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Abstract

We consider a system x(t) = (x1(t), . . . , xN (t)) consisting of N Brownian parti-

cles with synchronizing interaction between them occurring at random time moments

{τn}∞n=1
. Under assumption that the free Brownian motions and the sequence {τn}∞n=1

are independent we study asymptotic properties of the system when both the dimen-

sion N and the time t go to infinity. We find three time scales t = t(N) of qualitatively

different behavior of the system.

1 Introduction

Mathematical models with stochastic synchronization between components take their origin

from paper [1] where some two-dimensional system related with parallel computations was

studied. A very good explanation of the role of synchronizations in asynchronous parallel

and distributed algorithms can be found in [2]. It is rather natural that further mathematical

interest to such models was moved to considerations of high dimensions and to studies of a

long time behavior. It was discovered soon [3, 4, 5] that it is very convenient to interpret

synchronization models as particle systems with very special interaction. It is worth to note

that in the “traditional” mathematical theory of interacting particle systems such interactions

were never considered before that time. In [11] one can find a short overview of the subject.

The present paper is a small contribution to the following general problem: how to de-

scribe a qualitative behavior of a mutidimensional Markov (or semi-Markov) process x(t) =

(x1(t), x2(t), . . . , xN (t)) for large N and t = t(N). We chose as an object of our study the

system of N Brownian particles perturbed by synchronizing jumps at some random time mo-

ments. Reasons of such choice are the following. Synchronization models driven by Brownian

motion were not studied yet, all papers mentioned above considered random walks on lattices

or deterministic motions as non-perturbed dynamics. The second reason is that, as it will

be shown here, a Markovian synchronization model based on the Brownian motions admits

an explicit solution. This feature give us possibility to write very short and clear proofs of

our main result on the existence of three different time stages of qualitative behavior of the

particle system. We believe that such results hold also for very general multidimensional

synchronization models. There are already many particular examples justifying this belief.

Thus the existence of the three time stages in the long time behavior was already proved for
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system with two types of deterministic particles and pairwise stochastic synchronizations [6],

for discrete time random walks with a 3-particle anysotropic interaction [5], for continuous

time random walks with symmetric k-particle synchronizations [7].

The explanatory goals of this paper force us to chose the following organization of sections.

In Section 2 we define and study a sequence of Markov models with pairwise synchronization

between particles and constant coefficients in the front of the free dynamics and the interac-

tion. This lets us avoid cumbersome notation in proofs (Section 3). Section 4 is devoted to

generalizations of the model of Section 2. The first generalization to the case of coefficients

varying with N is quite straightforward and is based on a careful analysis of the proofs in

Section 3. The next extension of the main results is done for general symmetric k-particle

synchronizing interaction. In Subsection 4.3 we discuss generalizations to the case when

epochs of synchronization form a general renewal process and hence the particle system is no

more a Markov process. Corresponding results are obtained by using the Laplace transform

and are presented in Theorem 6.

2 Model with pairwise interaction

2.1 Definition and assumptions

We study a multi-dimensional stochastic process

x(t) = (x1(t), x2(t), . . . , xN (t)) ∈ R
N , t ∈ R+,

which can be regarded mathematically as a special class of interacting particle systems. But

from the view point of possible applications it would be better to consider this process as a

multi-component stochastic system.

Here N is the number of particles and xi(t) ∈ R
1 is a coordinate of the i-th particle at

time t. Denote NN = {1, . . . , N}. To give a precise construction of the process (x(t), t ≥ 0)

we fix on some probability space
(

Ω̃, F̃ , P̃
)

(a) B(t) = (B1(t), . . . , BN (t)) — the N -dimensional standard Brownian motion,

(b) a random sequence {τn}
∞

n=1 of time moments

0 = τ0 < τ1 < τ2 < · · ·

(c) a random initial configuration of particles x(0) = (x1(0), x2(0), . . . , xN (0)).

Main assumption is that (B(t), t ≥ 0), {τn}
∞

n=1 and x(0) are independent.

We consider also another probability space (Ω′,F ′,P′) corresponding to the independent

sequence

(i1, j1), (i2, j2), . . . , (in, jn), . . . (1)

of equiprobable ordered pairs (i, j) such that i, j ∈ NN , i 6= j. In the next we will put simply

ω′ = ((i1, j1), (i2, j2), . . . , (in, jn), . . .) and will use coordinate functions in(ω
′) = in and

jn(ω
′) = jn.

Let us introduce the new probability space (Ω,F ,P) =
(

Ω̃× Ω′, F̃ × F ′, P̃× P
′

)

. By for-

mal definition the process (x(t), t ≥ 0) has right-continuous trajectories (x(t, ω), t ≥ 0), ω =

2



(ω̃, ω′), satisfying to the following conditions:

xk(s, ω)− xk(τn(ω̃), ω) = σ · (Bk(s, ω̃)−Bk(τn(ω̃), ω̃)) ,

∀s ∈ [τn(ω̃), τn+1(ω̃)), ∀k ∈ NN ,

xjn(ω′)(τn(ω̃), ω) = xin(ω′)(τn(ω̃)− 0, ω),

xm(τn(ω̃), ω) = xm(τn(ω̃)− 0, ω) ∀m ∈ NN\
{
jn(ω

′)
}
.

The scalar parameter σ > 0 is a diffusion coefficient.

Informally speaking the dynamics of the process x(t) consists of two parts: free motion

and pairwise interaction between particles. Namely, the interaction is possible only at random

time moments

0 < τ1 < τ2 < · · ·

and has the form of synchronizing jumps: at time τn with probability 1
N(N−1) a pair of

particles (i, j) is chosen and the particle j jumps to the particle i:

(xi, xj) → (xi, xi) . (2)

Inside the intervals (τk, τk+1) particles of the process x(t) move as independent Brownian

motions with diffusion coefficient σ (free dynamics).

In some sense the dynamics of the interacting particle system x(t) can be considered

as a perturbation of the stochastic dynamics B(t). We are interested in the question how

the synchronizing interaction will imply on a long time behavior of x(t). We consider the

following limiting situations:

(i) N is fixed, t → ∞;

(ii) N → ∞ is fixed, t = t(N) → ∞ with different choices of the time scales t(N).

We shall mainly be concerned here with the situation (ii) which is more important and more

interesting.

To make our considerations more transparent in all subsequent sections we have the next

assumption.

Assumption M. The moments {τn}
∞

n=1 are epochs of a Poisson flow of intensity δ, i.e., the

sequence {τn − τn−1}
∞

n=1 consists of independent random variables, having exponential

distributions: P (τn − τn−1 > s) = exp(−δs).

Assumption M implies immediately that (x(t), t ≥ 0) is a Markov process on R
N with sym-

bolic generator

σLB
0 + δLs, σ > 0, δ > 0 ,

where LB
0 is a generator of the standard N -dimensional Brownian motion and Ls corresponds

to synchronizing jumps.

This assumption is not crucial for the validity of our asymptotic results. In Subsection 4.3

we shall discuss the case of a general renewal process.

2.2 Long time behavior for fixed N

We use notation L (ξ) for a distribution law of a random element ξ. Then (L (x(t)) , t ≥ 0)

is a family of probability measures on
(
R
N ,B

(
R
N
))

.
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Theorem 1 L (x(t)) has no limit as t → ∞.

We recall the well known fact that the Brownian motion B(t) also has no limit on distri-

bution as t → ∞. But a long time behavior of the interacting particle system x(t) strongly

differs from the behavior of B(t). Indeed, let us consider an “improved” process x◦(t),

x◦i (t) = xi(t)−M(x(t)),

where M(x) := 1
N

N∑

m=1
xm is the center of mass of the particle configuration x = (x1, . . . , xN ).

In other words, x◦(t) is the particle system x(t) viewed by an observer placed in the center

of mass M(x(t)).

Theorem 2 For any σ > 0, δ > 0 the Markov process x◦(t) is ergodic. Hence there exists a

probability distribution µN on
(
R
N ,B

(
R
N
))

such that L (x◦(t)) → µN as t → ∞.

The idea of the proof is to show that x◦(t) satisfies the Doeblin property. Similar argu-

ments were used in [4, 8]. So we omit here the proofs of Theorems 1 and 2.

The result of Theorem 2 is close to the shift-compactness property of measure-valued

stochastic processes [9].

It would be interesting to answer the following main questions. What is a typical “size” of

the configuration (x1, . . . , xN ) under the distribution µN? How large (with respect to N is a

domain where µN is supported with probability close to 1? To do this we let the dimension N

and the time t grow to infinity in order to find on which time scale t = t(N) the process x(t)

will approach µN .

2.3 Time scales

In collective behavior of a particle system with synchronization we observe a superposition

of two opposite tendencies: with the course of time the free dynamics increases the spread of

the particle system while the synchronizing interaction tries to decrease it.

To formalize the notion of a “size” or a “spread” we consider the following function on the

state space

V : RN → R+, V (x) :=
1

N − 1

N∑

m=1

(xm −M(x))2 ,

where M(x) is the center of mass as defined above. In statistics the function V is known as

the empirical variance. We introduce also the function RN : R+ → R+ depending on the

time t ≥ 0 as

RN (t) := EV (x(t)). (3)

It appears that the function RN (t(N)) has completely different asymptotic behavior for

different choices of the time scale t = t(N). Before proving this result we start from the

following explicit formula.

Theorem 3 There exist a number κ > 0 such that

RN (t) = σ2δ−1 lN (1− exp (−δt/lN )) + exp (−δt/lN )RN (0),

where lN = N(N − 1)/κ.
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This statement shows that the function RN (t) satisfies to a very simple differential equation

d

dt
RN (t) = σ2 −

δ

lN
RN (t) .

So the choice of RN in (3) was really good from the point of view of subsequent asymptotic

analysis.

In the next theorem we assume that N → ∞, t = t(N) → ∞.

Theorem 4 (On three time scales) Let sup
N

RN (0) < ∞. Then

I. If
t(N)

N2
→ 0, then RN (t(N)) ∼ σ2 t(N).

II. If t(N) = cN2/ (κδ), c > 0,

then RN (t(N)) ∼
1− e−c

c
σ2 t(N).

III. If
t(N)

N2
→ ∞, then RN (t(N)) ∼

(
σ2

κδ

)

N2.

Remark 1. In case δ = 0 when there is no synchronization and x(t) behaves as the

Brownian motion σB(t) the function RN can be calculated explicitly: RN (t) = σ2t .

Remark 2. The function f in the item II is strictly decreasing:

f(c) =
1− e−c

c
, f(0) = 1, f ′(c) < 0, f(+∞) = 0.

Remark 3. For the pairwise synchronization (1) and (2) considered in the present section

κ = 2. Details will be given at the end of Subsection 4.2.

2.4 Discussion of collective behavior

We can easily observe from Theorem 4 that for the slowest time scale (case I) asymptotic

behavior of RN (t(N)) is the same as for non-perturbed dynamics. This means that a cumula-

tive effect of synchronization jumps on time intervals of the form (0, o(N2)) is negligible with

respect to the influence of the free dynamics. Next observation is that on the fastest time

scale (case III) asymptotics of RN (t(N)) does not depend on the rate of grow of t = t(N).

We interpret this phenomenon as follows: synchronization dominates heavily on the free mo-

tion and the asymptotics (σ2/2δ)N2 corresponds to the averaging of the function f(x) with

respect to the limiting distribution µN . The asymptotics on the middle time scale (case II,

time intervals of the form (c1N
2, c2N

2)) “continuously joins” the asymptotics of the slowest

and the fastest time stages.

As in [6] one can call these consecutive stages correspondingly:

I initial desynchronization

II critical slowdown of desynchronization

III final stabilization.
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3 Proofs

3.1 Proof of Theorem 3

Let Πt = max {m : τm ≤ t} and τ∗t = τΠt. Obviously, τ∗t = max {τi : τi ≤ t}. To get RN (t)

we shall calculate the chain of conditional expectations as follows

E (·) = E

(

E

(

E

(

· | {τj}
∞

j=1

)

|Πt

))

.

Lemma 1

E

(

V (x(t) | {τj}
∞

j=1

)

= σ2
Πt−1∑

i=0

kΠt−i
N · (τi+1 − τi) + σ2 · (t− τ∗t ) + kΠt

N RN (0) (4)

where kN :=
(

1− κ

N(N−1)

)

.

To take expectation E (· |Πt) from the both sides of equation (4) we need to know the

joint distribution of the following form

P {τq − τq−1 ∈ (x, x+ dx), Πt = n} , q ≤ n

and the expectation of the spent waiting time (t− τ∗t ) in terms of [10].

Lemma 2 If Assumption M holds we have that (Πt, t ≥ 0) is the Poisson process and

E (τq − τq−1 |Πt = n) = E (t− τ∗t |Πt = n) =
t

n+ 1

Keeping in mind Lemmas 1 and 2 we can easily proceed with calculation of RN (t). Under

Assumption M

E (V (x(t) |Πt = n) = σ2
n−1∑

i=0

kn−i
N

t

n+ 1
+ σ2 t

n+ 1
=

= σ2 t

n+ 1

n∑

j=0

kjN = σ2 t

n+ 1

1− kn+1
N

1− kN
+ knNRN (0)

Moreover, for given t > 0 the random variable Πt has the Poisson distribution with mean δt.

Using identity
∞∑

n=0

αn

(n+ 1)!
= α−1 (eα − 1)

we get

RN (t) =

∞∑

n=0

E (V (x(t) |Πt = n)
(δt)n

n!
exp (−δt) =

=
σ2t

1− kN

(
exp(δt)− 1

δt
−

(exp(kNδt)− 1) kN
kNδt

)

exp (−δt) + exp (−(1− kN )δt)RN (0) =

=
σ2

δ

1− exp (−(1− kN )δt)

1− kN
+ exp (−(1− kN )δt)RN (0) .
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Putting lN = (1− kN )−1 we obtain statement of Theorem 3.

3.2 Proof of Theorem 4

Our task is to analyze asymptotic behavior of

RN (t(N)) = σ2δ−1 lN (1− exp (−δt(N)/lN ))+exp (−δt(N)/lN )RN (0) , lN = N(N−1)/κ,

for different choices of t = t(N). Let N → ∞.

Case I: t(N)/lN → 0. Then

RN (t(N)) ∼ σ2δ−1 lN δt(N)/lN = σ2t(N) .

Case II: t(N)/lN → cδ−1 for some c > 0. We have

RN (t(N)) ∼ σ2δ−1 t(N)c−1δ (1− exp (−c)) = σ2t(N) (1− exp (−c)) /c.

Case III: t(N)/lN → +∞. Here we get

RN (t(N)) ∼ σ2δ−1 lN ∼
σ2

δκ
N2 .

Theorem 4 is proved.

3.3 Proofs of Lemmas

Let us introduce families of σ-algebras which are generated Fm = σ ((x(s), s ≤ τm) , {τi}
∞

i=1)

as follows

Fm = σ ((x(s), s ≤ τm) , {τi}
∞

i=1) , m = 0, 1, . . .

Fm− = σ ((x(s), s ≤ τm − 0) , {τi}
∞

i=1) , m = 1, 2, . . . .

Denote also F0− = σ ( {τi}
∞

i=1). Evidently,

F0− ⊂ F0 ⊂ · · · ⊂ Fm− ⊂ Fm ⊂ F(m+1)− ⊂ Fm+1 ⊂ · · ·

To prove Lemma 1 we shall use the following result related with synchronizing jumps.

Lemma 3 There exists κ > 0 such that for any m ∈ N

E (V (x(τm)) | Fm−) = kN V (x(τm − 0)) ,

where kN =

(

1−
κ

N(N − 1)

)

∈ (0, 1).

We postpone the proof of this lemma Subsection 4.2 where the same statement will be

established for more general interactions. Here we just note that in the case of pairwise

synchronizations κ = 2.

Since the free dynamics of particles corresponds to Brownian motions independent of the

sequence {τi}
∞

i=1 of synchronization moments, for any m ∈ N we have

E (V (x(τm+1 − 0)) | Fm) = V (x(τm)) + σ2 · (τm+1 − τm).

7



Using Lemma 3 we get

E (V (x(τm+1)) | Fm) = kNV (x(τm)) + kNσ2 · (τm+1 − τm) (5)

Hence, iterating (5) we come to the equation

E (V (x(τm+1)) | Fm−1) = E (E (V (x(τm+1)) | Fm) | Fm−1) =

= kNE (V (x(τm)) | Fm−1) + kNσ · (τm+1 − τm)

By developing this recurrent equation we obtain

E

(

V (x(τn) | {τj}
∞

j=1

)

= σ2
n−1∑

i=0

kn−i
N (τi+1 − τi) + knNRN (0).

In a similar way we get for any nonrandom t > 0

E

(

V (x(t) | {τj}
∞

j=1

)

= σ2
Πt−1∑

i=0

kΠt−i
N · (τi+1 − τi) + σ2 · (t− τ∗t ) + kΠt

N RN (0).

Here we take into account that all τj have continuous distributions and, as usually, the sign

“=” for conditional expectations is understood in the sense of “almost surely” [12].

This completes the proof of the Lemma 1.

Lemma 2 follows from the well know facts of renewal processes theory [14, 13] or can be

verified by a direct calculation in our concrete case.

4 Generalizations

4.1 Varying parameters

Since Theorems 3 and 4 deal with the sequence {x(t) = (x1(t), . . . , xN (t)}∞N=1 of stochastic

processes is it natural to ask whenever these statements remain true if we let the coefficients

σ and δ depend on N . In other words under Assumption M we consider a family of Markov

processes defined on the state spaces (RN ,B
(
R
N )

)
with formal generators

σNLB
0 + δNLs, σN > 0, δN > 0 . (6)

If we check carefully all calculations and arguments in the proofs of Theorems 3 and 4 we

see that these proofs are valid without any modification for the case (6). The corresponding

results are summarized in the next theorem.

Theorem 5

1. There exist a number κ > 0 (not depending on N) such that

RN (t) = σ2
Nδ−1

N lN (1− exp (δN t/lN )) + exp (−δN t/lN )RN (0), (7)

where lN = N(N − 1)/κ.

2. Let N → ∞, t = t(N) → ∞. Assume that sup
N

RN (0) < ∞. There are three different

time stages in the collective behavior of the particle system:

8



I II III

t(N) αN → 0 αN → c > 0 αN → ∞

RN (t(N)) ∼ σ2
N t(N) (1− e−c)c−1 σ2

N t(N) σ2
N (κδN )−1N2

where αN :=
κδN t(N)

N2
.

Remark 4. As it is seen from the representation (7) the assumption sup
N

RN (0) < ∞ can

be weakened. We can let some growth of RN (0) in the limit N → ∞ and the statement 2 of

Theorem 5 still remains true. But the conditions on the admissible growth will be different

for each time stage.

4.2 k-particle synchronization

Recall our assumption (2) on pairwise interaction: we pick at random a pair of particles

(xi, xj) and move this particles as follows (xi, xj) → (xi, xi). To study general problems

of synchronization in stochastic systems with applications to wide classes of self-organizing

systems we should face to so called multi-particle interactions. The most general rule of

synchronizing jumps is

x = (x1, . . . , xN ) → x′ = (x′1, . . . , x
′

N )

where {x′1, . . . , x
′

N} ⊂ {x1, . . . , xN} , {x′1, . . . , x
′

N} 6= {x1, . . . , xN} . Following the paper [7]

we restrict ourself here to symmetric k-particle interactions based on synchronizing maps.

Definition of synchronizing maps needs some preliminary notation. First we introduce a set

I := {(i1, . . . , ik) : ij ∈ NN , ip 6= iq (p 6= q) } .

Fix integers k ≥ 2 and k1 ≥ 2, . . ., kl ≥ 2: k1 + · · · + kl = k. The sequenced collection

(k1, . . . , kl) will be called a signature of interaction. Given the signature (k1, . . . , kl) we

introduce a map πk1,...,kl defined on the set I as follows: πk1,...,kl : (i1, . . . , ik) 7→ (Γ1, . . . ,Γl) ,

where Γj = (gj ,Γ
◦

j ) with

g1 = i1, Γ◦

1 = (i2, . . . , ik1),

· · ·

gl = ik1+···+kl−1+1, Γ◦

l =
(
ik1+···+kl−1+1, . . . , ik1+···+kl

)
.

In other words the map πk1,...,kl is a special regrouping of indices (i1, . . . , ik):

(i1, . . . , ik) = (i1, i2, . . . , ik1 , ik1+1, ik1+2, . . . , ik1+k2 , . . . , . . . , ik)

i1, i2, . . . , ik1 ,
︸ ︷︷ ︸

ik1+1, ik1+2, . . . , ik1+k2
︸ ︷︷ ︸

, . . .

g1 Γ◦

1 g2 Γ◦

2 . . .

The map πk1,...,kl generates a family of synchronizing maps
{

J
(i1,...,ik)
k1,...,kl

, (i1, . . . , ik) ∈ I
}

de-

fined on the set R
N of particle configurations:

J
(i1,...,ik)
k1,...,kl

: x = (x1, . . . , xN ) 7→ y = (y1, . . . , yN ) , (8)
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where

ym =

{

xm, if m /∈ (i1, . . . , ik) ,

xgj , if m ∈ (i1, . . . , ik) , m ∈ Γj .

We call the jump (8) a synchronization of the collection of particles xi1 , . . . , xik , corresponding

to the signature (k1, . . . , kl). The configuration J
(i1,...,ik)
k1,...,kl

x has at least k1 particles with

coordinates that are equal to xg1 , . . . , at least kl particles at the point xgl .

We are ready now to define a particle system with symmetric k-particle interaction of

the given signature (k1, . . . , kl). To do this we repeat the strategy of Subsection 2.1 but with

another definition of the probability space (Ω′,F ′,P′). Now the space (Ω′,F ′,P′) corresponds

to the independent sequence

(i11, . . . , i
1
k), . . . , (in1 , . . . , i

n
k), . . .

of equiprobable elements of the set I . As before the dynamics of x(t) consists of two parts:

free motion and interaction. Inside the intervals (τk, τk+1) particles of the process x(t) move

as independent Brownian motions with diffusion coefficient σ (free dynamics). Interaction

is possible only at the epochs 0 < τ1 < τ2 < · · · and has the following form. At time

τn with probability 1
N(N−1)···(N−k+1) a set of indices (i1, . . . , ik) is chosen and the particle

configuration (x1, . . . , xN ) instantly changes to (y1, . . . , yN ) accordingly to the synchronizing

map J
(i1,...,ik)
k1,...,kl

(see (8)).

Note that the pairwise interaction defined in (2) is a particular case of the symmetric k-

particle synchronizing interaction considered here. To see this put k = 2, l = 1, the signature

(k1, . . . , kl) = (2). Then π2 : (i1, i2) 7→ Γ1, Γ1 = (g1,Γ
◦

1) = (i1, i2), g1 = i1, Γ
◦

1 = i2.

Let Ls,(k1,...,kl) denote a formal generator corresponding to the symmetric k-particle inter-

action of the signature (k1, . . . , kl). Main goal now is to generalize our results to the Markov

process x(t) with generator

σNLB
0 + δNLs,(k1,...,kl) , σN > 0, δN > 0 .

All arguments of the proof in Section 3 can be repeated as well for this case, we should only

to take care about an analog of Lemma 3. Fortunately, the proof of Lemma 3 for the general

symmetric k-particle interaction can be obtained by a slight modification of the proof of

Lemma 2 in [7]. So there is no need to repeat that proof here. We mention only the explicit

form of the constant κ entering in definition of

kN = 1−
κ

(N − 1)N
.

It appears (see [7]) that κ =
∑l

j=1 k
2
j − k. It is easy to check that κ > 0 for any k1 ≥ 2, . . .,

kl ≥ 2 such that k1 + · · ·+ kl = k.

So our final conclusion is the following one.

The both statements of Theorem 5 remains true for the particle system with symmetric k-

particle interaction. Moreover, κ = κ(k1, . . . , kl) =
∑l

j=1 k
2
j − k. The choice of the sequence

{αN} is the same: αN =
κδN t(N)

N2
.

Let us remark also that for the pairwise synchronization κ((2)) = 2.
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4.3 Nonmarkovian model: general renewal epochs for synchronization

The next step in generalization of the model is to consider more general sequences {τn}. We

replace Assumption M by the following one.

Assumption TN . For each fixed N ∈ N the moments
{

τ
(N)
n

}
∞

n=1
are epochs of some renewal

process, i.e., the sequence
{

τ
(N)
n − τ

(N)
n−1

}
∞

n=1
consists of independent random variables,

having common continuous distribution function FN (s) = P

{

τ
(N)
n − τ

(N)
n−1 ≤ s

}

sat-

isfying FN (s) = 0 for s ≤ 0. Intervals τ
(N)
n − τ

(N)
n−1 have finite mean µN > 0 and

variance dN .

Expected result is the following one. Consider a stochastic process x(N)(t) = (x1(t), . . . , xN (t)),

t ≥ 0, corresponding to N Brownian particles with diffusion coefficient σN > 0. Particles

of x(N)(t) interact at epochs
{

τ
(N)
n

}
∞

n=1
according to the symmetric k-particle interaction of

the signature (k1, . . . , kl). Let Assumption TN holds.

Conjecture. Assume that sup
N

RN (0) < ∞. Let N → ∞, t = t(N) → ∞. There are three

different time stages in the collective behavior of the particle system:

I II III

t(N) αN → 0 αN → c > 0 αN → ∞

RN (t(N)) ∼ σ2
N t(N) (1− e−c)c−1 σ2

N t(N) κ
−1σ2

NµN N2

where αN :=
κ t(N)

µNN2
, κ =

l∑

j=1

k2j − k.

Evidently, x(N)(t) is not a Markov process. Of course, we can not expect to have here

an explicit representation for RN (t) as in Theorem 3. Possible proofs of the Conjecture can

be obtained by two different ways. The first one is close to Section 3 of the present paper.

The idea is to represent RN (t) in term of generating function of the number of renewals Πt:

g(t, ζ) = EζΠt (we recall that under Assumption TN (Πt, t ≥ 0) is not a Poisson process).

We are interested in the long time behavior (t → ∞), so we take the Laplace transform of

the function g(t, ζ) in t (see [13, Section 3.2]),

g∗(s, ζ) =

∫ +∞

0
e−stg(t, ζ) dt ,

to analyze its behavior for small s. Applying Tauberian theorems from [10, Ch. 13, Section 5]

we come to the following statement.

Theorem 6 Assume that sup
N

RN (0) < ∞, N → ∞, t(N) → ∞.

If αN → 0, then RN (t(N)) ∼ σ2
N t(N)L1(t(N)) .

If αN → ∞, then RN (t(N)) ∼ κ
−1σ2

NµN N2L2(t(N)) .

Here L1 and L2 are some slowly varying functions, notation αN is the same as in Conjecture.

These results are slightly weaker than the corresponding items of Theorems 4 or 5 but

this is the best we can do by this method. We omit details.
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The second possible way of proving the above conjecture is an approach based on em-

bedded Markov chains. It was very effective in [6] and [7]. We shall devote to it a separate

paper.
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