂2v

∂ξ22
].

Remark 5.1. The condition (108) was used to efface the dependence on
ξ (microscopic variable) in the ordinary order (O(1)) part in (115).

Let (x, r, p) ∈ Ω ×R ×R2 (p = (p1, p2)) be arbitrarily fixed, and define
the following operators.

P α
x,r,p(D

2
ξv(ξ1, ξ2)) ≡ (116)

≡ −[aα11
∂2v

∂ξ21
+ 2(aα12 − aα11f

′
0)

∂2v

∂ξ1∂ξ2
+ {aα11(f

′
0)

2 − 2aα12f
′
0 + aα22}

∂2v

∂ξ22
]

in O(x1), and

Px,r,p(D
2
ξv(ξ1, ξ2)) ≡ sup

α∈A
{P α

x,r,p(D
2
ξv(ξ1, ξ2)} in O(x1). (117)

Next, by introducing (113) into (102), we have

1
√

1 + (f ′
0 +

∂f

∂ξ1
)2
{(f ′

0 +
∂f1
∂ξ1

)
∂u

∂x1
−

∂u

∂x2
}
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= g(x, ξ1)− c(x, ξ1)u−
1

√

1 + (f ′
0 +

∂f1
∂ξ1

)2
{(f ′

0 +
∂f1
∂ξ1

)(
∂v

∂ξ1
− f ′

0

∂v

∂ξ2
)−

∂v

∂ξ2
}.

By denoting the outward unit normal to the boundary of

Ω = {(x1, x2)| − a<x1<a, x2 ≥ f0(x1)}

as

ν =
1

√

1 + (f ′
0)

2
(f ′

0,−1),

the above equation on the boundary becomes

< ∇u, ν > =
1

√

1 + (f ′
0)

2
[−

∂u

∂x1

∂f1
∂ξ1

−

√

1 + (f ′
0 +

∂f1
∂ξ1

)2(cu− g)

−(f ′
0 +

∂f1
∂ξ1

)
∂v

∂ξ1
+ {f ′

0(f
′
0 +

∂f1
∂ξ1

) + 1}
∂v

∂ξ2
]. (118)

Let

γ(ξ1, ξ2) =
(f ′

0 +
∂f1
∂ξ1
,−{f ′

0(f
′
0 +

∂f1
∂ξ1

) + 1})
√

1 + (f ′
0)

2
on ∂O(x1), (119)

and for (x, r, p) ∈ Ω×R×R2

H(x, r, p, ξ) =
1

√

1 + (f ′
0)

2
{−

√

1 + (f ′
0 +

∂f1
∂ξ1

)2(c(x, ξ1)r − g)− p1
∂f1
∂ξ1

}.

(120)
Then, (118) becomes

< ∇u, ν >= −{< γ,∇ξv > −H(x, r, p, ξ)}. (121)

From (115), (116), (117) and (121), the cell problem for (101)-(103) should
be the following: for any fixed (x, r, p) ∈ Ω×R×Rn, find a unique number
d(x, p, r) such that the following problem has a viscosity solution (corrector)
v(ξ1, ξ2).

Px,r,p(D
2
ξv(ξ1, ξ2)) = 0 in O(x1),

d(x, r, p)+ < ∇ξv, γ > −H(x, r, p, ξ) = 0 on ∂O(x1),

v is bounded in O(x1). (122)
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Lemma 5.1. Let (109) hold. Then, the operators P α
x,r,p(ξ1, ξ2) are uni-

formly elliptic operators uniformly in α ∈ A: there exist constants 0 < λ′1 <
Λ′

1 such that

λ′1I<

(

aα11 aα12 − aα11f
′
0

aα12 − aα11f
′
0 aα22 − 2aα12f

′
0 + aα11f

′
0

)

<Λ′
1I any α ∈ A.

Proof of Lemma 5.1. The claim can easily confirmed by an elementary
calculation. And we leave it to the readers.

Lemma 5.2. Let α ∈ A and (x, r, p) be fixed, and let O(x1), P
α
x,r,p(D

2
ξ),

γ(ξ) and H(x, r, p, ξ) be defined in (110), (116), (119) and (120). Assume
that (104)-(110) hold. Then, there exists a unique number dα(x, r, p) such
that the following problem has a viscosity solution v(ξ1, ξ2).

P α
x,r,p(D

2
ξv(ξ1, ξ2) = 0 in O(x1),

dα(x, r, p)+ < ∇ξv, γ > −H(x, r, p, ξ) = 0 on ∂O(x1),

v is bounded in O(x1). (123)

Proof of Lemma 5.2. From (119), we confirm easily that there exists a
positive constant γ1 > 0 such that

< γ, ζ > > γ1 > 0 on ∂O(x1),

where ζ =
(
∂f1
∂ξ1

,−1)
√

(
∂f1
∂ξ1

)2+1
the outward unit normal to ∂O(x1). Then from The-

orem 3.3, there exists a unique number dα(x, r, p) such that (123) has a
viscosity solution v.

Lemma 5.3. We assume the same assumptions as in Lemma 5.2. For
any fixed (x, r, p), there exists a unique number d such that (122) has a vis-
cosity solution v(ξ1, ξ2). Moreover,

d(x, r, p)<dα(x, r, p) any α ∈ A. (124)
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Proof of Lemma 5.3. From Theorem 3.3, there exists a unique number
d(x, r, p) such that (122) has a viscosity solution v. The inequality (124)
comes from the construction of the number d and dα in the proofs of Propo-
sition 3.2. and Theorem 3.3. That is,

d = lim
R→∞

dR, dα = lim
R→∞

dαR,

where d and dR (R ∈ N) are characterized by the following: for OR(x1) =
O(x1) ∩ {ξ2<R}

Px,r,p(D
2
ξvR(ξ1, ξ2) = 0 in OR(x1),

dR(x, r, p)+ < ∇ξvR, γ > −H(x, r, p, ξ) = 0 on ∂O(x1),

< ∇ξvR,n >= 0 on {ξ2 = R},

and

P α
x,r,p(D

2
ξv

α
R(ξ1, ξ2) = 0 in OR(x1),

dαR(x, r, p)+ < ∇ξv
α
R, γ > −H(x, r, p, ξ) = 0 on ∂O(x1),

< ∇ξv
α
R,n >= 0 on {ξ2 = R},

where n is the outward unit normal to ∂OR(x1) on {ξ2 = R}. From the
stochastic representations (15) of dR and dαR in the approximating problems
(78), we see that

dR<d
α
R any R ∈ N.

Therefore, (124) was proved.

Since the oscillating Neumann boundary condition prevent us from ob-
taining the uniform gradient bounds of uε (ε > 0), we need to treat the upper
and lower envelopes.

Lemma 5.4. Assume that (5), (104)-(110) hold. Let uε be the solution
of (101)-(103). Then, there exists a constant M > 0 such that

|uε| < M any ε ∈ (0, 1). (125)

Proof of Lemma 5.4. Let x0 = (0, b+ r) ∈ R2, where r > 0. Define

v(x) = A(r−p − |x− x0|
−p) x ∈ Ωε.
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Then, for A > 0 large enough, v is a super solution of (101)-(103) for any
ε ∈ (0, 1). From the comparison result for (101)-(103), we get (125).

From (125),

u∗(x) = lim sup
ε↓0,y→x

uε(y), u∗(x) = lim inf
ε↓0,y→x

uε(y) x ∈ Ω,

are well-definded. Moreover, from (107) and the Krylov-Safonov inequality
we can extract a subsequence ε′ → 0 such that

lim
ε′↓0

uε′ = u locally uniformly in Ω, u∗ ≥ u ≥ u∗. (126)

We claim the following.

Lemma 5.5. Assume that (104)-(110) hold. Then, u∗ and u∗ are respec-
tively viscosity sub and super solutions of the following problem.

sup
α∈A

{−
n
∑

i,j=1

aαij
∂2u

∂xi∂xj
−

n
∑

i=1

bαi
∂u

∂xi
} = 0 in Ω, (127)

< ∇u, ν > +L(x, u,∇u) = 0 on Γ0, (128)

where ν is the outward unit normal to Ω defined on

Γ0 = {(x1, x2)| − a<x1<a, x2 = f0(x1)},

and for (x, r, p) ∈ Ω×R×R2,

L(x, r, p) = −d(x, r, p), (129)

where d(x, r, p) is defined in (122).

Proof of Lemma 5.5. From (126) and by the usual stability results of the
viscosity solutions, it is clear that (127) holds. In the following, we shall see
(128).

Step 1. We shall show that u∗ satisfies

< ∇u∗, ν > +L(x,∇u∗,∇2u∗)<0 on Γ0,
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in the sense of viscosity solutions. Remark that Ωε ⊂ Ω for any ε ∈ [0, 1). Let
φ ∈ C2(Ω) be such that u∗−φ takes its strict maximum at x0 = (x01, x02)∈ Γ0

with u∗(x0) = φ(x0). From the definition of the Neumann type boundary
condition in the sense of viscosity solutions, we are to show either

sup
α∈A

{−
∑

ij

aαij
∂2φ

∂xi∂xj
(x0)−

∑

i

bαi
∂φ

∂xi
(x0)}<0, (130)

or
< ∇φ(x0), ν > +L(x0,∇φ(x0),∇

2φ(x0))<0. (131)

We shall assume that both (130) and (131) are not true, and shall seek a
contradiction. Thus, assume there exist constants θ1 and θ2 such that

sup
α∈A

{−
∑

ij

aαij
∂2φ

∂xi∂xj
(x0)−

∑

i

bαi
∂φ

∂xi
(x0)} ≡ θ1 > 0, (132)

< ∇φ(x0), ν > +L(x0,∇φ(x0),∇
2φ(x0)) ≡ θ2 > 0. (133)

For (x0, r0, p0) = (x0, φ(x0),∇φ(x0)), from Lemma 5.2 there exists a num-
ber d(x0, r0, p0) and v of

Px0,r0,p0(D
2
ξv(ξ1, ξ2)) = 0 in O(x01), (134)

d(x0, r0, p0)+ < ∇ξv, γ > −H(x0, r0, p0, ξ) = 0 on ∂O(x1).

Since ξ2 ≥ f1(x1, ξ1) for any (ξ1, ξ2) ∈ O(x1), we may define

φε(x1, x2) = φ(x1, x2) + εv(
x1
ε
,
x2 − f0(x1)

ε
) in Ωε.

We claim that φε is the viscosity supersolution of

sup
α∈A

{−
∑

ij

aαij
∂2φε

∂xi∂xj
−
∑

i

bαi
∂φε

∂xi
} >

1

4
θ1 in B(x0, r) ∩ Ωε, (135)

< ∇φε,nε > +c(x,
x1
ε
)φε − g(x,

x1
ε
) >

1

4
θ2 on B(x0, r) ∩ Γε, (136)

in the sense of viscosity solutions in some small neighborhood of x0, B(x0, r)
(r > 0 is uniform in ε ∈ (0, 1)). To see this, assume for ψ ∈ C2(Ω), φε − ψ
takes its minimum at (x1, x2) with φε(x1, x2) = ψε(x1, x2).
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First, let us assume that (x1, x2) ∈ Ωε. We write

η(ξ1, ξ2) ≡
1

ε
(ψ − φ)(εξ1, εξ2 + f0(εξ1)) (ξ1, ξ2) ∈ O(x1), (137)

ξ1 ≡
x1
ε
, ξ2 ≡

x2 − f0(x1)

ε
.

Hence,
(v − η)(ξ1, ξ2)<(v − η)(ξ1, ξ2),

in a neighborhood of (x01

ε
, x02−f0(x01)

ε
) ≡ (ξ01, ξ02). Now, from (137),

∂η

∂ξ1
=

∂

∂x1
(ψ − φ) +

∂

∂x2
(ψ − φ)f ′

0(εξ1),

∂η

∂ξ2
=

∂

∂x2
(ψ − φ), (138)

∂2η

∂ξ21
= ε{

∂2

∂x21
(ψ − φ) + 2

∂2

∂x1∂x2
(ψ − φ)f ′

0 +
∂2

∂x22
(ψ − φ)(f ′

0)
2

+
∂

∂x2
(ψ − φ)f ′′

0 },

∂2η

∂ξ1∂ξ2
= ε{

∂2

∂x1∂x2
(ψ − φ) +

∂2

∂x22
(ψ − φ)(f ′

0)},

∂2η

∂ξ22
= ε

∂2

∂x22
(ψ − φ). (139)

Since v(ξ1, ξ2) is the viscosity solution of (134), by (137), (138) and (139),
for any δ > 0 there exists a control α ∈ A such that

−[aα11{
∂2

∂x21
(ψ − φ) + 2

∂2

∂x1∂x2
(ψ − φ)f ′

0 +
∂2

∂x22
(ψ − φ)(f ′

0)
2 +

∂

∂x2
(ψ − φ)f ′′

0 }

+2(aα12 − aα11f
′
0){

∂2

∂x1∂x2
(ψ − φ) +

∂2

∂x22
(ψ − φ)(f ′

0)}

+(aα22 − 2aα12f
′
0 + aα11(f

′
0)

2)
∂2

∂x22
(ψ − φ)(x1, x2)] ≥ −δ.

We can simplify the above by using aα11f
′′
0 = bα2 ((108)) to

(−
∑

ij

aαij(x0)
∂2ψ

∂xi∂xj
−
∑

i

bαi (x0)
∂ψ

∂xi
+
∑

ij

aαij(x0)
∂2φ

∂xi∂xj

+
∑

i

bαi (x0)
∂φ

∂xi
)(x1, x2) ≥ −δ.
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Thus, since δ > 0 is arbitrary,

sup
α∈A

{−
∑

ij

aαij(x0)
∂2ψ

∂xi∂xj
−
∑

i

bαi (x0)
∂ψ

∂xi
}(x1, x2)

≥ (−
∑

ij

aαij(x0)
∂2ψ

∂xi∂xj
−
∑

i

bαi (x0)
∂ψ

∂xi
)(x1, x2)

≥ −δ + (−
∑

ij

aαij(x0)
∂2φ

∂xi∂xj
−
∑

i

bαi (x0)
∂φ

∂xi
)(x1, x2) ≥

θ1
2
,

for (x1, x2) is near to x0, and for r > 0 small enough. Therefore, (135) was
shown.

Next, we assume
(x1, x2) ∈ Γε. (140)

Again, we use the same function η defined in (137) and denote ξ1 = x1

ε
,

ξ2 =
x2−f0(x1)

ε
,

(ξ1, ξ2) = (
x1
ε
,
x2 − f0(x1)

ε
), (ξ01, ξ02) = (

x01
ε
,
x02 − f0(x01)

ε
).

Thus,
(v − η)(ξ1, ξ2)<(v − η)(ξ1, ξ2), (141)

in a small neighborhood of (ξ01, ξ02). By (140) x2 = f0(x1) + εf1(x,
x1

ε
), and

ξ2 = f1(x, ξ1), (ξ1, ξ2) ∈ ∂O(x1).

Since v satisfies (134), from the definition of the viscosity solution

Px0,φ(x0),∇φ(x0)(D
2
ξη)(ξ1, ξ2) ≥ 0, (142)

or

d(x0, φ(x0),∇φ(x0))+ < ∇ξη, γ > (ξ1, ξ2)−H(x0, φ(x0),∇φ(x0), ξ1, ξ2) ≥ 0.
(143)

In the case of (142), as before we obtain

sup
α∈A

{−
∑

ij

aαij(x)
∂2ψ

∂xi∂xj
(x)−

∑

i

bαi (x)
∂ψ

∂xi
(x)} >

1

4
θ1. (144)
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In the case of (143), from (129), (120) and (143),

−L(x0, φ(x0),∇φ(x0)) +
1

√

(f ′
0)

2 + 1
< ∇ξη, (f

′
0 +

∂f1
∂ξ1

,−f ′
0(f

′
0 +

∂f1
∂ξ1

)− 1) >

(145)

−
1

√

(f ′
0)

2 + 1
(−

√

1 + (f ′
0 +

∂f1
∂ξ1

)2c(x, ξ1)φ−
∂φ

∂x1

∂f1
∂ξ1

+

√

1 + (f ′
0 +

∂f1
∂ξ1

)2g) ≥ 0.

Introducing (138) to (145)

−L(x0, φ(x0),∇φ(x0)) +
1

√

(f ′
0)

2 + 1
< ∇(ψ − φ)(x0), (f

′
0 +

∂f1
∂ξ1

,−1) >

−
1

√

(f ′
0)

2 + 1
(−

√

1 + (f ′
0 +

∂f1
∂ξ1

)2cφ−
∂φ

∂x1

∂f1
∂ξ1

+

√

1 + (f ′
0 +

∂f1
∂ξ1

)2g) ≥ o(ε),

and deviding the both hands sides of the above by
√

1 + (f ′
0 +

∂f1
∂ξ1

)2, by
remarking that

nε = (
f ′
0 +

∂f1
∂ξ1

√

1 + (f ′
0 +

∂f1
∂ξ1

)2
,

−1
√

1 + (f ′
0 +

∂f1
∂ξ1

)2
) + o(ε),

we have

1
√

(f ′
0)

2 + 1
< ∇ψ(x0),nε > −

L(x0, φ(x0),∇φ(x0))
√

1 + (f ′
0 +

∂f1
∂ξ1

)2

≥
1

√

1 + (f ′
0 +

∂f1
∂ξ1

)2
< ∇φ, ν > −

1
√

(f ′
0)

2 + 1
cφ+

1
√

(f ′
0)

2 + 1
g + o(ε).

By using (133) and multiplying the both hands sides of the above by
√

(f ′
0)

2 + 1,
we get

< ∇ψ(x0),nε > +cφ(x0)−g ≥ L(x0, φ(x0),∇φ(x0))+ < ∇φ(x0), ν >≡ θ2 > 0,

and for r > 0 and ε > 0 small enough,

< ∇ψ(x1),nε > +cφ(x1)− g ≥
1

2
θ2. (146)
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We have proved (136). Thus, in B(x0, r) ∩ Ωε, we have (135)-(136) and
(1)-(2). Therefore,

max
B(x0,r)∩Ωε

(uε − φε) = max
∂(B(x0,r)∩Ωε)

(uε − φε).

From (102) and (136), by using a similar argument in the proof of Lemma
2.6,

< ∇(uε − φε),nε > +c(uε − φε) < −
1

4
θ2 < 0 on Γε ∩ B(x0, r),

in the sense of viscosity solutions. By letting ε tends to zero, max(uε − φε)
goes to zero and there exists ε0 > 0 such that

< ∇(uε−φε),nε > < −
1

8
θ2 < 0 on Γε∩B(x0, r) any ε ∈ (0, ε0).

From this, if uε − φε (ε ∈ (0, ε0)) takes its local maximum on Γε ∩Br(x0)
the strong maximum principle (Lemma A) leads a contradiction. Thus,
uε − φε must take its maximum on ∂B(x0, r) ∩ Ωε\Γε, that is on ∂B(x0, r).
However this contradicts to the fact that u− φ takes its strong maximum in
B(x0, r) ∩ Ω at x0. Thus, we proved (130)-(131).

Step 2. The fact that u∗ is a supersolution of

< ∇u∗, ν > +L(x,∇u∗,∇
2u∗)<0 on Γ0,

in the sense of viscosity solutions can be shown similarly to (and slightly
easier than) Step 1. We omit the details, since the argument is parallel.

From the above, we complete the proof of Lemma 5.5.

Lemma 5.6. Assume that (104)-(110) hold. Then,

u∗ = u∗ = 0 x ∈ ∂Ω\Γ0.

Proof of Lemma 5.6. Let x0 ∈ ∂Ωε\Γε be arbitrarily fixed. We can take
v and v, sub and super solutions of

sup
α∈A

{−
∑

ij

aαij
∂2v

∂xi∂xj
−
∑

i

bαi
∂v

∂xi
}<0 in Ωε,
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< ∇v,nε > +cv<g on Γε,

v(x0) = 0, v(x)<0 on ∂Ω\Γε,

and

sup
α∈A

{−
∑

ij

aαij
∂2v

∂xi∂xj
−
∑

i

bαi
∂v

∂xi
} ≥ 0 in Ωε,

< ∇v,nε > +cv ≥ g on Γε,

v(x0) = 0, v(x) ≥ 0 on ∂Ω\Γε.

From the comparison,

v<uε<v any ε ∈ (0, 1),

and thus
v<u∗<u

∗<v any x ∈ Ω.

In particular, at x0,

v(x0) = u∗(x0) = u∗(x0) = v(x0) = 0.

Lemma 5.7. The function L(x, r, p) is increasing in r.

Proof of Lemma 5.7. From the definition of L, we are to show that
d(x, r, p) is decreasing in r. As we mentioned in the proof of (124) in Lemma
5.3, this fact is clear from the construction of d and its meaning in (15).

From Lemmas 5.5-5.7, we arrive at the following result.

Theorem 5.8. Assume that (104)-(110) hold. Then, there exists a
unique function u(x) such that

lim
ε↓0

uε(x) = u(x) locally uniformly in Ω,

which is the unique solution of (127), (128), and (103).

Proof of Theorem 5.8. From Lemmas 5.5, 5.6 and 5.7, the limit u∗ =
u∗ = u is unique and is a solution of the above problem. Moreover, since
from Lemma 5.7 the uniqueness holds for (127)-(128) and (103), u is the
unique solution. (We refer the readers to [15]) and G. Barles [8] for such
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uniqueness results. And, we proved the claim.

Remark 5.2. The effective boundary condition (128) is in general non-
linear. However, for the linear problem as in Example 1.2, (128) is lenear
and matchs to the result in [22].

Example 5.1. Let f ′
0 ≡ 0, and assume that a11 = a22 = 1, a12 = 0.

Then,
L(x, r, p) = −d(x, r, p),

is obtained by the following long time averaged problem:

Px,r,p(D
2
ξv(ξ1, ξ2)) = −

∂2v

∂ξ21
−
∂2v

∂ξ22
= 0 in O(x1),

d(x, r, p)− < ∇ξv, (
∂f1
∂ξ1

,−1) > −{−

√

1 + (
∂f1
∂ξ1

)2(c(x, ξ1)r − g)− p1
∂f1
∂ξ1

} = 0

in O(x1),

where

O(x1) = {(ξ1, ξ2)| periodic in ξ1 ∈ R\Z, ξ2 ≥ f1(x, ξ1)}.

By integrating the above problem in ξ1 ∈ [0, 1], and by remarking that f1 and
v are periodic in ξ1, we have

d(x, r, p) = −r
∫ 1

0

√

1 + (
∂f1
∂ξ1

)2c(x, ξ1)dξ1 +
∫ 1

0

√

1 + (
∂f1
∂ξ1

)2gdξ1.

Therefore, L(x, r, p) is linear in r.

Remark 5.3. Although in this paper we considered a particular exaple
of the oscillating Neumann condition ((102)) in R2, we can apply the same
method to more general homogenization of the oscillating boundary condi-
tions in Rn. We shall give more general formulation of this kind of problem
in the future occassion.
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