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Abstract. In this paper we study congruences for sums of terms related

to cubes of central binomial coefficients. Let p > 3 be a prime. We show

that
p−1
∑

k=0

(

2k

k

)2( 2k

k+d

)

64k
≡ 0 (mod p2)

for all d ∈ {0, . . . , p − 1} with d ≡ (p + 1)/2 (mod 2). We also solve the
remaining open cases of Rodriguez-Villegas’ conjectured congruences on

p−1
∑

k=0

(

2k

k

)2(3k

k

)

108k
,

p−1
∑

k=0

(

2k

k

)2(4k

2k

)

256k
,

p−1
∑

k=0

(

2k

k

)(

3k

k

)(

6k

3k

)

123k

modulo p2.

1. Introduction

Let p be an odd prime. It is known that (see, e.g., S. Ahlgren [A], L.
van Hammer [H], T. Ishikawa [I] and K. Ono [O])

(p−1)/2
∑

k=0

(−1)k
(

−1/2

k

)3

≡

{

4x2 − 2p (mod p2) if p = x2 + y2 (4 | x− 1 & 2 | y),

0 (mod p2) if p ≡ 3 (mod 4).
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Clearly,

(

−1/2

k

)

=

(

2k
k

)

(−4)k
for all k ∈ N = {0, 1, 2, 3, . . .},

and

(

2k

k

)

=
(2k)!

(k!)2
≡ 0 (mod p) for any k =

p+ 1

2
, . . . , p− 1.

After the work in [Su1], the author [Su2] raised many conjectures on
∑p−1

k=0

(

2k
k

)3
/mk mod p2 where m ∈ {1,−8, 16,−64, 256,−512, 4096}; for

example, the author conjectured that

p−1
∑

k=0

(

2k

k

)3

≡

{

4x2 − 2p (mod p2) if ( p
7
) = 1 & p = x2 + 7y2 (x, y ∈ Z),

0 (mod p2) if ( p7 ) = −1, i.e., p ≡ 3, 5, 6 (mod 7),

(1.1)
where (−) denotes the Legendre symbol. (It is known that if ( p7 ) = 1

then p = x2 + 7y2 for some x, y ∈ Z, see, e.g., [C].) Quite recently the
author’s twin brother Zhi-Hong Sun [S2] made important progress on those
conjectures; in particular, he proved (1.1) in the case ( p

7
) = −1 and confirm

the author’s conjecture on
∑p−1

k=0

(

2k
k

)3
/(−8)k mod p2.

Let p = 2n+1 be an odd prime. It is easy to see that for any k = 0, . . . , n
we have

(

n+ k

2k

)

=

∏k
j=1(−(2j − 1)2)

4k(2k)!

k
∏

j=1

(

1−
p2

(2j − 1)2

)

≡

(

2k
k

)

(−16)k
(mod p2).

(1.2)
Based on this observation Z. H. Sun [S2] studied the polynomial

fn(x) =
n
∑

k=0

(

n+ k

2k

)(

2k

k

)2

xk

and found the key identity

fn(x(x+ 1)) = Dn(x)
2 (1.3)

in his approach to (1.1), where

Dn(x) :=
n
∑

k=0

(

n+ k

2k

)(

2k

k

)

xk =
n
∑

k=0

(

n

k

)(

n+ k

k

)

xk.
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Note that those numbers Dk = Dk(1) (k = 0, 1, 2, . . . ) are the so-called
central Delannoy numbers and Pn(x) := Dn((x − 1)/2) is the Legendre
polynomial of degree n.

Recall that Catalan numbers are those integers

Cn =
1

n+ 1

(

2n

n

)

=

(

2n

n

)

−

(

2n

n+ 1

)

(n ∈ N)

while Schröder numbers are given by

Sn :=
n
∑

k=0

(

n+ k

2k

)

Ck =
n
∑

k=0

(

n

k

)(

n+ k

k

)

1

k + 1
.

We define the Schröder polynomial of degree n by

Sn(x) :=

n
∑

k=0

(

n+ k

2k

)

Ckx
k. (1.4)

For basic information on Dn and Sn, the reader may consult [CHV],
[Sl], and p. 178 and p. 185 of [St].

Via Schröder polynomials and the Zeilberger algorithm (cf. [PWZ]), we
obtain the following results.

Theorem 1.1. Let p be an odd prime. We have

p−1
∑

k=0

(

2k
k

)2( 2k
k+d

)

64k
≡ 0 (mod p2) (1.5)

for all d ∈ {0, 1, . . . , p−1} with d ≡ (p+1)/2 (mod 2). If p ≡ 3 (mod 4),
then

p−1
∑

k=0

(

2k
k

)2( 2k
k+1

)

64k
≡ (2p+ 2− 2p−1)

(

(p− 1)/2

(p+ 1)/4

)2

(mod p2) (1.6)

Theorem 1.2. Let p ≡ 1 (mod 4) be a prime and write p = x2 + y2 with

x odd and y even. Provided that

S(p−1)/2 ≡ (−1)(p−1)/42
(

2x−
p

x

)

(mod p2), (1.7)

we have
p−1
∑

k=0

(

2k
k

)2( 2k
k+1

)

(−8)k
≡ 2p− 2x2 (mod p2) (1.8)
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and
p−1
∑

k=0

(

2k
k

)(

2k
k+1

)2

(−8)k
≡ −2p (mod p2). (1.9)

Remark 1.1. We conjecture that (1.7) holds for any prime p ≡ 1 (mod 4).
By (1.2),

S(p−1)/2 ≡

(p−1)/2
∑

k=0

(

2k
k

)

Ck

(−16)k
(mod p2). (1.10)

Via the Gosper algorithm (cf. [PWZ]), we find that

8
n
∑

k=0

k
(

2k
k

)2

(−16)k
+

n
∑

k=0

(

2k
k

)

Ck

(−16)k
=

(2n+ 1)2

(n+ 1)(−16)n

(

2n

n

)2

≡ 0 (mod p2)

and

n
∑

k=0

(8k2 + 4k + 1)

(

2k
k

)2

(−16)k
=

(2n+ 1)2

(−16)n

(

2n

n

)2

≡ 0 (mod p2),

where n = (p− 1)/2.
Motivated by his study related to K3 surfaces and Calabi-Yau mani-

folds, in 2003 Rodriguez-Villegas [RV] raised some conjectures on congru-
ences. In particular, he conjectured that for any prime p > 3 we have

p−1
∑

k=0

(

2k
k

)2(3k
k

)

108k
≡ b(p) (mod p2),

p−1
∑

k=0

(

2k
k

)2(4k
2k

)

256k
≡ c(p) (mod p2),

(1.11)
and

p−1
∑

k=0

(

2k
k

)(

3k
k

)(

6k
3k

)

123k
≡

{

−a(p) (mod p2) if p ≡ 5 (mod 12),

a(p) (mod p2) otherwise,
(1.12)

where

∞
∑

n=1

a(n)qn = q
∞
∏

n=1

(1− q4n)6 = η(4z)6,

∞
∑

n=1

b(n)qn = q
∞
∏

n=1

(1− q6n)3(1− q2n)3 = η3(6z)η3(2z),

∞
∑

n=1

c(n)qn = q

∞
∏

n=1

(1− qn)2(1− q2n)(1− q4n)(1− q8n)2 = η2(8z)η(4z)η(2z)η2(z),
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and the Dedekind η-function is given by

η(z) = q1/24
∞
∏

n=1

(1− qn) (Im(z) > 0 and q = e2πiz).

In 1892 F. Klein and R. Fricke proved that (see also [SB])

a(p) =

{

4x2 − 2p (mod p2) if p ≡ 1 (mod 4) and p = x2 + y2 (2 ∤ x),

0 if p ≡ 3 (mod 4).

By [SB] we also have

b(p) =

{

4x2 − 2p if p ≡ 1 (mod 3) and p = x2 + 3y2 with x, y ∈ Z,

0 if p ≡ 2 (mod 3);

and

c(p) =

{

4x2 − 2p if (−2
p ) = 1 and p = x2 + 2y2 with x, y ∈ Z,

0 if (−2
p ) = −1, i.e., p ≡ 5, 7 (mod 8).

Via an advanced approach involving the p-adic Gamma function and Gauss
and Jacobi sums, E. Mortenson [M] managed to provid a partial solution
of (1.11) and (1.12), with the following things open:

p−1
∑

k=0

(

2k
k

)2(3k
k

)

108k
≡ b(p) = 0 (mod p2) if p ≡ 5 (mod 6), (1.13)

p−1
∑

k=0

(

2k
k

)2(4k
2k

)

256k
≡ c(p) (mod p2) if p ≡ 3 (mod 4), (1.14)

p−1
∑

k=0

(

2k
k

)(

3k
k

)(

6k
3k

)

123k
≡ −a(p) (mod p2) if p ≡ 5 (mod 6). (1.15)

Concerning (1.13)-(1.15), Mortenson only showed that for each of them
the squares of both sides of the congruence are congruent modulo p2.

Our following theorem confirms (1.13)-(1.15) and hence completes the
proof of (1.11) and (1.12). Now, all conjectures of Rodriguez-Villegas [RV]
involving at most three products of binomial coefficients have been proved!

Theorem 1.3. Let p > 3 be a prime. For each d = 0, . . . , (p− 1)/2, we
have

p−1
∑

k=0

(

2k
k+2d

)(

2k
k

)(

3k
k

)

108k
≡ 0 (mod p2) if p ≡ 5 (mod 6), (1.16)

p−1
∑

k=0

(

2k
k+2d

)(

2k
k

)(

4k
2k

)

256k
≡ 0 (mod p2) if p ≡ 5, 7 (mod 8), (1.17)

p−1
∑

k=0

(

2k
k+2d

)(

3k
k

)(

6k
3k

)

123k
≡ 0 (mod p2) if p ≡ 3 (mod 4). (1.18)
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Also, when p ≡ 3 (mod 8) and p = x2 + 2y2 with x, y ∈ Z, we have

p−1
∑

k=0

(

2k
k

)2(4k
2k

)

256k
≡ 4x2 − 2p (mod p2); (1.19)

when p ≡ 5 (mod 12) and p = x2 + y2 with 2 ∤ x and 2 | y, we have

p−1
∑

k=0

(

2k
k

)(

3k
k

)(

6k
3k

)

123k
≡ 2p− 4x2 (mod p2). (1.20)

We will prove Theorems 1.1-1.2 in the next section, and show Theorem
1.3 in Section 3.

2. Proofs of Theorems 1.1 and 1.2

Lemma 2.1. For any positive integer n we have

n
∑

k=1

(

n+ k

2k

)(

2k

k

)(

2k

k + 1

)

xk−1(x+ 1)k+1 = n(n+ 1)Sn(x)
2 (2.1)

and

n
∑

k=0

(

n+ k

2k

)(

2k

k

)2
2k + 1

(k + 1)2
xk(x+ 1)k+1 =

Sn(x)

2
(Dn−1(x) +Dn+1(x)).

(2.2)

Proof. (i) Observe that

Sn(x)
2 =

n
∑

k=0

(

n+ k

2k

)

Ckx
k

n
∑

l=0

(

n+ l

2k

)

Clx
l =

2n
∑

m=0

am(n)xm,

where

am(n) :=

m
∑

k=0

(

n+ k

2k

)

Ck

(

n+m− k

2m− 2k

)

Cm−k.

Also, the coefficient of xm in the left-hand side of (2.1) coincides with

bm(n) :=
m+1
∑

k=1

(

n+ k

2k

)(

2k

k

)(

2k

k + 1

)(

k + 1

m+ 1− k

)

=
m
∑

k=0

(

n+ k + 1

2k + 2

)(

2k + 2

k + 1

)(

2k + 2

k

)(

k + 2

m− k

)

.
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Thus, for the validity of (2.1) it suffices to show that bm(n) = n(n+1)am(n)
for all m = 0, 1, . . . . Obviously, a0(n) = 1 and b0(n) = n(n + 1). Also,
a1(n) = n(n+1) and b1(n) = n2(n+1)2. By the Zeilberger algorithm via
Mathematica 7 (version 7) we find that both um = am(n) and um = bm(n)
satisfy the following recursion:

(m+ 2)(m+ 3)(m+ 4)um+2

=2(2mn2 + 5n2 + 2mn + 5n−m3 − 6m2 − 11m− 6)um+1

− (m+ 1)(m− 2n)(m+ 2n+ 2)um.

Therefore bm(n) = n(n+ 1)am(n) by induction. This proves (2.1).
(ii) Note that

Sn(x)(Dn−1(x) +Dn+1(x)) =

2n+1
∑

m=0

cm(n)xm

where

cm(n) =

m
∑

k=0

(

n+ k

2k

)

Ck

(

2m− 2k

m− k

)((

n− 1 +m− k

2m− 2k

)

+

(

n+ 1 +m− k

2m− 2k

))

=2

m
∑

k=0

(

n+ k

2k

)

Ck

(

n+m− k

2m− 2k

)(

2m− 2k

m− k

)

(m+ n− k)2 − n(2m− 2k − 1)

(m+ n− k)(n−m+ k + 1)
.

By the Zeilberger algorithm we find that um = cm(n)/2 satisfies the re-
cursion

(m+ 2)(m+ 3)2(m2 + 5m+ 6 + 4n(n+ 1))um+2 + 2P (m,n)um+1

=(m+ 2)((2n+ 1)2 −m2)(m2 + 7m+ 12 + 4n(n+ 1))um

(2.3)
where P (m,n) denotes the polynomial

m5 + 11m4 + 45m3 + 83m2 + 64m+ 12 + 20n4 − 40n3 − 58n2 − 38n

− 25mn+m2n+ 2m3n− 33mn2 +m2n2 + 2m3n2 − 16mn3 − 8mn4.

Clearly the coefficient of xm on the left-hand side of (2.2) coincides with

dm(n) =
m
∑

k=0

(

n+ k

2k

)(

2k

k

)2(
k + 1

m− k

)

2k + 1

(k + 1)2
.

By the Zeilberger algorithm um = dm(n) also satisfies the recursion (2.3).
Thus we have dm(n) = cm(n) by induction on m. So (2.2) also holds.

In view of the above we have completed the proof of Lemma 2.1. �
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Proof of Theorem 1.1. (i) We first determine
∑p−1

k=0

(

2k
k

)2( 2k
k+1

)

/64k mod

p2 via Lemma 2.1, which actually led the author to the study of (1.5).
Recall the following combinatorial identity (cf. [Su2]):

n
∑

k=0

(

n+ k

2k

)

Ck

(−2)k
=

{

(−1)(n−1)/2C(n−1)/2/2
n if 2 ∤ n,

0 if 2 | n.

If we denote by S(n) the sum of the left-hand side or the right-hand side of
the identity, then we have the recursion S(n+ 2) = −nS(n)/(n+ 3) (n =
1, 2, 3, . . . ) by the Zeilberger algorithm.

Set n = (p− 1)/2. Applying (2.1) with x = −1/2 we get

n
∑

k=1

(

n+ k

2k

)(

2k

k

)(

2k

k + 1

)

1

(−2)k−12k+1
= n(n+ 1)Sn

(

−
1

2

)2

.

Thus, with the help of (1.2), we have

p−1
∑

k=0

(

2k
k

)2( 2k
k+1

)

64k
≡

n
∑

k=1

(

n+ k

2k

)(

2k

k

)(

2k

k + 1

)

1

(−4)k

≡− n(n+ 1)Sn

(

−
1

2

)2

≡
1

4
Sn

(

−
1

2

)2

≡

{

0 (mod p2) if p ≡ 1 (mod 4)

C2
(n−1)/2/2

2n+2 (mod p2) if p ≡ 3 (mod 4).

In the case p ≡ 3 (mod 4), clearly

C2
(n−1)/2

22n+2
=

(

(

(p−1)/2
(p+1)/4

)

2
p−1

)2

4× 2p−1

≡
1

(1− 2p)(1 + p qp(2))

(

(p− 1)/2

(p+ 1)/4

)2

≡(1 + 2p− p qp(2))

(

(p− 1)/2

(p+ 1)/4

)2

(mod p2)

where qp(2) = (2p−1 − 1)/p. Therefore (1.5) with d = 1 holds if p ≡ 1
(mod 4), and (1.6) is valid when p ≡ 3 (mod 4).

(ii) For d = 0, 1, . . . , p− 1 set

ud =

p−1
∑

k=0

(

2k
k

)2( 2k
k+d

)

64k
=

p−1
∑

k=d

(

2k
k

)2( 2k
k+d

)

64k
.



SUMS INVOLVING PRODUCTS OF THREE BINOMIAL COEFFICIENTS 9

By the Zeilberger algorithm we find the recursion

(2d+ 1)2ud − (2d+ 3)2ud+2 =
(2p− 1)2(d+ 1)

64p−1p

(

2p

p+ d+ 1

)(

2p− 2

p− 1

)2

.

Note that
(

2p− 2

p− 1

)

= pCp−1 ≡ 0 (mod p).

If 0 6 d < p− 2, then
(

2p

p+ d+ 1

)

=
2p

p+ d+ 1

(

2p− 1

p+ d

)

≡ 0 (mod p)

and hence
(2d+ 1)2ud ≡ (2d+ 3)2ud+2 (mod p2).

For d ∈ {0, . . . , p−3} with d ≡ (p+1)/2 (mod 2), clearly p 6= 2d+1 < 2p
and hence

ud+2 ≡ 0 (mod p2) =⇒ ud ≡ 0 (mod p2).

If p ≡ 3 (mod 4) then p − 1 ≡ (p + 1)/2 (mod 2); if p ≡ 1 (mod 4) then
p−2 ≡ (p+1)/2 (mod 2) and p−2 > (p+1)/2. Thus, if d ∈ {p−1, p−2}
and d ≡ (p+1)/2 (mod 2), then d > (p+1)/2 and hence ud ≡ 0 (mod p2).
It follows that ud ≡ 0 (mod p2) (i.e., (1.5) holds) for all d ∈ {0, . . . , p−1}
with d ≡ (p+ 1)/2 (mod 2).

By the above we have completed the proof of Theorem 1.1. �

Lemma 2.2. Let p ≡ 1 (mod 4) be a prime. Write p = x2 + y2 with x
odd and y even. Then

D(p−1)/2 ≡ (−1)(p−1)/4
(

2x−
p

2x

)

(mod p2). (2.4)

Proof. In view of (1.2), (2.4) has the following equivalent form:

(p−1)/2
∑

k=0

(

2k
k

)2

(−16)k
≡ (−1)(p−1)/4

(

2x−
p

2x

)

(mod p2),

which was conjectured by the author [Su2] and confirmed by Z. H. Sun
[S1]. This proves (2.5). �

Remark 2.1. If p is a prime with p ≡ 3 (mod 4), then n = (p− 1)/2 is odd
and hence

Dn ≡

n
∑

k=0

(−1)k
(

2k
k

)2

16k
=

n
∑

k=0

(−1)k
(

−1/2

k

)2

≡
n
∑

k=0

(−1)k
(

n

k

)2

=
n
∑

k=0

(−1)n−k

(

n

k

)2

= 0 (mod p).

The following result was conjectured by the author [Su2] and confirmed
by Z. H. Sun [S2].
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Lemma 2.3. Let p be an odd prime. Then

p−1
∑

k=0

(

2k
k

)3

(−8)k
≡

{

4x2 − 2p (mod p2) if 4 | p− 1 & p = x2 + y2 (2 ∤ x),

0 (mod p2) if p ≡ 3 (mod 4).

(2.5)

Remark 2.2. Since [S2] is not yet publicly available, we mention that (1.2)
and (1.3) yield

p−1
∑

k=0

(

2k
k

)3

(−8)k
≡

n
∑

k=0

(

n+ k

2k

)(

2k

k

)2

2k = D2
n (mod p2)

where n = (p − 1)/2. Hence (2.5) follows from Lemma 2.2 and Remark
2.1.

Proof of Theorem 1.2. Write p = 2n+ 1. By (2.1)

n
∑

k=0

(

n+ k

2k

)(

2k

k

)(

2k

k + 1

)

2k =
n(n+ 1)

2
S2
n.

Thus, if (1.7) holds, then by (1.2) we have

p−1
∑

k=0

(

2k
k

)2( 2k
k+1

)

(−8)k
≡

n
∑

k=0

(

n+ k

2k

)(

2k

k

)(

2k

k + 1

)

2k

≡
p2 − 1

8
4(4x2 − 4p) (mod p2)

and hence (1.8) holds.
Now we consider (1.9). Observe that

(

2k

k + 1

)2

=

(

1−
2k + 1

(k + 1)2

)(

2k

k

)2

for k = 0, 1, 2, . . . ,

and

(

2(p− 1)

p− 1

)(

2(p− 1)

(p− 1) + 1

)2

=
p

2p− 1

(

2p− 1

p− 1

)(

2p− 2

p− 2

)2

≡ −p (mod p2).

Thus

p−1
∑

k=0

(

2k
k

)(

2k
k+1

)2

(−8)k
≡ −p+

n
∑

k=0

(

2k
k

)3

(−8)k
−

n
∑

k=0

(2k + 1)
(

2k
k

)3

(k + 1)2(−8)k
(mod p2). (2.6)
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By (1.2) and (2.2) with x = 1,

n
∑

k=0

(2k + 1)
(

2k
k

)3

(k + 1)2(−8)k
≡

n
∑

k=0

(

n+ k

2k

)(

2k

k

)2
(2k + 1)2k

(k + 1)2

=
Sn

4
(Dn−1 +Dn+1) (mod p2).

It is known (cf. [Sl] and [St]) that

(n+ 1)Dn+1 = 3(2n+ 1)Dn − nDn−1 and Dn+1 − 3Dn = 2nSn.

Thus

n(Dn−1 +Dn+1) =3(2n+ 1)Dn −Dn+1

=3(2n+ 1)Dn − (3Dn + 2nSn) = 2n(3Dn − Sn)

and hence

n
∑

k=0

(2k + 1)
(

2k
k

)3

(k + 1)2(−8)k
≡

Sn

2
(3Dn − Sn) (mod p2).

Now assume that (1.7) holds. Then, with the help of (2.4), we have

Sn

2
(3Dn − Sn) ≡

(

2x−
p

x

)

(

3
(

2x−
p

2x

)

−

(

4x−
2p

x

))

(mod p2)

and hence
n
∑

k=0

(2k + 1)
(

2k
k

)3

(k + 1)2(−8)k
≡ 4x2 − p (mod p2).

Combining this with (2.5) and (2.6), we immediately obtain (1.9).
The proof of Theorem 1.2 is now complete. �

3. Proof of Theorem 1.3

Lemma 3.1. Let p be an odd prime. Then, for any p-adic integer x 6≡
0,−1 (mod p) we have

p−1
∑

k=0

(

2k

k

)3 (
−x

64

)k

≡

(

x+ 1

p

) p−1
∑

k=0

(

2k

k

)2(
4k

2k

)(

x

64(x+ 1)2

)k

(mod p).

(3.1)
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Proof. Taking n = (p − 1)/2 in the MacMahon identity (see, e.g., [G,
(6.7)])

n
∑

k=0

(

n

k

)3

xk =

n
∑

k=0

(

n+ k

2k

)(

2k

k

)(

n− k

k

)

xk(1 + x)n−2k

and noting (1.2) and the basic facts

(

n

k

)

≡

(

−1/2

k

)

=

(

2k
k

)

(−4)k
(mod p)

and
(

n− k

k

)

≡

(

−1/2− k

k

)

=

(

4k
2k

)

(−4)k
(mod p),

we immediately get (3.1). �

Proof of Theorem 1.3. (i) For d = 0, 1, . . . , (p− 1)/2, we define

f(d) =

p−1
∑

k=0

(

2k
k+2d

)(

2k
k

)(

3k
k

)

108k
, g(d) =

p−1
∑

k=0

(

2k
k+2d

)(

2k
k

)(

4k
2k

)

256k
,

and

h(d) =

p−1
∑

k=0

(

2k
k+2d

)(

3k
k

)(

6k
3k

)

123k
.

By the Zeilberger algorithm, we find the recursive relations:

(3d+ 1)(6d+ 1)f(d)− (3d+ 2)(6d+ 5)f(d+ 1)

=
(3p− 1)(3p− 2)(2d+ 1)

22p−127p−1p

(

2p

p+ 2d+ 1

)(

2p− 2

p− 1

)(

3p− 3

p− 1

)

,

(8d+ 1)(8d+ 3)g(d)− (8d+ 5)(8d+ 7)g(d+ 1)

=
(4p− 1)(4p− 3)(2d+ 1)

28(p−1)p

(

2p

p+ 2d+ 1

)(

2p− 2

p− 1

)(

4p− 4

2p− 2

)

,

and

(12d+ 1)(12d+ 5)h(d)− (12d+ 7)(12d+ 11)h(d+ 1)

=
(6p− 1)(6p− 5)(2d+ 1)

26(p−1)27p−1p

(

2p

p+ 2d+ 1

)(

3p− 3

p− 1

)(

6p− 6

3p− 3

)

.
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Recall that
(

2p−2
p−1

)

= pCp−1 ≡ 0 (mod p). Also,

(3p− 2)

(

3p− 3

p− 1

)

=p

(

3p− 2

p

)

≡ 0 (mod p),

(4p− 3)

(

4p− 4

2p− 2

)

=p

(

4p− 2

2p

)

≡ 0 (mod p),

(6p− 5)

(

6p− 6

3p− 3

)

=
3p(3p− 1)(3p− 2)

(6p− 3)(6p− 4)

(

6p− 3

3p

)

≡ 0 (mod p).

If d < (p− 1)/2, then
(

2p

p+ 2d+ 1

)

=

(

2p

p− 1− 2d

)

≡ 0 (mod p)

and hence by the above we have

(3d+ 1)(6d+ 1)f(d) ≡(3d+ 2)(6d+ 5)f(d+ 1) (mod p2),
(3.2)

(8d+ 1)(8d+ 3)g(d) ≡(8d+ 5)(8d+ 7)g(d+ 1) (mod p2),
(3.3)

(12d+ 1)(12d+ 5)h(d) ≡(12d+ 7)(12d+ 11)h(d+ 1) (mod p2).
(3.4)

Fix 0 6 d < (p − 1)/2. If p ≡ 5 (mod 6), then 3d + 1, 6d + 1 6≡ 0
(mod p) and hence by (3.2) we have

f(d+ 1) ≡ 0 (mod p2) =⇒ f(d) ≡ 0 (mod p2).

If p ≡ 5, 7 (mod 8), then 8d + 1, 8d + 3 6≡ 0 (mod p) (since 8d + 3 < 4p
and 8d+ 1, 8d+ 3 6∈ {p, 2p, 3p}) and hence by (3.3) we have

g(d+ 1) ≡ 0 (mod p2) =⇒ g(d) ≡ 0 (mod p2).

If p ≡ 3 (mod 4), then 12d+ 1, 12d+ 5 6≡ 0 (mod p) (since 12d+ 5 < 7p
and 12d+ 1, 12d+ 3 6∈ {p, 3p, 5p}) and hence (3.4) yields

h(d+ 1) ≡ 0 (mod p2) =⇒ h(d) ≡ 0 (mod p2).

Note that

f

(

p− 1

2

)

=

(

2p−2
p−1

)(

3p−3
p−1

)

108p−1
≡ 0 (mod p2),

g

(

p− 1

2

)

=

(

2p−2
p−1

)(

4p−4
2p−2

)

256p−1
≡ 0 (mod p2),

h

(

p− 1

2

)

=

(

3p−3
p−1

)(

6p−6
3p−3

)

123(p−1)
≡ 0 (mod p2).
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So, by the above we have (1.16)-(1.18) for all d ∈ {0, 1, . . . , (p− 1)/2}.
(ii) Assume that p ≡ 3 (mod 8) and p = x2 + 2y2 with x, y ∈ Z. Since

4x2 6≡ 0 (mod p) and Mortenson [M] already proved that the squares of
both sides of (1.19) are congruent mod p2, (1.19) is reduced to its mod p
form. Applying (3.1) with x = 1 we get

p−1
∑

k=0

(

2k
k

)3

(−64)k
≡

(

2

p

) p−1
∑

k=0

(

2k
k

)2(4k
2k

)

256k
(mod p).

By [A, Theorem 5(3)], we have

(

−1

p

) n
∑

k=0

(

n

k

)2(
n+ k

k

)

(−1)k ≡ 4x2 − 2p (mod p),

where n = (p− 1)/2. For k = 0, . . . , n clearly

(

n

k

)2(
n+ k

k

)

(−1)k =

(

(p− 1)/2

k

)2(
−(p+ 1)/2

k

)

≡

(

−1/2

k

)3

=

(

2k
k

)3

(−64)k
(mod p),

therefore
p−1
∑

k=0

(

2k
k

)3

(−64)k
≡

(

−1

p

)

(4x2 − 2p) (mod p)

and hence (1.19) follows.
(iii) Finally we suppose p ≡ 5 (mod 12) and write p = x2 + y2 with x

odd and y even. Once again it suffices to show the mod p form of (1.20)
in view of Mortenson’s work [M]. As the author’s twin brother Z. H. Sun
observed,

(

(p− 5)/6 + k

2k

)(

2k

k

)

≡

(

k − 5/6

2k

)(

2k

k

)

=

(

3k
k

)(

6k
3k

)

(−432)k
(mod p)

for all k = 0, 1, 2, . . . . If p/6 < k < p/3 then p |
(

6k
3k

)

; if p/3 < k < p/2

then p |
(

3k
k

)

; if p/2 < k < p then p |
(

2k
k

)

. Thus

p−1
∑

k=0

(

2k
k

)(

3k
k

)(

6k
3k

)

123k
≡

(p−5)/6
∑

k=0

(

(p− 5)/6 + k

2k

)(

2k

k

)2 (

−
1

4

)k

=D2n

(

−
1

2

)2

(mod p) (by (1.3)),
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where n = (p− 5)/12. Note that

D2n

(

−
1

2

)

=
1

(−4)n

(

2n

n

)

by [G, (3.133) and (3.135)], and

(

(p− 1)/2

(p− 1)/4

)

≡ 12(−432)n
(

2n

n

)

(mod p)

by P. Morton [Mo]. Therefore

D2n

(

−
1

2

)2

=
1

16n

(

2n

n

)2

≡

(

(p−1)/2
(p−1)/4

)2

126n+2
≡

(

12

p

)(

(p− 1)/2

(p− 1)/4

)2

(mod p).

Thus, by applying Gauss’ congruence
(

(p−1)/2
(p−1)/4

)

≡ 2x (mod p) (cf. [BEW,

(9.0.1)] or [HW]) we immediately get the mod p form of (1.20) from the
above.

The proof of Theorem 1.3 is now complete. �

Remark 3.1. We mention that the author [Su3] made a conjecture on
∑p−1

k=0

(

6k
3k

)(

3k
k

)

/864k mod p2 for any prime p > 3, and its mod p version
was recently confirmed by Z. H. Sun.
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(1990), 195–202.

[M] E. Mortenson, Supercongruences for truncated n+1Fn hypergeometric series
with applications to certain weight three newforms, Proc. Amer. Math. Soc.

133 (2005), 321–330.

[Mo] P. Morton, Explicit identities for invariants of elliptic curves, J. Number The-
ory 120 (2006), 234–271.

[O] K. Ono, Web of Modularity: Arithmetic of the Coefficients of Modular Forms
and q-series, Amer. Math. Soc., Providence, R.I., 2003.



16 ZHI-WEI SUN
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