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Abstract

This paper is an update and extension of a result the authors first

proved in 2003. The goal of this paper is to study factors which are known

to be L
2-characteristic for certain nonconventional averages and prove

that these factors are pointwise characteristic for the multidimensional

return times averages.

In memory of Dan Rudolph.

1

http://arxiv.org/abs/1012.3132v1


Pointwise Characteristic Factors 2

1 Introduction

A major result in ergodic theory in the late 1980’s was the proof of the return

times theorem by J. Bourgain [8] (which was later simplified by J. Bourgain,

H. Furstenberg, Y. Katnzelson, D. Ornstein in [9]). This theorem created a key

strengthening of the Birkhoff’s Pointwise Ergodic Theorem [7].

Theorem 1. Let (X,F , µ, T ) be an ergodic dynamical system of finite measure

and f ∈ L∞(µ). Then there exists a set Xf ⊂ X of full measure such that

for any other ergodic dynamical system (Y,G, ν, S) with ν(Y ) < ∞ and any

g ∈ L∞(ν):

1

N

N∑

n=1

f(T nx)g(Sny)

converges ν-a.e. for all x ∈ Xf .

In the BFKO proof [9] of the return times theorem, one of the keys to the

argument was to decompose the given function using the Kronecker factor in

order to prove the result independently for both the eigenfunctions and those

functions in the orthocomplement of the Kronecker factor.

Using factors in convergence proofs in ergodic theory has long been a very

useful tool. The notion of a characteristic factor is originally due to H. Fursten-

berg and is explicitly defined by H. Furstenberg and B. Weiss in [11].

Definition 1. When the limiting behavior of a non-conventional ergodic average

for (X,F , µ, T ) can be reduced to that of a factor system (Y,G, ν, T ), we shall

say that the latter is a characteristic factor of the former.
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For each type of average under consideration, one will have to specify what

is meant by reduced in the given case. In the case of H. Furstenberg and B.

Weiss [11], they define the notion of characteristic factor for averages of the type

1

N

N∑

n=1

(
f ◦ T n

)(
g ◦ T n2)

.

Therefore their specific definition of characteristic factor is as follows.

Definition 2. If {p1(n), p2(n), . . . , pk(n)} are k integer-valued sequences, and

(Y,G, ν, T ) is a factor of a system (X,F , µ, T ), we say that G is a characteris-

tic factor for the scheme {p1(n), p2(n), . . . , pk(n)}, if for any f1, f2, . . . , fk ∈

L∞(µ) we have

1

N

N∑

n=1

[
f1 ◦ T

p1(n) · · · fk ◦ T
pk(n) − E(f1|G) ◦ T

p1(n) · · ·E(fk,G) ◦ T
pk(n)

]

converges to 0 in L2(µ).

In 1998, D. Rudolph [16] extended the return times theorem to averages

with more than two terms with his proof of the multidimensional return times

theorem. His proof answered one of the questions on the return times raised by

I. Assani1 who proved the same result for weakly mixing systems in [1].

Theorem 2 (Multidimensional Return Times Theorem). Let k be any posi-

tive integer. For any dynamical system (X,F , T, µ) and any f ∈ L∞(µ), there

exists a set of full measure Xf in X such that if x ∈ Xf for any other dy-

namical system (Y1,G1, S1, ν1) and any g1 ∈ L∞(ν1) there exists a set of full

1These questions were brought up during D. Rudolph’s visit to UNC-CH in 1991 while he

was working on his joinings proof of Bourgain’s return times theorem [14].
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measure Yg1 in Y1 such that if y1 ∈ Yg1 then . . . for any other dynamical sys-

tem (Yk−1,Gk−1, Sk−1, νk−1) and any gk−1 ∈ L∞(νk−1) there exists a set of full

measure Ygk−1
in Yk−1 such that if yk−1 ∈ Ygk−1

for any other dynamical system

(Yk,Gk, Sk, νk) the average:

1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)g2(S

n
2 y2) · · · gk(S

n
k yk)

converges νk-a.e..

D. Rudolph’s proof of the multidimensional return times theorem utilized

the method of joinings and fully generic sequences. This led to an elegant proof

of the theorem which avoided the study of the factor of the σ-algebra which was

characteristic for the averages. So the higher order version of the Kronecker

factor K which had been key to the BFKO [9] proof was not needed in D.

Rudolph’s argument. This paper seeks to determine what factors serve a role

similar to the Kronecker factor K in this higher dimensional setting.

For our purposes we define the notion of pointwise characteristic factors for

the multidimensional return times averages as follows.

Definition 3. Consider (X,F , µ, T ) a measure preserving system. The factor

A is pointwise characteristic for the k-th return times averages if for

each f ∈ L∞(µ) we can find a set of full measure Xf such that for each x ∈ Xf ,

for any other dynamical system (Y1,G1, S1, ν1) and any g1 ∈ L∞(ν1), there

exists a set of full measure Yg1 such that for each y1 in Yg1 then . . . for any

other dynamical system (Yk−1,Gk−1, Sk−1, νk−1) and any gk−1 ∈ L∞(νk−1),

there exist a set of full measure Ygk−1
in Yk−1 such that if yk−1 ∈ Ygk−1

for any
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other dynamical system (Yk,Gk, Sk, νk) for νk-a.e. yk the average

1

N

N∑

n=1

[f(T nx)− E(f |A)(T nx)] g1(S
n
1 y1)g2(S

n
2 y2) · · · gk(S

n
k yk)

converges to 0.

In looking for potential characteristic factors for the general multidimen-

sional return times averages we consider the factors first used by H. Furstenberg

to prove Szemeredi’s Theorem [10]. We denote these factors as Ak using the

notation from [3] where these factors were shown to be L2-characteristic for the

averages

1

N

N∑

n=1

I∏

i=1

fi ◦ T
in.

As noted in the introduction to [4], while the norm convergence of averages for

L2-characteristic factors can sometimes lead to pointwise characteristic proper-

ties, this is not always guaranteed to be the case. Thus it is of consequence to

look at pointwise convergence in addition to investigating factors with respect

to the norm convergence.

We will show that these Ak factors can be defined in an inductive way by

seminorms using Lemma 1.3 of [15]2 Using these seminorms we will prove our

first main result.

Theorem 3. The factors Ak are pointwise characteristic for the multidimen-

sional return times averages

2This approach was used in two 2003 unpublished papers of the first author ([3] and what

was ultimately combined into the published paper [4]). The first author thanks C. Demeter

and N. Frantzikinakis for pointing out to him that the factors he defined with these seminorms

were in fact the ones introduced by H. Furstenberg in [10].
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The study of the nonconventional Furstenberg averages has seen important

progress being made in the last seven years. In [12] and [17] the Host-Kra-Ziegler

factors Zk were created independently by B. Host, B. Kra and T. Ziegler and

were shown to be characteristic in L2 norm for the Furstenberg averages. Using

these factors we prove our second main result.

Theorem 4. Let (X,B, µ, T ) be an ergodic measure preserving system. The

Host-Kra-Ziegler factors Zk are pointwise characteristic for the multidimen-

sional return times averages.

As the Zk factors are smaller than the factors Ak, and thus A⊥
k ⊆ Z⊥

k ,

Theorem 3 is a consequence of Theorem 4. But our Theorem 3 with the use

of the seminorm defining the factors Ak gives a different set of information.

More precisely, using the factors Ak we obtain pointwise uniform bounds of

the multidimensional return times averages. With the Zk factors we do not

have such pointwise estimates. The uniform upper bounds are derived after

integration combined with a lim sup argument.

2 The Ak factors are pointwise characteristic for

the multidimensional return times averages

Let (X,B, µ, T ) be an ergodic dynamical system on a probability measure space.

Definition 4. The factors Ak are defined in the following inductive way.

• The factor A0 is equal to the trivial σ-algebra {X, ∅}



Pointwise Characteristic Factors 7

• For k ≥ 0 the factor Ak+1 is characterized by the following. A function

f ∈ A⊥
k+1 if and only if

Nk+1(f)
4 := lim

H

1

H

H∑

h=1

∥∥E(f · f ◦ T h|Ak)
∥∥2
2
= 0

Note that the factor A1 is the Kronecker factor of our ergodic operator T

because

N1(f)
4 = lim

H

1

H

H∑

h=1

∥∥E(f · f ◦ T h|A0)
∥∥2
2
= lim

H

1

H

H∑

h=1

∣∣∣∣
∫

f · f ◦ T hdµ

∣∣∣∣
2

.

The next lemma shows that these seminorms are well-defined and charac-

terize factors of T . It combines some results in the unpublished preprint [3].

Lemma 1. Let (X,F , µ, T ) be an ergodic dynamical system on a probability

measure space, For k ≥ 2 for each function f ∈ L∞(µ) the quantities Nk(f) are

well defined. Furthermore, they characterize factors of T which are successive

maximal isometric extensions.

Proof. Let us consider a general factor A of T and E(·,A) the projection onto

this factor. The relatively independent joining of T ×T over the factor A is the

measure µA defined for f, g bounded functions as

∫
f × gdµA :=

∫
E(f,A)E(g,A)dµ.

By Birkhoff’s ergodic theorem applied to T × T and the invariant measure µA

we have

lim
H

1

H

H∑

h=1

∥∥E(f · f ◦ T h,A)
∥∥2
2

= lim
H

1

H

H∑

h=1

∫
(f · f ◦ T h)(x)(f · f ◦ T h)(y)dµA

= ‖E(f × f, IA)‖
2
L2(µA) .
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where IA is the T×T -µA invariant σ-algebra. If we denote by N(f) the quantity

N(f)4 = lim
H

1

H

H∑

h=1

∥∥E(f · f ◦ T h,A)
∥∥2
2

then Lemma 1.3 in [15] tells us that N(f) = 0 if and only if E(f,KA) = 0 where

KA is the maximal isometric extension of A.

Using these observations one can characterize the successive maximal iso-

metric extensions. The trivial σ-algebra is A0. Then we define A1 = KA0,

A2 = KA1 and more generally Ak+1 = KAk. The seminorms characterizing

these factors are well defined as Nk(f) where

Nk(f)
4 = lim

H

1

H

H∑

h=1

∥∥E(f · f ◦ T h,Ak)
∥∥2
2
.

In order to simplify the inductive parts of our argument, we first clarify the

techniques that we will use in a series of small lemmas. This next lemma relies

on an application of the spectral theorem which allows us to alternate between

Wiener-Wintner and return times averages in our inductive argument.

Lemma 2. Let {an} be a sequence of complex numbers. If

sup
N

1

N

N∑

n=1

|an|
2 < ∞ and sup

ǫ

∣∣∣∣∣
1

N

N∑

1

ane
2πinǫ

∣∣∣∣∣→ 0,

then

1

N

N∑

1

ang(S
ny) → 0

in L2(ν) for all measure-preserving systems (Y,G, S, ν).

Proof. This follows immediately from the proof of Theorem 3.1 in [2].
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Next, we will use the following lemma which is an easy consequence of the

Van der Corput Lemma [13]. It will help us simplify the Wiener-Wintner aver-

ages which will appear in the inductive argument.

Lemma 3. Let {an} be a bounded sequence of complex numbers. Then

sup
ǫ

∣∣∣∣∣
1

N

N∑

n=1

ane
2πinǫ

∣∣∣∣∣

2

≤ C

(
1

H
+

1

H

H∑

h=1

∣∣∣∣∣
1

N

N−h∑

n=1

anan+h

∣∣∣∣∣

)

for some constant C and 1 ≤ H ≤ N .

We will prove our main result, Theorem 3, in the course of proving the

following more detailed statement.

Theorem 5. Let k be any positive integer. For each f ∈ L∞(µ) we can find

a set of full measure Xf such that for each x ∈ Xf , for any other dynamical

system (Y1,G1, S1, ν1) and any g1 ∈ L∞(ν1) with ‖g1‖∞ ≤ 1, there exists a set

of full measure Yg1 such that for each y1 in Yg1 then . . . for any other dynamical

system (Yk−1,Gk−1, Sk−1, νk−1) and any gk−1 ∈ L∞(νk−1) with ‖gk‖∞ ≤ 1 there

exist a set of full measure Ygk−1
in Yk−1 such that if yk−1 ∈ Ygk−1

for any other

dynamical system (Yk,Gk, Sk, νk) for νk-a.e. yk the average

1

N

N∑

n=1

[f(T nx) − E(f |Ak)(T
nx)] g1(S

n
1 y1)g2(S

n
2 y2) · · · gk(S

n
k yk)

converges to 0. Thus for f ∈ A⊥
k the average

1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)g2(S

n
2 y2) · · · gk(S

n
k yk)

converges to 0 νk-a.e..
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Proof. The basis step for the induction was done in the BFKO [9] proof of Bour-

gain’s Return Times Theorem. Here it was shown that A1 = K was pointwise

characteristic for averages of the type

1

N

N∑

n=1

f(T nx)g1(S
n
1 y1)

By using bases ej and γj of eigenfunctions for T and S1 of modulus 1, respec-

tively, one can even evaluate the limit, assuming for the moment that S1 is

ergodic. The limit is equal to

∑

s∈ET,S

(∫
f · esdµ

)
es(x)

(∫
g1 · γsdν

)
γs(y)

where ET,S is the subset of common eigenvalues for T and S. By using the

Cauchy-Schwartz inequality one gets the upper bound




∞∑

j=0

∣∣∣∣
∫

f · ejdµ

∣∣∣∣
2



1/2(
∞∑

k=0

∣∣∣∣
∫

g1 · γkdν

∣∣∣∣
2
)1/2

which is equal to

‖E(f |A1)‖2‖E(g|KS1
)‖2,

where KS1
is the Kronecker factor for S1. This last term is itself less than

‖E(f |A1)‖2 because ‖g‖∞ ≤ 1. We can remove the ergodic assumption on S1

by using the ergodic decomposition. Thus we have reached the inequality

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
ny)

∣∣∣∣∣

2

≤ ‖E(f |A1)‖
2
2 (1)

which shows clearly that A1 is pointwise characteristic for the return times

average.

Assume that for any f ∈ L∞(µ) and 1 ≤ j < k we can find sets Xf,j

of full measure such that if x ∈ Xf,j, then for any other dynamical system
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(Y1,G1, S1, ν1) and any g1 ∈ L∞(ν1) with ‖g1‖∞ ≤ 1, there exists a set of

full measure Yg1 such that for each y1 in Yg1 then . . . for any other dynamical

system (Yj−1,Gj−1, Sj−1, νj−1) and any gj−1 ∈ L∞(νj−1) with ‖gj−1‖∞ ≤ 1

there exist a set of full measure Ygj−1
in Yj−1 such that if yj−1 ∈ Ygj−1

for any

other dynamical system (Yj ,Gj , Sj, νj) and any gj ∈ L∞(νj) with ‖gj‖∞ ≤ 1

for νj-a.e. yj we have

1

N

N∑

n=1

[f(T nx) − E(f |Aj)(T
nx)] g1(S

n
1 y1) · · · gj(S

n
j yj)

converges to 0.

Lemma 4. Let f be an element of f ∈ L∞ and let gi, Si and yi be as defined

in the preceding paragraph. If

BN = sup
ǫ

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · gk−1(S

n
k−1yk−1)e

2πinǫ

∣∣∣∣∣

2

then

lim sup
N

BN ≤ CNk(f)
2

for some absolute constant C.

Proof. By Lemma 3, there exists a constant C such that for 1 ≤ H ≤ N

BN ≤ C

(
1

H
+

1

H

H∑

h=1

∣∣∣∣∣
1

N

N−h∑

n=1

(f · f ◦ T h)(T nx)

·(g1 · g1 ◦ Sh
1 )(S

n
1 y1) · · · (gk−1 · gk−1 ◦ Sh

k−1)(S
n
k−1yk−1)

∣∣∣∣∣

)
.

From our inductive hypothesis, we know that for each h there is a set of full
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measure X
f ·f◦Th on which

∣∣∣∣∣
1

N

N−h∑

n=1

[
(f · f ◦ T h)(T nx)− (E(f · f ◦ T h,Ak−1)(T

nx)
]

·(g1 · g1 ◦ Sh
1 )(S

n
1 y1) · · · (gk−1 · gk−1 ◦ Sh

k−1)(S
n
k−1yk−1)

∣∣∣∣∣ → 0.

Therefore, the intersection of these sets X
f ·f◦Th over h gives a set of full

measure X̂f on which

lim sup
N

BN ≤ lim sup
N

C

(
1

H
+

1

H

H∑

h=1

∣∣∣∣∣
1

N

N−h∑

n=1

(E(f · f ◦ T h,Ak−1)(T
nx)

·(g1 · g1 ◦ Sh
1 )(S

n
1 y1) · · · (gk−1 · gk−1 ◦ Sh

k−1)(S
n
k−1yk−1)

∣∣∣∣∣

)

for all H . The Cauchy-Schwartz inequality gives us

lim sup
N

BN ≤ lim sup
N

C

(
1

H
+

1

H

H∑

h=1

(
1

N

N−h∑

n=1

∣∣∣(E(f · f ◦ T h,Ak−1)(T
nx)
∣∣∣
2

·
∣∣∣(g1 · g1 ◦ Sh

1 )(S
n
1 y1)

∣∣∣
2

· · ·
∣∣∣(gk−1 · gk−1 ◦ Sh

k−1)(S
n
k−1yk−1)

∣∣∣
2
) 1

2
)

≤ lim sup
N

C

(
1

H
+

‖g1‖2∞ . . . ‖gk−1‖2∞
H

·

H∑

h=1

(
1

N

N−h∑

n=1

∣∣∣(E(f · f ◦ T h,Ak−1)(T
nx)
∣∣∣
2
) 1

2
)

By Birkhoff’s Pointwise Ergodic Theorem we know that there is a set of full

measure Xk−1 on which for each h the average over n in the above inequality

converges to

∫ ∣∣∣(E(f · f ◦ T h,Ak−1)
∣∣∣
2

dµ =
∥∥∥E(f · f ◦ T h,Ak−1)

∥∥∥
2

2
.
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Therefore on the set of full measure Xf = X̂f

⋂
Xk−1

lim sup
N

BN ≤
C

H
+

C

H

H∑

h=1

∥∥∥E(f · f ◦ T h,Ak−1)
∥∥∥
2

≤ C lim
H


 1

H
+

(
1

H

H∑

h=1

∥∥∥E(f · f ◦ T h,Ak−1)
∥∥∥
2

2

) 1
2




= C ·Nk(f)
2.

As functions f in A⊥
k are characterized by the property that Nk(f)

4 = 0,

Lemma 4 implies that when f is an element of L∞(µ)
⋂
A⊥

k we have

lim sup
N

BN = 0

on the set of full measure Xf = X̂f

⋂
Xk−1. Therefore

sup
ǫ

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · gk−1(S

n
k−1yk−1)e

2πinǫ

∣∣∣∣∣

converges to 0 µ-a.e.. Hence by an application of Lemma 2, we know that for

any other dynamical system (Yk,Gk, Sk, νk) and any g ∈ L∞(νk)

1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · gk(S

n
k yk) (2)

converges to 0 in L2(νk). As pointwise convergence of the average in Equation

(2) follows from Theorem 2, we have

1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · gk(S

n
k yk)

converges to 0 νk-a.e., when f is in L∞(µ)
⋂
A⊥

k . Therefore for all f ∈ L∞(µ)

we have

1

N

N∑

n=1

[f(T nx)− E(f,Ak)(T
nx)] g1(S

n
1 y1)g2(S

n
2 y2) · · · gk(S

n
k yk)



Pointwise Characteristic Factors 14

converges to 0 νk-a.e.. Thus, we have shown that the factors Ak are pointwise

characteristic for the multiple term return times averages.

3 The Zk factors are pointwise characteristic for

the multidimensional return times averages

As noted above, the factors Zk are smaller than the Ak factors and thus their

orthogonal complements Z⊥
k are bigger. Therefore Theorem 4, which we are

proving in this section, is an extension of Theorem 3. We will prove this fact

directly from the properties of the factors Zk. As shown in [12] the Host-Kra-

Ziegler factors, Zk, can be characterized by the following seminorms.

Definition 5. • The factors A0 and Z0 are equal to the trivial σ-algebra.

• The factors A1 and Z1 are also identical. They can be characterized by

the seminorms ‖|f |‖2 or N2(f) where

‖|f |‖42 = lim
H

1

H

H∑

h=1

∣∣∣∣
∫

f · f ◦ T hdµ

∣∣∣∣
2

= N2(f)
4.

• The difference starts with the factors A2 and Z2. The factor Z2 is the

Conze-Lesigne factor, CL. Functions in this factor are characterized by

the seminorm |‖ · |‖3 such that

‖|f |‖83 = lim
H

1

H

H∑

h=1

‖|f · f ◦ T h|‖42.

A function f ∈ CL⊥ if and only ‖|f |‖3 = 0.
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• More generally B. Host and B. Kra showed in [12] that for each positive

integer k we have

‖|f |‖2
k+1

k+1 = lim
H

1

H

H∑

h=1

‖|f · f ◦ T h|‖2
k

k ,

with the condition that f ∈ Zk−1 if and only if ‖|f |‖k = 0.

Our induction argument comes from reducing the return times averages

by looking at an associated Wiener-Wintner type average using the following

lemma.

Lemma 5. Let (X,B, µ, T ) be an ergodic dynamical system and f ∈ L∞(µ).

Then for all positive integers H we have

lim sup
N

sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)e2πint

∣∣∣∣∣

2

≤ C

(
1

H
+

1

H

H∑

h=1

∣∣∣∣
∫

f · f ◦ T hdµ

∣∣∣∣

)

In particular we have for µ-a.e. x

lim sup
N

sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)e2πint

∣∣∣∣∣

2

≤ C‖|f |‖22.

Proof. This is Lemma 2 from the paper [4].

Using this result, we can deduce the following lemma concerning the integral

of the lim sup of our averages.

Lemma 6. Given (X,B, µ, T ) an ergodic measure preserving system on a prob-

ability measure space and f ∈ L∞ then we can find a set of full measure Xf such

that for every x ∈ Xf for each measure preserving dynamical system (Y,G, ν, S)

and each g ∈ L∞(ν) we have

∫
lim sup

N
FN (y)dν :=

∫
lim sup

N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)

∣∣∣∣∣

2

dν ≤ C‖|f |‖22‖g‖
2
2.
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Proof. By the BFKO [9] proof of the Return Times Theorem we have pointwise

convergence of the above averages, therefore the lim sup on the left hand side

of the above expression becomes a limit. Therefore, we have

∫
lim sup

N
FN (y)dν = lim

N

∫
FN (y)dν

= lim
N

∫ ∣∣∣∣∣
1

N

N∑

n=1

f(T nx)e2πint

∣∣∣∣∣

2

dσg(t)

where σg is the spectral measure associated to g with respect to the dynamical

system (Y,G, ν, S). Thus

∫
lim sup

N
FN (y)dν ≤ lim sup

N
sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)e2πint

∣∣∣∣∣

2

‖g‖22.

By Lemma 5 we derive the inequality

∫
lim sup

N
FN (y)dν ≤ C‖|f |‖22‖g‖

2
2.

From Lemma 6 the iteration process follows. For instance, we can use this

lemma to prove the following Wiener-Wintner return times result which refines

the one obtained in [5].

Lemma 7. Let (X,B, µ, T ) be an ergodic measure preserving system on a prob-

ability measure space and f ∈ L∞(µ). Then for µ-a.e. x ∈ X for every measure

preserving system (Y,G, ν, S) and each g ∈ L∞(ν) and ν-a.e. y we have

∫
lim sup

N
sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)e2πint

∣∣∣∣∣

2

dν ≤ C‖|f |‖23‖g‖
2
∞. (3)

In particular, for f ∈ CL⊥ (or equivalently ‖|f |‖3 = 0) we have for ν-a.e. y

lim sup
N

sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)e2πint

∣∣∣∣∣ = 0. (4)
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Proof. By the Van Der Corput Lemma [13] we have

∫
lim sup

N
sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)e2πint

∣∣∣∣∣

2

dν ≤

C

(
1

H
+

1

H

H∑

h=1

∫
lim sup

N

∣∣ 1
N

N∑

n=1

f(T nx)f(T n+hx)·

g(Sny)g(Sn+hy)
∣∣dν
)

≤

C

(
1

H
+

1

H

H∑

h=1

(∫
lim sup

N

∣∣ 1
N

N∑

n=1

f(T nx)f(T n+hx)·

g(Sny)g(Sn+hy)
∣∣2dν

)1/2
)

(5)

By using Lemma 5 the expression in (5) is

≤ C
1

H

H∑

h=1

‖|f · f ◦ T h|‖2‖g · g ◦ S
h|‖2

≤ C
1

H

H∑

h=1

‖|f · f ◦ T h|‖2‖g‖
2
∞

on a set of full measure depending only on f . It is, in fact, the intersection of

the sets of full measure obtained by the BFKO [9] proof of the Return Times

Theorem for each function f · f ◦ T h. As

lim
H

1

H

H∑

h=1

‖|f · f ◦ T h|‖42 = ‖|f |‖83

this proves (3) of Lemma 7. Equation (4) follows directly from the characteri-

zation of the CL factor.

The induction assumption giving the result on the pointwise characteristic

factors for the Zk factors can now be made. To end it at the CL = Z2 level we

prove the next lemma.
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Lemma 8. Let (X,B, µ, T ) be an ergodic measure preserving system on a prob-

ability measure space and f ∈ L∞ Then for µ-a.e. x ∈ X for every measure

preserving system (Y,G, ν, S) and each g ∈ L∞(ν), for ν-a.e. y, for every mea-

sure preserving system Γ1 = (Z,F , ρ, V ) and each φ ∈ L∞(ρ) we have

∫
sup
Γ1,φ

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)φ(V nz)

∣∣∣∣∣

2

dρ(z)dν(y) ≤ C‖|f |‖23‖g‖
2
∞.

Proof. By Theorem 2 for averages with three terms we have

∫
lim sup

N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)φ(V nz)

∣∣∣∣∣

2

dρ(z) =

lim
N

∫ ∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)φ(V nz)

∣∣∣∣∣

2

dρ(z). (6)

Using the spectral measure as before we have that the expression in (6) is equal

to

lim
N

∫ ∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)e2πint

∣∣∣∣∣

2

dσφ ≤

lim sup
N

sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)e2πint

∣∣∣∣∣

2

‖φ‖2∞ ≤

lim sup
N

sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)e2πint

∣∣∣∣∣

2

as ‖φ‖∞| ≤ 1. Therefore by Lemma 7 we have

∫ 
sup

Γ1,φ

∫
lim sup

N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)φ(V nz)

∣∣∣∣∣

2

dρ(z)


 dν(y) ≤ C‖|f |‖23‖g‖

2
∞.

We now have the tools necessary to prove our second main result, Theorem

4, that the Zk averages are pointwise characteristic for the multidimensional

return times averages.
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Proof. It remains to finish the induction argument which we have started in the

above lemmas. Assume that for each i ≥ 2, and for µ-a.e. x, and each g with

‖g‖∞ ≤ 1 we have

∫ (
sup
Γ1,φ1

· · ·

∫ (
sup

Γi−1,φi−1

∫
lim sup

N

∣∣∣∣
1

N

N∑

n=1

f(T nx)·

g(Sny)φ1(V
n
1 z1) · · ·φi−1(V

n
i−1zi−1)

∣∣∣∣
2

dρ(zi−1)

)
· · · dρ(z1)

)
dν(y) ≤ C‖|f |‖2i+1

We would like to show that we have

∫ (
sup
Γ1,φ1

· · ·

∫ (
sup
Γi,φi

∫
lim sup

N

∣∣∣∣
1

N

N∑

n=1

f(T nx)·

g(Sny)φ1(V
n
1 z1) · · ·φi(V

n
i zi)

∣∣∣∣
2

dρ(zi)

)
· · · dρ(z1)

)
dν(y) ≤ C‖|f |‖2i+2

As previously, we use the Van Der Corput Lemma [13] to estimate that

lim sup
N

sup
t

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)φ1(V
n
1 z1) · · ·φi−1(V

n
i−1zi−1)e

2πint

∣∣∣∣∣

2

<

C

(
1

H
+

1

H

H∑

h=1

lim sup
N

∣∣∣∣
1

N

N∑

n=1

(f · f ◦ T h)(T nx)·

(g · g ◦ Sh)(Sny)(φ1 · φ ◦ V h
1 )(V n

1 z1) · · · (φi−1 · φi−1 ◦ V
h
i−1)(V

n
i−1zi−1)

∣∣∣∣

)

Integrating and using the induction assumption we get

∫ (
sup
Γ1,φ1

· · ·

∫ (
sup

Γi−1,φi−1

∫
lim sup

N
sup
t

∣∣∣∣
1

N

N∑

n=1

f(T nx)·

g(Sny)φ1(V
n
1 z1) · · ·φi−1(V

n
i−1zi−1)e

2πnt

∣∣∣∣
2

dρ(zi−1)

)
· · · dρ(z1)

)
dν(y) ≤

C


 1

H
+

(
1

H

H∑

h=1

‖|f · f ◦ T h|‖2i−1

)1/2



After taking the limit with respect to H we have

C


 1

H
+

(
1

H

H∑

h=1

‖|f · f ◦ T h|‖2i−1

)1/2

 ≤ C‖|f |‖2i+1.
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Finally by applying Theorem 2 and applying Lemma 8 we have

∫ (
sup
Γ1,φ1

· · ·

∫ (
sup
Γi,φi

∫
lim sup

N

∣∣∣∣
1

N

N∑

n=1

f(T nx)·

g(Sny)φ1(V
n
1 z1) · · ·φi(V

n
i zi)

∣∣∣∣
2

dρ(zi)

)
dρ(zi−1)

)
· · · dρ(z1)

)
dν(y) =

∫ (
sup
Γ1,φ1

· · ·

∫ (
sup
Γi,φi

lim
N

∫ ∣∣∣∣
1

N

N∑

n=1

f(T nx)·

g(Sny)φ1(V
n
1 z1) · · ·φi(V

n
i zi)

∣∣∣∣
2

dρ(zi)

)
dρ(zi−1)

)
· · · dρ(z1)

)
dν(y) =

∫ (
sup
Γ1,φ1

· · ·

∫ (
sup
Γi,φi

lim
N

∫ ∣∣∣∣
1

N

N∑

n=1

f(T nx)·

g(Sny)φ1(V
n
1 z1) · · ·φi−1(V

n
i−1zi−1)e

2πint

∣∣∣∣
2

dσφi

)
dρ(zi−1)

)
· · · dρ(z1)

)
dν(y) ≤

∫ (
sup
Γ1,φ1

· · ·

∫ (
sup
Γi,φi

lim sup
N

sup
t

∣∣∣∣
1

N

N∑

n=1

f(T nx)·

g(Sny)φ1(V
n
1 z1) · · ·φi−1(V

n
i−1zi−1)e

2πint

∣∣∣∣
2)

dρ(zi−1)

)
· · · dρ(z1)

)
dν(y) ≤

C‖|f |‖2i+2

This proves the induction step and proves the theorem.

4 Remarks

1. If one uses instead the maximal isometric extensions and the factors Ak

we get at the BFKO stage a pointwise upper bound for T and S ergodic.

Namely we saw in Equation (1) (for ‖g‖∞ ≤ 1)

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)

∣∣∣∣∣

2

≤ C‖E(f |KT )‖
2
2.
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From this by applying Lemma 3 as in Lemma 4 we can prove that the

average of two terms is estimated by

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)

∣∣∣∣∣

2

≤ C


 1

H
+

(
1

H

H∑

h=1

‖E(f · f ◦ T h|A1)‖
2
2

)1/2

 .

By taking the limit with H we get the better estimate

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)

∣∣∣∣∣

2

≤ CN2(f)
2.

This argument can be generalized to the average of multiple terms result-

ing in the inequality

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g1(S
n
1 y1) · · · gk(S

n
k yk)

∣∣∣∣∣

2

≤ CNk+1(f)
2.

2. It is not clear to us if for k ≥ 2, one can replace in these inequalities the

Nk seminorms with those defining the Zk factors.

3. If one uses instead the maximal isometric extensions and the factors Ak

we get at the BFKO stage a pointwise upper bound for T and S ergodic

. Namely we have

lim sup
N

∣∣∣∣∣
1

N

N∑

n=1

f(T nx)g(Sny)

∣∣∣∣∣ ≤ C‖E(f |KT )‖2‖E(g|KS)‖2.

It is not clear if one can have a similar upper bound for the seminorms

‖|f |‖2.

4. The authors of this paper are writing a survey of the Return Times The-

orem [6] which will include more details of the historical developments of

Theorem 1 and 2 and related questions such as the ones noted above.
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