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SUPPORTS OF REPRESENTATIONS OF THE RATIONAL

CHEREDNIK ALGEBRA OF TYPE A

STEWART WILCOX

Abstract. We first consider the rational Cherednik algebra corresponding to the ac-
tion of a finite group on a complex variety, as defined by Etingof. We define a category
of representations of this algebra which is analogous to “category O” for the rational
Cherednik algebra of a vector space. We generalise to this setting Bezrukavnikov and
Etingof’s results about the possible support sets of such representations. Then we
focus on the case of Sn acting on Cn, determining which irreducible modules in this
category have which support sets. We also show that the category of representations
with a given support, modulo those with smaller support, is equivalent to the category
of finite dimensional representations of a certain Hecke algebra.

1. Introduction

1.1. Linear actions. Let W be a finite group acting faithfully on a finite dimensional
C-vector space h. The Weyl algebra D(h) of h admits an action of W , so C[W ]⊗CD(h)
becomes an algebra in a natural way. We denote this algebra by C[W ] ⋉ D(h). The
rational Cherednik algebra, defined by Etingof and Ginzburg [10], is a universal flat
deformation of this algebra. It is named thus because it is a degeneration of the double
affine Hecke algebra defined by Cherednik [6]. We recall the definition of the rational
Cherednik algebra below:

Definition 1.1. We define the set of reflections in W to be

S = {s ∈W | rk(s− 1) = 1}.

For s ∈ S, let α∨s ∈ h and αs ∈ h∗ be the nontrivial eigenvectors of s, with eigenvalues
λ−1s and λs, normalised so that 〈α∨s , αs〉 = 2. Given a W -invariant function c : S → C,
the rational Cherednik algebra Hc(W, h) is the unital associative C-algebra generated by
h, h∗ and W , with relations

wx = wxw,

wy = wyw,

[x, x′] = 0,

[y, y′] = 0,

[y, x] = 〈y, x〉 −
∑

s∈S

c(s)〈y, αs〉〈α
∨
s , x〉s,

for x, x′ ∈ h∗, y, y′ ∈ h and w ∈W .

If there is no risk of confusion, we denote this algebra simply by Hc.
Much progress has been made in the representation theory of Hc by restricting at-

tention to finitely generated modules on which h acts locally nilpotently. The category
of such modules, introduced by Opdam and Rouquier [14], is denoted by O(Hc) and
displays many similarities with “category O” for semisimple complex Lie algebras; this
point of view is explained in [18]. The natural homomorphism C[h] → Hc allows us to
think of such modules as coherent sheaves on the complex variety h. By completing at

0Date: May, 2010.

0

http://arxiv.org/abs/1012.2585v1


REPRESENTATIONS OF THE RATIONAL CHEREDNIK ALGEBRA 1

various points of h, Bezrukavnikov and Etingof [4] characterised the possible support
sets of such a module, showing in particular that any irreducible component of this set is
the set of fixed points of some subgroup of W . Moreover they constructed the following
flat connections from these modules (see Proposition 3.20 of [4]).

Proposition 1.2. Suppose M ∈ O(Hc) and W ′ is a subgroup of W . Let Y be the set
of points in h whose stabiliser is W ′, and let iY : Y →֒ h be the inclusion. Denoting
by Sh(M) the coherent sheaf on h corresponding to the C[h]-module M , there is a flat
connection on the coherent sheaf pullback i∗Y Sh(M) determined by

∇ym = ym−
∑

s∈S\W ′

c(s)〈y, αs〉
2

1− λs

1

αs
(s− 1)m

for m ∈M and y ∈ hW
′
.

This flat connection is a special case of Theorem 1.4(2) below. In fact this statement
holds for any module M in the category Hc−modcoh of modules finitely generated over
C[h] ⊆ Hc. This allows us to give the following alternative characterisation of the
category O(Hc).

Proposition 1.3. The category O(Hc) is a Serre subcategory of Hc−modcoh. Moreover
given an irreducible M ∈ Hc−modcoh, let W

′ ⊆ W be a subgroup whose fixed point set
is a component of SuppM . Then M lies in O(Hc) if and only if the flat connection of
Proposition 1.2 has regular singularities.

1.2. Actions on Varieties. Now suppose W acts on a smooth complex algebraic va-
riety X, and ω is a W -invariant closed 2-form on X. We recall briefly the notion of
twisted differential operators [1]. Let Dω(X) denote the sheaf of algebras generated over
OX by the tangent bundle T X, with relations

xy − yx = [x, y] + ω(x, y), xf − fx = x(f)

for vector fields x and y and regular functions f , where [·, ·] denotes the usual Lie bracket
of vector fields (note that throughout this paper, scripted letters will generally denote
sheaves of modules or algebras). To give an action of Dω(X) on a quasi-coherent sheaf
M is equivalent to giving a connection on M with curvature ω. Given an immersion
of a smooth curve i : C →֒ X, we obtain a connection on the pullback i∗M which is
trivially flat, so i∗M may be thought of as an untwisted D-module. We say M has
regular singularities if i∗M has regular singularities in the usual sense for every such
immersion. This definition was given by Finkelberg and Ginzburg [12] for 2-forms which
are étale-locally exact. In fact we will only be interested in coherent sheaves M over
Dω(X), and the existence of such a sheaf ensures that ω is Zariski-locally exact.

Any 1-form α gives rise to an isomorphism Dω(X) ∼= Dω+dα(X). Therefore by patch-
ing sheaves of algebras of the form Dω(X), we obtain a sheaf of algebras Dψ(X) corre-

sponding to any class ψ ∈ H2(X,Ω≥1X ), where Ω≥1X is the two step complex Ω1
X → Ω2,cl

X

lying in degrees 1 and 2, Ω1
X is the sheaf of 1-forms and Ω2,cl

X the sheaf of closed 2-
forms. When X is affine, any such class is represented by a global 2-form. Note that
our definition of regular singularities depends on a global 2-form chosen to represent the
class.

Etingof [9] has defined a sheaf of algebras Hc,ψ(W,X) on X/W , generalizing Defini-
tion 1.1. We will recall this definition below (see Definition 2.2) after developing some
preliminaries. There is a natural copy of the structure sheaf OX in Hc,ψ(W,X), and
we will consider the full subcategory Hc,ψ−modcoh of Hc,ψ(W,X)-mod, consisting of
sheaves of modules which are coherent as OX-modules. Our first goal is to classify pos-
sible support sets of such modules, in analogy with the results of [4]. Explicitly, given a
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subgroup W ′ ⊆W , let

XW ′ = {x ∈ X | wx = x for w ∈W ′},

XW ′

reg = {x ∈ X | StabW (x) =W ′}.

Also define

P = {Y | Y is a component of XW ′

reg for some W ′ ⊆W}.

These subsets are locally closed, and may be viewed as (non-affine) varieties. Let P ′

denote the set of all Y ∈ P such that Hc(W
′, TxX/TxX

W ′) admits a nonzero finite
dimensional module, where x is any point of Y and W ′ = StabW (x). We will prove:

Theorem 1.4. Suppose M ∈ Hc,ψ−modcoh.

(1) Suppose Z ⊆ X is a closed W -invariant subset of X, and consider the subsheaf
of “Z-torsion” elements in M,

ΓZ(M)(U) = {m ∈ M(U) | Suppm ⊆ Z}.

That is, ΓZ(M) is the sum of all coherent subsheaves of M which are set-
theoretically supported on Z. Then ΓZ(M) is an Hc,ψ-submodule of M.

(2) Let Y ∈ P and let iY : Y →֒ X be the inclusion. The coherent sheaf pullback
i∗Y (M) on Y admits a natural action of Di∗Y ψ

(Y ). In particular, if ψ = 0, then

i∗Y (M) admits a natural flat connection.
(3) The set-theoretical support of M has the form

SuppM =
⋃

Y ∈PM

Y

for some W -invariant subset PM ⊆ P ′.
(4) There is an integer K > 0, depending only on c, W and X, such that any such M

is scheme-theoretically supported on the Kth neighbourhood of its set-theoretical
support.

(5) Every object of Hc,ψ−modcoh has finite length.
(6) If M is irreducible then we may take PM in part (3) to be a single W -orbit in

P ′.

We would like a sensible subcategory of Hc,ψ−modcoh in which to study the repre-
sentation theory of Hc,ψ, analogous to the category O(Hc) in the linear case. Motivated
by Proposition 1.3, we make the following definition. Again we need to choose a global
2-form ω representing the class ψ for this definition.

Definition 1.5. Let Hc,ω−modRS denote the Serre subcategory of Hc,ω−modcoh, such
that an irreducible M ∈ Hc,ω−modcoh lies in Hc,ω−modRS exactly when the connection
on i∗Y (M) given in Theorem 1.4(2) has regular singularities, where Y ∈ PM is as in
Theorem 1.4(6).

For a linear action, Proposition 1.3 shows that this category coincides with O(Hc).
Nevertheless we will use the notation Hc,ω−modRS even in the linear case to avoid
confusion with the structure sheaf of a variety.

1.3. The Type A Case. Taking X to be an open subset of a vector space, the above
will be of use in the sequel, in which we study representations of Hc = Hc(Sn,C

n),
where Sn is the symmetric group acting on Cn by permuting coordinates. The category
Hc−modRS is semisimple unless c is rational with denominator between 2 and n (see
[2]), so we take c = r

m where m ≥ 2 is coprime with r. It is shown in [4] (and follows
from Theorem 1.4) that the support of any module in Hc−modRS is of the form

Xq = {b ∈ h | StabSn(b)
∼= Sqm}
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for some integer q with 0 ≤ q ≤ n
m . It is known that the irreducible modules in

Hc−modRS are parameterised by the irreducible representations of C[Sn], which are in
turn parameterised by partitions of n. Given a partition λ ⊢ n, let τλ and L(τλ) denote
the corresponding representation of Sn and Hc respectively. The support of the latter
is determined by the following.

Theorem 1.6. If c > 0, then the support of the Hc-module L(τλ) is Xqm(λ), where

qm(λ) =
∑

i≥1

i

⌊

λi − λi+1

m

⌋

.

If c < 0, the support of L(τλ) is Xqm(λ′), where λ
′ is the transpose of λ.

In particular, this proves the following conjecture of Bezrukavnikov and Okounkov.
While this paper was in preparation, this result was generalised to the cyclotomic case
by Shan and Vasserot [20].

Corollary 1.7. Consider the universal enveloping algebra A of the Heisenberg algebra,
with generators {αi | i ∈ Z, i 6= 0} and relation [αi, αj ] = iδi,−j . Consider the grading
on A defined by deg(αi) = i. Let F denote Fock space, that is, the left A-module

F = A/span{Aαi | i > 0}.

The number of irreducibles in Hc−modRS whose support is Xq is the dimension of the
qm-eigenspace of the operator

∑

i>0

α−imαim

acting on the degree n part of F .

Moreover, denoting by Hc−modqRS the Serre subcategory of Hc−modRS consisting of
all modules supported on Xq, we will determine the structure of the quotient category

Hc−modqRS/Hc−modq+1
RS (whereHc−mod

⌊n/m⌋+1
RS is the subcategory containing only the

zero module). Explicitly, let p = n − qm and q = e2πic, and consider the Hecke algebra
Hq(Sp) with generators T1, . . . , Tp−1 and relations

TiTj = TjTi if |i− j| > 1,

TiTi+1Ti = Ti+1TiTi+1,

(Ti − 1)(Ti + q) = 0.

We will show:

Theorem 1.8. With c = r
m and q = e2πic, the category Hc−modqRS/Hc−modq+1

RS is
equivalent to the category of finite dimensional modules over C[Sq]⊗C Hq(Sp).

1.4. Outline of the Paper. The paper is organised as follows. In Section 2, after
some algebraic geometry preliminaries we recall the definition of the rational Cherednik
algebra of a variety, and prove Theorem 1.4. In Section 3 we state some known results
about the representation theory for linear actions, and in particular for H r

m
(Sn,C

n).

From this we prove Proposition 1.3 and deduce one direction of Theorem 1.6. We
restrict to the case c = 1

m in Section 4, and construct an explicit equivalence from the
category of minimally supported representations. This enables us, in Section 5, to prove
Theorem 1.8 for c = 1

m . From this we deduce Theorems 1.8 and 1.6 in general.

1.5. Acknowledgements. The author thanks Pavel Etingof for many helpful sugges-
tions and insights, Ivan Losev for useful discussions concerning Theorem 3.9, and Dennis
Gaitsgory for explanations about the theory of D-modules.
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2. Coherent Representations

Suppose X is a smooth algebraic variety over C and W a finite group acting on X,
such that the set of points with trivial stabiliser is dense in X. Let ω be a W -invariant
closed 2-form on X. Suppose for the moment that X is affine. In order to define the
rational Cherednik algebra Hc,ω(W,X), we require the following lemma, which is shown
in Section 2.4 of [9].

Lemma 2.1. Suppose Z ⊆ X is a smooth closed subscheme of codimension 1. Let O(X)
denote the ring of regular functions on X, and O(X)〈Z〉 the space of rational functions
on X whose only pole is along Z, with order at most 1. There is a natural O(X)-module
homomorphism ξZ : TX → O(X)〈Z〉/O(X) whose kernel consists of all vector fields
preserving the ideal sheaf of Z.

Since TX is a projective O(X)-module, we may lift ξZ along the surjection

O(X)〈Z〉 ։ O(X)〈Z〉/O(X)

to an O(X)-module homomorphism ζZ : TX → O(X)〈Z〉. It is known (and follows from

Proposition 2.5 below) that XW ′ is a smooth closed subscheme for any subsetW ′ ⊆W .

Definition 2.2 (Definitions 2.7 and 2.8 of [9]). Let S denote the set of pairs (Z, s),
where s ∈ W and Z is an irreducible component of Xs of codimension 1 in X. Let
c : S → C be a W -invariant function. Let Xreg denote the set of points in X with trivial
stabiliser in W , and

Dω(Xreg) = Γ(Xreg,Dω(X))

the algebra of global algebraic twisted differential operators on the smooth scheme Xreg.
For each vector field v on X, we define the Dunkl-Opdam operator Dv ∈ C[W ]⋉Dω(Xreg)
by

Dv = v +
∑

(Z,s)∈S

2c(Z, s)

1− λZ,s
ζZ(v)(s − 1),

where λZ,s is the determinant of s on TxX
∗ for any x ∈ Z. The rational Cherednik

algebra Hc,ω(W,X) is the unital C-subalgebra of C[W ]⋉Dω(Xreg) generated by C[W ]⋉
O(X) and the Dv.

Remarks:

(1) Although Dv depends on the choice of lift ζZ , the algebra Hc,ω(W,X) does not.
(2) Proposition 2.3 below shows that this algebra behaves well with respect to étale

morphisms. Moreover if α is any W -invariant 1-form on X, the isomorphism

C[W ]⋉Dω(Xreg) ∼= C[W ]⋉Dω+dα(Xreg)

identifies Hc,ω(W,X) with Hc,ω+dα(W,X). Therefore if we do not assume X is

affine, and we take a W -invariant class ψ ∈ H2(X,Ω≥1X )W rather than a global
2-form, we may patch algebras of the above form to construct a sheaf of algebras
Hc,ψ(W,X) on X/W . Nevertheless, for the moment we will continue to assume
X is affine and ω is a specified 2-form.

Proposition 2.3. Suppose p : U → X is a W -equivariant étale morphism, with U
affine. For each component Z ′ of U s of codimension 1, the image of Z ′ is a component
Z of Xs of codimension 1, and we set c′(Z ′, s) = c(Z, s). There is a natural O(U)-
module isomorphism O(U)⊗O(X)Hc,ω(W,X) ∼→ Hc′,p∗ω(W,U), whose composition with
Hc,ω(W,X) → O(U) ⊗O(X) Hc,ω(W,X) is an algebra homomorphism. Moreover given
any Hc,ω(W,X)-module M , there is a natural action of Hc′,p∗ω(W,U) on O(U)⊗O(X)M .
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Proof. Since O(U) is flat over O(X), the inclusion Hc,ω(W,X) ⊆ C[W ] ⋉ Dω(Xreg)
induces an O(U)-module monomorphism

i : O(U)⊗O(X) Hc,ω(W,X) →֒ O(U)⊗O(X) C[W ]⋉Dω(Xreg)

= C[W ]⋉Dp∗ω(Ureg).

Moreover, for an appropriate choice of the lifts ζZ , for any v ∈ TX the image of Dv ∈
Hc,ω(W,X) under i is Dp∗v. Now Hc′,p∗ω(W,U) is the subalgebra of C[W ]⋉Dp∗ω(Ureg)
generated by C[W ]⋉O(U) and {Dv | v ∈ TU}. But

TU = O(U)⊗O(X) TX,

and

[Dv, f ] = v(f) +
∑

(Z,s)∈S

2c(Z, s)

1− λZ,s
ζZ(v)(

sf − f)s ∈ C[W ]⋉O(U)

for any v ∈ TU and f ∈ O(U). It follows that Hc′,p∗ω(W,U) is spanned by elements of
the form

fwDp∗v1Dp∗v2 . . . Dp∗vk

for f ∈ O(U), w ∈ W and vi ∈ TX. Applying the same argument with p equal to the
identity on X, we see that Hc,ω(W,X) is spanned by

fwDv1Dv2 . . . Dvk

for f ∈ O(X), w ∈W and vi ∈ TX. Thus the image of i is exactly Hc′,p∗ω(W,U), giving
the required isomorphism j : O(U) ⊗O(X) Hc,ω(W,X) ∼→ Hc′,p∗ω(W,U). Note that the
composition of i with Hc,ω(W,X) → O(U)⊗O(X) Hc,ω(W,X) equals the composite

Hc,ω(W,X) ⊆ C[W ]⋉Dω(Xreg) → C[W ]⋉Dp∗ω(Ureg),

which is an algebra homomorphism. In particular, j also preserves the right O(X)-
module structure.

Now suppose M is an Hc,ω(W,X)-module. The multiplication map

Hc′,p∗ω(W,U)⊗C O(U) → Hc′,p∗ω(W,U)

and the action map Hc,ω(W,X) ⊗O(X) M →M give rise to a map

Hc′,p∗ω(W,U) ⊗C O(U)⊗O(X) M

→ Hc′,p∗ω(W,U) ⊗O(X) M

∼= O(U)⊗O(X) Hc,ω(W,X) ⊗O(X) M

→ O(U)⊗O(X) M.

It is straightforward to check that this defines an action. �

As in [4], we will study representations of Hc,ω(W,X) by restricting to the formal neigh-
bourhood of a point, or more generally a closed subset.

Proposition 2.4. Suppose Z is a W -invariant closed subset of X, and let I ⊆ O(X)
denote the ideal vanishing on Z. Consider the coordinate ring of the “formal neighbour-
hood” of Z,

ÔX,Z = lim
←
k

O(X)/Ik .

There is a natural algebra structure on ÔX,Z ⊗O(X) Hc,ω(W,X), and this algebra acts

naturally on ÔX,Z ⊗O(X) M for any M in Hc,ω(W,X)−modcoh.
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Proof. We define an algebra filtration H≤dc,ω of Hc,ω = Hc,ω(W,X) as follows. Let H≤0c,ω =
C[W ]⋉O(X) and

H≤1c,ω = H≤0c,ω + C[W ]{Dv | v ∈ TX}.

This is independent of the choice of lift ζZ , since different choices of Dv differ by elements
of C[W ]⋉O(X). Finally let

H≤dc,ω =
(

H≤1c,ω
)d
.

As in the previous proof, if v1, . . . , vm generate TX over O(X), then H≤dc,ω is generated
over O(X) by

wDvi1
. . . Dvik

for w ∈W and k ≤ d. In particular, H≤dc,ω is a finitely generated left O(X)-module.
Now I is W -invariant, so inside Hc,ω we have

(C[W ]⋉O(X))I = I(C[W ]⋉O(X))

and

[Dv, I] ⊆ [Dv ,O(X)] ⊆ C[W ]⋉O(X).

It follows by induction on k that H≤1c,ωI
k+1 ⊆ IkH≤1c,ω, so that H≤dc,ωI

k+d ⊆ IkH≤dc,ω for all
d, k ≥ 0. The multiplication map

H≤dc,ω ⊗H≤ec,ω → H≤d+ec,ω

therefore naturally induces a map

H≤dc,ω ⊗
(

O(X)/Id+k ⊗O(X) H
≤e
c,ω

)

→ O(X)/Ik ⊗O(X) H
≤d+e
c,ω .

Taking inverse limits we obtain Ĥ≤dc,ω ⊗ Ĥ≤ec,ω → Ĥ≤d+ec,ω , where

Ĥ≤dc,ω = lim
←
k

O(X)/Ik ⊗O(X) H
≤d
c,ω = ÔX,Z ⊗O(X) H

≤d
c,ω.

In this way the space

Ĥc,ω =
⋃

d≥0

Ĥ≤dc,ω = ÔX,Z ⊗O(X) Hc,ω

becomes an associative algebra. Moreover for any M ∈ Hc,ω−modcoh, the action map
induces

H≤dc,ω ⊗
(

O(X)/Id+k ⊗O(X) M
)

→ O(X)/Ik ⊗O(X) M,

and taking inverse limit gives an action of Ĥc,ω on ÔX,Z ⊗O(X) M . �

Next we show that the action of W on X looks, on the formal neighbourhood of the
fixed point set, like a linear action.

Proposition 2.5. Suppose Z ⊆ X is a smooth closed subset which is fixed pointwise by
the action of W . Then every x ∈ Z admits an affine open W -invariant neighbourhood
U ⊆ X such that there is a W -equivariant ring isomorphism φ making the following
diagram commute:

Ô(U∩Z)×(TxX/TxZ),(U∩Z)×{0}

φ

∼
//

)) ))T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

ÔU,U∩Z

����
O(U ∩ Z).

Here W acts on the first ring according to its linear action on TxX/TxZ.
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Proof. Both rings are inverse limits, so it suffices to construct compatibleW -equivariant
ring isomorphisms

φk : Γ(X,OX/I)⊗ C[TxX/TxZ]/m
k ∼→ Γ(X,OX/I

k),

such that φ1 is the identity, where m ⊆ C[TxX/TxZ] is the ideal corresponding to the
origin and I ⊆ OX is the ideal sheaf vanishing on Z.

Let TxZ
⊥ denote the subspace of TxX

∗ vanishing on TxZ. This is the image of
Γ(X,I) under the gradient map Γ(X,I) → TxX

∗. Let a1, . . . , an be a basis for TxX,
and b1, . . . , br a basis for TxZ

⊥, such that 〈ai, bj〉 = δij for 1 ≤ i ≤ n and 1 ≤ j ≤ r.

Since W is finite and acts linearly on Γ(X,I) and TxZ
⊥, and we are working over

characteristic zero, Maschke’s theorem implies the existence of aW -equivariant C-linear
map β : TxZ

⊥ → Γ(X,I) which is right inverse to the surjection Γ(X,I) ։ TxZ
⊥. Let

fj ∈ Γ(X,I) be the image of bj . Also choose vi ∈ TX mapping to ai ∈ TxX. Let U
denote the open neighbourhood of x on which the matrix (vi(fj))1≤i,j≤r is invertible.
The functions f1, . . . , fr have linearly independent gradients on U , so their zero set
Z ′ ⊆ U has codimension r. However Z ′ ⊇ Z ∩ U since fj ∈ Γ(X,I), and the dimension

r of TxZ
⊥ equals the codimension in X of the component of Z containing x. Therefore

Z coincides with Z ′ on some neighbourhood of x. By shrinking U , we may suppose that
U is an affine, W -invariant open neighbourhood of x such that Γ(U,I) is generated by
the fj. We now inductively construct ring homomorphisms

γk : Γ(U,OX/I) → Γ(U,OX/I
k)W

for k ≥ 1, compatible with the projections Γ(U,OX/I
k+1)W ։ Γ(U,OX/I

k)W , and
such that γ1 is the identity (note that W acts trivially on Γ(U,OX/I) = Γ(U ∩Z,OZ),
since Z is fixed pointwise by W ). Suppose we have γk, where k ≥ 1. Let A =
C[x1, . . . , xm] be a polynomial ring mapping surjectively to Γ(U,OX), and let p ⊆ A
be the inverse image of the ideal Γ(U,I). Note that Γ(U,OX/I) = A/p. Now choose
yi ∈ Γ(U,OX/I

k+1)W mapping to γk(xi) ∈ Γ(U,OX/I
k)W . We have a ring ho-

momorphism γ′ : A → Γ(U,OX/I
k+1)W sending xi to yi, and the composite with

Γ(U,OX/I
k+1)W → Γ(U,OX/I

k)W factors through γk. In particular, the composite
kills p, so γ′(p) ⊆ Γ(U,Ik/Ik+1)W . Also the composite of γ′ with Γ(U,OX/I

k+1)W →
Γ(U,OX/I) is the natural projection A→ Γ(U,OX/I). It follows that the restriction

δ = γ′|p : p → Γ(U,Ik/Ik+1)W

is an A-module homomorphism. Certainly then δ(p2) = 0. We have an exact sequence

0 → p2 → p → A/p ⊗A T (SpecA)
∗ → T (SpecA/p)∗,

where the map p → A/p⊗A T (SpecA)
∗ is the gradient map. Since

SpecA/p = U ∩ Z

is smooth, T (SpecA/p)∗ is a projective A/p-module. Therefore δ factors through the
gradient map. Moreover T (SpecA)∗ is freely generated over A by dx1, . . . , dxm. There-
fore we may find z1, . . . , zm ∈ Γ(U,Ik/Ik+1)W such that

δ(f) =

m
∑

i=1

∂f

∂xi
zi.

Let γ′′ : A → Γ(U,OX/I
k+1)W be the ring homomorphism sending xi to yi − zi. Since

k ≥ 1, we have

γ′′(f) = γ′(f)−
m
∑

i=1

∂f

∂xi
zi.

In particular, γ′′ kills p, so it induces the required map γk+1 : A/p → Γ(U,OX/I
k+1)W .
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Now C[TxX/TxZ] is freely generated by b1, . . . , br, so we may extend γk to a homo-
morphism

φ′k : Γ(U,OX/I)⊗ C[TxX/TxZ] → Γ(U,OX/I
k)

by sending bj to fj. Note that the φ′k are compatible as k varies, and are W -equivariant

since β is. Since fj ∈ Γ(X,I) for each j, we have φ′k(Γ(U,OX/I) ⊗ ml) ⊆ Γ(U,I l/Ik)
for 0 ≤ l ≤ k. Thus φ′k induces a map

φk : Γ(U,OX/I)⊗ C[TxX/TxZ]/m
k → Γ(U,OX/I

k),

and to prove φk is an isomorphism, it suffices to show that the induced maps

Γ(U,OX/I)⊗ml/ml+1 → Γ(U,I l/I l+1)

are isomorphisms, for 0 ≤ l < k. We took γ1 to be the identity, so in fact this is a map
of Γ(U,OX/I)-modules. That is, we are required to prove that Γ(U,I l/I l+1) is freely
generated over Γ(U,OX/I) by degree l monomials in the fj. This is clear when l = 0.

Moreover the monomials generate Γ(U,I l) over Γ(U,OX), since the fj generate Γ(U,I)
over Γ(U,OX ). Finally suppose

∑

α

gαf
α1
1 . . . fαr

r ∈ Γ(U,I l+1)

for some gα ∈ Γ(U,OX ), where each monomial has degree l. The matrix (vi(fj))1≤i,j≤r
is invertible on U , so we may find vector fields v′1, . . . , v

′
r on U satisfying v′i(fj) = δij .

Since v′iΓ(U,I
l+1) ⊆ Γ(U,I l), we conclude that

∑

α

αigαf
α1
1 . . . fαi−1

i . . . fαr
r ∈ Γ(U,I l)

for each 1 ≤ i ≤ r. If l > 0 then for each α we have αi 6= 0 for some i, so by induction
we conclude that gα ∈ Γ(U,I), as required. �

The next proposition generalises Theorem 3.2 of [4], which applies to linear actions.

Proposition 2.6. Suppose Z is a smooth connected closed subset of X, every point of
which has the same stabiliser W ′ in W . Suppose the W -translates of Z are all equal to
or disjoint with Z, and let WZ denote their union. Finally let W ′′ be the subgroup of
W fixing Z setwise. Then

ÔX,WZ ⊗O(X) Hc,ω(W,X) ∼= Mat[W :W ′′](C[W
′′]⊗C[W ′] Hc,ω(W

′,Spf ÔX,Z)),

where Hc,ω(W
′,Spf ÔX,Z) is an algebra depending only on the following data:

• the ring ÔX,Z ,

• the action of W ′ on ÔW,Z,

• the extension of ω to a map DerC(ÔX,Z) ∧DerC(ÔX,Z) → ÔX,Z , and
• the parameters c(Z ′, s) for Z ′ ⊇ Z.

The isomorphism is natural up to a choice of coset representatives for W ′′ in W . There
is a natural action of C[W ′′] ⊗C[W ′] Hc,ω(W

′,Spf ÔX,Z) on ÔX,Z ⊗O(X) M for any
Hc,ω(W,X)-module M .

Remarks:

(1) The construction of Hc,ω(W,X) can be extended to allow X to be a formal

scheme, and the algebra Hc,ω(W
′,Spf ÔX,Z) is an example of this construction.

Nevertheless we give a self-contained definition of this algebra below without
making reference to formal schemes.

(2) When ω = 0, the following proof can be simplified by embedding Hc,ω(W,X) in
EndC(O(X)) rather than C[W ]⋉Dω(Xreg).
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Proof. We have a natural isomorphism

DerC(ÔX,WZ) ∼= ÔX,WZ ⊗O(X) TX,

so the closed 2-form

ω : TX ⊗O(X) TX → O(X)

extends naturally to a closed 2-form DerC(ÔX,WZ) ⊗ÔX,WZ
DerC(ÔX,WZ) → ÔX,WZ .

We can now define an algebra Dω(ÔX,WZ) in the same way that Dω(X) was defined,
and

Dω(ÔX,WZ) ∼= ÔX,WZ ⊗O(X) Dω(X)

as an ÔX,WZ -module. Let K(ÔX,WZ) be the localisation of ÔX,WZ at all elements which
are not zero divisors. There is a natural algebra structure on

K(ÔX,WZ)⊗ÔX,WZ
Dω(ÔX,WZ) = K(ÔX,WZ)⊗O(X) Dω(X).

Since X is smooth and Xreg is dense in X, the inclusion O(X) →֒ ÔX,Z extends to a

monomorphism Γ(Xreg,OX) →֒ K(ÔX,WZ). We therefore obtain an algebra monomor-
phism

Dω(Xreg) = Γ(Xreg,OX)⊗O(X) Dω(X) →֒ K(ÔX,WZ)⊗O(X) Dω(X).

From this we construct a monomorphism

Hc,ω(W,X) →֒ C[W ]⋉Dω(Xreg) →֒ C[W ]⋉ (K(ÔX,WZ)⊗O(X) Dω(X)).

Therefore ÔX,WZ ⊗O(X) Hc,ω(W,X) may be naturally identified with a subalgebra of

C[W ]⋉ (K(ÔX,WZ)⊗O(X) Dω(X)).
Let C be a set of left coset representatives for W ′′ in W . We choose 1 ∈ C to be the

representative for W ′′ itself. We have

WZ =
∐

w∈C

wZ.

We have assumed that the closed sets on the right are pairwise disjoint, so

K(ÔX,WZ) =
⊕

w∈C

K(ÔX,wZ),

where K(ÔX,wZ) is the field of fractions of ÔX,wZ . Let e denote the identity of ÔX,Z

in the above direct sum. Note that W ′′ fixes e. Moreover for any w ∈ C \ {1} we have

(we)e = 0, since we is the identity of ÔX,wZ in this direct sum. It follows that there is
an isomorphism

φ : C[W ]⋉ (K(ÔX,WZ)⊗O(X) Dω(X)) → MatC(C[W
′′]⋉ (K(ÔX,Z)⊗O(X) Dω(X))),

where MatC denotes the algbera of matrices with rows and columns indexed by C. Ex-
plicitly, for w1, w2 ∈ C and a ∈ C[W ′′] ⋉ (K(ÔX,Z) ⊗O(X) Dω(X)), φ sends w1eaw

−1
2

to the matrix with a in entry (w1, w2) and zeros elsewhere. Therefore to describe

ÔX,WZ ⊗O(X) Hc,ω(W,X), it suffices to determine its image under φ.

Now ÔX,WZ ⊗O(X)Hc,ω(W,X) is generated as an algebra by C[W ]⋉ ÔX,WZ and the
Dunkl-Opdam operators. Under φ, the first subalgebra generates

MatC(C[W
′′]⋉ ÔX,Z) ⊆ MatC(C[W

′′]⋉ (K(ÔX,Z)⊗O(X) Dω(X))).

In particular, this contains MatC(C), so the image of ÔX,WZ ⊗O(X) Hc,ω(W,X) is

MatC(A), where A is the subalgebra of C[W ′′] ⋉ (K(ÔX,Z) ⊗O(X) Dω(X)) generated
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by C[W ′′] ⋉ ÔX,Z and the entries of the images of the Dunkl-Opdam operators under
φ. Recall that these operators are given by

Dv = v +
∑

(Z′,s)∈S

2c(Z ′, s)

1− λZ′,s
ζZ′(v)(s − 1) ∈ C[W ]⋉Dω(Xreg),

for v ∈ TX. Given (Z ′, s) ∈ S, if Z intersects Z ′, then there is a point in Z fixed by s,
so s ∈ W ′ and Z ⊆ Z ′. On the other hand, if Z ′ is disjoint with Z, then ζZ′(v) defines

a regular function in ÔX,Z . Therefore A is generated by C[W ′′]⋉ ÔX,Z and the image
of the map

D′ : TX → C[W ′′]⋉ (K(ÔX,Z)⊗O(X) Dω(X)),

D′(v) = v +
∑

(Z′,s)∈S

Z′⊇Z

2c(Z ′, s)

1− λZ′,s
ζZ′(v)(s − 1).

Since DerC(ÔX,Z) ∼= ÔX,Z⊗O(X)TX, we may extend the O(X)-linear maps ζZ′ : TX →

O(X)〈Z ′〉 to ÔX,Z -linear maps

ζ̂Z′ : DerC(ÔX,Z) → ÔX,Z ⊗O(X) O(X)〈Z ′〉 ⊆ K(ÔX,Z),

and the above formula then extends D′ to an ÔX,Z -linear map

D̂′ : DerC(ÔX,Z) → C[W ′]⋉ (K(ÔX,Z)⊗O(X) Dω(X)).

Since A contains ÔX,Z and the image of D′, it also contains the image of D̂′. Given

s ∈W ′, let Is ⊆ ÔX,Z denote the ideal generated by sf − f for f ∈ ÔX,Z . Let Z
′ denote

the component of Xs containing Z, and let IZ′ ⊆ O(X) be the ideal vanishing on Z ′.

Then Is = ÔX,ZIZ′ , so (Z ′, s) ∈ S exactly when Is is locally principal. Moreover if
f ∈ Γ(U,OX) generates IZ′ on some open subset U ⊆ X, then it generates Is on the

corresponding open subset of Spec ÔX,Z , and

ζ̂Z′(v) ∈
v(f)

f
+ ÔX,Z ⊗O(X) Γ(U,OX)

for any v ∈ DerC(ÔX,Z , ÔX,Z). This formula determines ζ̂Z′(v) up to an element of

ÔX,Z . Thus D̂
′ is determined, up to a map DerC(ÔX,Z) → C[W ′]⋉ ÔX,Z , by the action

of W ′ on ÔX,Z and the parameters c(Z ′, s) for Z ′ ⊇ Z. These data therefore determine
the subalgebra

Hc,ω(W
′,Spf ÔX,Z) ⊆ C[W ′]⋉ (K(ÔX,Z)⊗O(X) Dω(X))

generated by C[W ′] ⋉ ÔX,Z and the image of D̂′. In particular, Hc,ω(W
′,Spf ÔX,Z) is

preserved by conjugation by W ′′, so A = C[W ′′]⊗C[W ′]Hc,ω(W
′,Spf ÔX,Z), as required.

Finally consider any Hc,ω(W,X)-moduleM . The previous proposition gives an action

of ÔX,WZ ⊗O(X) Hc,ω(W,X) on ÔX,WZ ⊗O(X) M , so

ÔX,Z ⊗O(X) M = eÔX,WZ ⊗O(X) M

admits an action of eÔX,WZ ⊗O(X)Hc,ω(W,X)e. But φ(e) is the monomial matrix with
a 1 in the (1, 1) entry, so restricting φ gives an isomorphism

eÔX,WZ ⊗O(X) Hc,ω(W,X)e ∼= C[W ′′]⋉Hc,ω(W
′,Spf ÔX,Z),

thus giving the required action. Note that this does not depend on the choice of coset
representatives C, since we always take C to contain 1. �

We may now prove our first main result. In this proof we allow X to not be affine, and
our class ψ ∈ H2(X,Ω≥1X ) may not be represented by a global 2-form.
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Proof of Theorem 1.4. (1) Since being a submodule is a local property, we may sup-

pose X is affine and that ψ is represented by ω ∈ (Ω2,cl
X )W . Consider the module

of global sections M = Γ(X,M) ∈ Hc,ω(W,X)−mod. Since Z is W -invariant,
it is clear that ΓZ(M) is preserved by C[W ]⋉O(X). It suffices to show that Dv

preserves ΓZ(M) for each v ∈ TX. Let I ⊆ O(X) denote the ideal vanishing
on Z. Recall that [Dv ,O(X)] ⊆ C[W ] ⋉ O(X). Since WI = IW , it follows
inductively that Ik+1Dv ⊆ Hc,ωI

k for each k ≥ 0. Therefore if m ∈ ΓZ(M),

then Ikm = 0 for some k, whence Ik+1Dvm = 0, so Dvm ∈ ΓZ(M).
(2) Consider Y ∈ P and x ∈ Y , with stabiliser W ′ ⊆ W . Let h = TxX/TxX

W .
Applying Proposition 2.5 to Y , there is aW ′-invariant affine open neighbourhood
U of x, with U ∩ Y closed in U , and a W ′-equivariant isomorphism

φ : Ô(U∩Y )×h,U∩Y
∼→ ÔU,U∩Y ,

where we identify U∩Y with (U∩Y )×{0} ⊆ (U∩Y )×h. Moreover φ induces the

identity on O(U∩Y ). Let I be the kernel of the map Ô(U∩Y )×h,U∩Y ։ O(U∩Y ),

let C be a set of left coset representatives for W ′ in W , and let

Ū =
∐

w∈C

wU.

We have a natural étale morphism Ū → X, so by Propositions 2.3 and 2.6, for
any M ∈ Hc,ψ−modcoh we have a natural action of Hc,ω(W

′,Spf ÔU,U∩Y ) on

M = ÔU,U∩Y ⊗O(U) Γ(U,M),

where ω ∈ (Ω2,cl
U )W represents ψ on U . The isomorphism φ gives rise to an

isomorphism

φc,ω : Hc,φ∗ω(W
′,Spf Ô(U∩Y )×h,U∩Y )

∼→ Hc,ω(W
′,Spf ÔU,U∩Y ).

Let ν denote the pullback of i∗U∩Y ω to (U ∩ Y ) × h under the projection map
(U ∩ Y ) × h → U ∩ Y . By abuse of notation, we will also use ν to denote the
completed map

DerC(Ô(U∩Y )×h,U∩Y )⊗C DerC(Ô(U∩Y )×h,U∩Y ) → Ô(U∩Y )×h,U∩Y .

Then
ν(v, v′)− (φ∗ω)(v, v′) ∈ I

for vector fields v, v′ ∈ DerC(Ô(U∩Y )×h,U∩Y ) which preserve I. It follows that
ν − φ∗ω = dα for some 1-form

α : DerC(Ô(U∩Y )×h,U∩Y ) → Ô(U∩Y )×h,U∩Y

which satisfies α(v) ∈ I whenever v ∈ DerC(Ô(U∩Y )×h,U∩Y ) preserves I. Since
we are working over characteristic 0, we may suppose α is W ′-invariant. This
gives an isomorphism

αc,ω : Hc,ν(W
′,Spf Ô(U∩Y )×h,U∩Y )

∼→ Hc,φ∗ω(W
′,Spf Ô(U∩Y )×h,U∩Y ).

Proposition 2.6 also gives a natural isomorphism

Hc,ν(W
′,Spf Ô(U∩Y )×h,U∩Y ) ∼= Ô(U∩Y )×h,U∩Y ⊗O(U∩Y )⊗C[h] Hc,ν(W

′, (U ∩ Y )× h),

and Hc,ν(W
′, (U ∩ Y )× h) = Di∗U∩Y ω

(U ∩ Y )⊗Hc(W
′, h). Here for any s ∈W ′

acting by reflection on h, we take c(s) = c(Z, s), where Z is the component
of Xs containing Y . Composing these isomorphisms, we obtain an action of
Di∗U∩Y ω

(U∩Y ) onM commuting with the action of φ(C[h]) ⊆ ÔU,U∩Y . Therefore

Di∗U∩Y ω
(U ∩ Y ) acts on

M/φ(h∗)M =M/φ(I)M = Γ(U ∩ Y, i∗YM).
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We will show that the latter action is independent of the choices of φ and α,
thus proving that the action is natural and patches to give an action on all of Y .

Recall from the proof of Proposition 2.6 that Hc,ω(W
′,Spf ÔU,U∩Y ) is a sub-

algebra of C[W ′] ⋉ (K(ÔU,U∩Y ) ⊗O(U∩Y ) Dω(U)). The latter also contains a

natural copy of DerC(ÔU,U∩Y ). We constructed an ÔU,U∩Y -linear map

D̂′ : DerC(ÔU,U∩Y ) → Hc,ω(W
′,Spf ÔU,U∩Y ).

If v ∈ DerC(ÔU,U∩Y ) is W
′-invariant then

D̂′(v) ∈ v + C[W ′]⋉ ÔU,U∩Y ⊆ C[W ′]⋉ (K(ÔU,U∩Y )⊗O(U∩Y ) Dω(U)).

In particular v ∈ Hc,ω(W
′,Spf ÔU,U∩Y ). Moreover by choosing ζ̂Z appropriately,

we may ensure D̂′(v) ∈ v + C[W ′]⋉ φ(I) for any such v.
Consider a vector field v on U ∩ Y . We may extend v naturally to a vector

field on (U ∩ Y )× h, and therefore a derivation of Ô(U∩Y )×h,U∩Y . Let v̄ denote
the pushforward of this derivation under φ. This has the following properties:
(a) v̄ ∈ DerC(ÔU,U∩Y ) is W

′ invariant.
(b) The following diagram commutes:

ÔU,U∩Y
v̄ //

����

ÔU,U∩Y

����
O(U ∩ Y )

v // O(U ∩ Y ).

As noted above, the first property ensures v̄ ∈ Hc,ω(W
′,Spf ÔU,U∩Y ). The action

of v on M constructed above is exactly the action of

v̄ + φα(v) ∈ Hc,ω(W
′,Spf ÔU,U∩Y ) ⊆ C[W ′]⋉ (K(ÔU,U∩Y )⊗O(U∩Y ) Dω(U)).

However, φα(v) ∈ φ(I), so v acts on M/φ(I)M as simply v̄. Therefore it suffices
to prove that the action of v̄ on M/φ(I)M is determined by the above two
properties. If v̄′ also satisfies these properties, then

(v̄ − v̄′)(ÔU,U∩Y ) ⊆ ker(ÔU,U∩Y → O(U ∩ Y )) = φ(I).

That is, v̄ − v̄′ ∈ φ(I)DerC(ÔU,U∩Y ). Since v̄ and v̄′ are fixed by W ′, this gives

v̄ − v̄′ ∈ D̂′(v̄ − v̄′) + C[W ′]⋉ φ(I)

⊆ φ(I)D̂′(DerC(ÔU,U∩Y )) + φ(I)C[W ′]

⊆ φ(I)Hc,ω(W
′,Spf ÔU,U∩Y ).

Thus v̄ − v̄′ acts as zero on M/φ(I)M , as required.
(3) It is well known that a coherent sheaf with a connection is locally free, so the

previous part shows that each Y ∈ P is either contained in or disjoint with
SuppM. Since

X =
∐

Y ∈P

Y,

we conclude that SuppM is a disjoint union of sets in P . Moreover SuppM
is closed and the closure Y of any Y ∈ P is irreducible, so the irreducible
components of SuppM have the form Y for some Y ∈ P . Let PM denote the
set of Y ∈ P such that Y is an irreducible component of SuppM. The action of
W on M ensures that PM is W -invariant, so it suffices to prove that PM ⊆ P ′.

Pick Y ∈ PM and let x,W ′, U ,M , h, φ and I be as above. Suppose x ∈ Y
′
for

some Y ′ ∈ PM. Then Y
′
is a connected component of XW ′′ for some W ′′ ⊆W ,

and we must have W ′′ ⊆ StabW (x) =W ′. But then Y ⊆ XW ′′ , so Y ⊆ Y
′
since
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Y is connected. Since Y is an irreducible component of SuppM, we conclude
that Y ′ = Y . That is, SuppM coincides with Y on some neighbourhood of x.
By shrinking U , we suppose that this holds on U . Then some power of φ(I) kills
M . It follows that

N = kx ⊗O(U∩Y ) M

is finite dimensional, where kx is the residue field of the point x ∈ U ∩ Y , and
the map O(U ∩ Y ) → ÔU,U∩Y is given by the map φ. Moreover the action of
Di∗U∩Y ω

(U ∩ Y ) ⊗Hc(W
′, h) on M gives rise to an action of Hc,ω(W

′, h) on N .
Finally N is nonzero, since

C[h]/h∗C[h]⊗C[h] N

is the fibre of M at x ∈ X, which is nonzero by assumption.
(4) We keep the above notation. Since some power of I kills M , and the ring

Ô(U∩Y )×h,U∩Y /I
l is finitely generated over O(U ∩Y ) for any l, we conclude that

M is a finitely generated module over O(U ∩Y ). Since it admits a connection, it
is locally free. We will show in Lemma 3.1 that there is an integer KY , depending
only on h, W ′ and c, such that N is killed by (h∗)KY . That is,

IKY
Y M ⊆ mxM,

where IY ⊆ O(U) is the ideal vanishing on U ∩ Y , and mx ⊆ O(U ∩ Y ) is the
maximal ideal corresponding to the point x. Up to (non-canonical) isomorphism,
the algebra Hc,ω(W

′, h) is independent of the point x ∈ Y . Therefore this
equation holds for any x ∈ Y ∩U . Together with local freeness, this ensures that

IKY
Y M = 0. Since SuppM coincides with Y on U , we conclude that IKY M
vanishes on U , where I ⊆ OX is the ideal sheaf vanishing on SuppM. Now U was
chosen to contain an arbitrary point on Y , and IKY is W -invariant, so IKY M
vanishes on the union WY of all W -translates of Y . That is, IKY M ⊆ ΓZ(M),
where Z is the complement of WY in SuppM. Note that Z is closed and W -
invariant. It now follows by induction on SuppM that M is killed by I to the
power of

∑

Y ∈P ′

Y⊆SuppM

KY .

In particular, this proves the statement with K =
∑

Y ∈P ′KY .
(5) Let K be the integer constructed in the previous part. Again we prove the

statement by induction on SuppM, and the case SuppM = ∅ is trivial. Suppose
every module with smaller support has finite length. Choose Y ∈ PM, and let
IY ⊆ OX denote the ideal sheaf vanishing on Y . Let U ⊆ X be some open
affine subset intersecting Y , and let IY = Γ(U,IY ). This is prime since Y is
irreducible. Consider the ring

R = O(U)(IY )/I
K
Y O(U)(IY ),

that is, the Kth formal neighbourhood of the (non-closed) generic point of Y .

Then IkYR/I
k+1
Y R is finite dimensional over the field R/IYR for each k, so R is

Artinian. Since M is coherent, it follows that

R⊗O(U) Γ(U,M)

has finite length over R. We may therefore assume by induction that the state-
ment also holds for modules with the same support, for which the above R-
module has smaller length.

Again let Z be the complement of WY in SuppM. Let IZ and I be the ideal
sheaves vanishing on Z and SuppM respectively, Let M′ = M/ΓZ(M) and
M′′ = Hc,ψI

K
Z M′. Since ΓZ(M) and M′/M′′ are supported on Z, they have
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finite length by induction. If M′′ is zero or irreducible, we are done. Suppose
otherwise, and let N ′ be a proper nonzero submodule of M′′, and let N be the
inverse image of N ′ in M. We have IY IZ ⊆ I, so

IKZ IKY M ⊆ IKM = 0.

Therefore IKY M ⊆ ΓZ(M), so IKY M′ = 0 and the map

O(U)(IY ) ⊗O(U) Γ(U,M
′) → R⊗O(U) Γ(U,M

′)

is an isomorphism. Since localisation is exact, we conclude that

R⊗O(U) Γ(U,N
′) → R⊗O(U) Γ(U,M

′)

is injective. Therefore we have a short exact sequence

R⊗O(U) Γ(U,N
′) →֒ R⊗O(U) Γ(U,M

′) ։ R⊗O(U) Γ(U,M
′/N ′).

We claim that the first and last modules are nonzero. This is equivalent to
SuppN ′ and Supp (M′/N ′) containing Y . Suppose the first fails. Then N ′ is
supported on Z, so IKZ N ′ = 0. Thus

I2K
Z N ⊆ IKZ ΓZ(M) = 0.

Hence N ⊆ ΓZ(M), so that N ′ = 0, a contradiction. Now suppose M′/N ′

is supported on Z. Then IKZ (M′/N ′) = 0, so N ′ ⊇ IKZ M′. Thus N ′ ⊇
Hc,ψI

K
Z M′ = M′′, contradicting the assumption that N ′ is a proper submodule

of M′′. This proves the claim, and we conclude that

lenR(R⊗O(U) Γ(U,N
′)), lenR(R⊗O(U) Γ(U,M

′/N ′)) < lenR(R⊗O(U) Γ(U,M)),

so N ′ and M′/N ′ have finite length by induction. Again, since ΓZ(M) has finite
length, we are done.

(6) Again let Y be any element of PM and letWY and Z be as above. Let IWY , IZ
and I be the ideal sheaves in OX vanishing onWY , Z and SuppM respectively.
Then

IKZ IKWYM ⊆ IKM = 0.

Thus IKWYM ⊆ ΓZ(M). Now ΓZ(M) is a submodule of M by (1), and it is
proper since Z ( SuppM. SinceM is irreducible, we conclude that ΓZ(M) = 0.
Hence IKWYM = 0, so SuppM =WY as required.

�

3. Linear Actions

Now suppose X = h is a finite dimensional vector space with a linear action. We
briefly review some known results concerning representations of Hc(W, h); see [8]. We
also prove Proposition 1.3 and one direction of Theorem 1.6.

3.1. Verma modules. Any W -module τ becomes a C[W ]⋉C[h∗]-module by declaring
that h acts as 0. We may therefore construct an Hc-module

M(τ) = Hc ⊗C[W ]⋉C[h∗] τ.

This is the Verma module corresponding to τ . The multiplication map

C[h]⊗C C[W ]⊗C C[h∗] → Hc

is a vector space isomorphism, so M(τ) ∼= C[h] ⊗C τ as a C[W ] ⋉ C[h]-module. As a
special case, when τ is the trivial representation, we obtain an action of Hc on C[h];
this is called the polynomial representation. If τ is irreducible, then there is a unique
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maximal proper submodule J(τ) of M(τ), and the quotient L(τ) is irreducible. Let yi
be a basis of h, and xi the dual basis of h∗. Define the Euler element by

eu =
∑

i

xiyi +
∑

s∈S

c(s)
2

λs − 1
s ∈ Hc.

This element has the useful property that ad eu acts as 0 on W , as 1 on h∗ ⊆ Hc, and
as −1 on h ⊆ Hc. From this fact we deduce the following lemma, which was used in the
proof of Theorem 1.4.

Lemma 3.1. There exists a positive integer K, depending only on c and W , such that
hK ⊆ Hc and (h∗)K ⊆ Hc annihilate any finite dimensional Hc-module.

Proof. Let M be a finite dimensional Hc-module. Then M decomposes as

M =
⊕

λ∈Λ

Mλ,

where Mλ is the generalised eigenspace of eu with eigenvalue λ, and Λ ⊆ C is the finite
set of eigenvalues. Since ad eu acts as −1 on h, it is clear that h sends Mλ to Mλ−1.
Thus hK kills M , where K is any integer larger than d = max(Re(Λ)) − min(Re(Λ)).
The same is true of h∗, and it remains to bound d independently of M . Pick λ ∈ Λ with
Re(λ) minimal. Then h acts as 0 on Mλ. Since W commutes with eu, it preserves the
eigenspace Mλ. We may therefore find a subspace τ ⊆ Mλ which is irreducible under
the action of W . Then

eu|τ =

(

∑

i

xiyi +
∑

s∈S

c(s)
2

λs − 1
s

)∣

∣

∣

∣

∣

τ

=
∑

s∈S

c(s)
2

λs − 1
s|τ .

This depends only on the action of W on τ . Since W has only finitely many irreducible
modules, there are only finitely many possible values for λ, once c and W have been
chosen. Similarly by writing

eu =
∑

i

yixi − dim h+
∑

s∈S

c(s)

(

2

λs − 1
+ 2

)

s,

we see that there are only finitely many possibilities for max(Re(Λ)). Thus d has only
finitely many possible values, depending on W and c, and may therefore be bounded
independently of M . �

For a module M ∈ Hc−modcoh, the following conditions are equivalent:

(1) The action of eu on M is locally finite.
(2) The action of h on M is locally nilpotent.
(3) Every composition factor of M is isomorphic to some L(τ).

Proposition 1.3 states that the category of modules satisfying these conditions is exactly
the category Hc−modRS of Definition 1.5. We will require the following lemma to prove
this.

Lemma 3.2. Let h be a finite dimensional vector space, and suppose Z ⊆ h is the zero
set of a homogeneous ideal in C[h] (that is, Z is a cone). Let ξ ∈ D(h \ Z) denote the
Euler vector field. Then ξ acts locally finitely on the global sections of any O-coherent
D-module on h \ Z with regular singularities.

Proof. Let M be an O-coherent D-module on h \Z with regular singularities. Then M
is locally free, so if U is an open subset of h \ Z, the restriction map

Γ(h \ Z,M) → Γ(U,M)
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is injective. We may therefore replace h \Z by any smaller C∗-invariant open subset U .
Denoting by x0, . . . , xn the coordinates on h, we suppose that U is affine and disjoint
with the zero set of x0. We have an isomorphism

C[h][x−10 ] ∼→ C[t, t−1]⊗ C[y1, . . . , yn]

given by x0 7→ t and xi 7→ tyi for i > 0. Note the C∗ action on the left, which scales
each xi, corresponds to the C∗ action on the right scaling only t. Thus we have a
C∗-equivariant isomorphism

U ∼= C∗ × Y

where Y is some affine open subset of SpecC[y1, . . . , yn]. In particular the vector field ξ
on the left corresponds to t∂t on C∗.

It therefore suffices to consider a moduleM over D(C∗×Y ) = D(C∗)⊗CD(Y ) which
is O-coherent with regular singularities. Moreover we may suppose thatM is irreducible.
The Riemann-Hilbert correspondence [7] implies that M is of the form L⊗CN for some
irreducible modules L ∈ D(C∗)-mod and N ∈ D(Y )-mod, and that L = C[t, t−1]v with
connection

∇∂tf(t, t
−1)v = (∂tf(t, t

−1))v + λt−1f(t, t−1)v

for some λ ∈ C. Since t∂t acts as n + λ on tnv, and {tnv | n ∈ Z} is a basis for L, we
are done. �

Proof of Proposition 1.3. First we show each L(τ) lies inHc−modRS . Choose Y ∈ PL(τ),
and let iY : Y →֒ X denote the inclusion. We are required to show that the connection
on i∗Y Sh(L(τ)) has regular singularities. Certainly we have a surjection i∗Y Sh(M(τ)) ։
i∗Y Sh(L(τ)) intertwining the connections, so it suffices to prove that the connection on
i∗Y Sh(M(τ)) has regular singularities. However,

Γ(Y, i∗Y Sh(M(τ))) ∼= O(Y )⊗C[h] C[h]⊗C τ = O(Y )⊗C τ.

Moreover τ is killed by h, so by Proposition 1.2, the connection on i∗Y Sh(M) is described
by

∇ym = −
∑

s∈S\W ′

c(s)〈y, αs〉
2

1− λs

1

αs
(s− 1)m

for m ∈ τ and y ∈ hW
′
, where W ′ is the stabiliser of any point in Y . Since this

expression only contains poles of first order, the connection has regular singularities.
Since Hc−modRS is a Serre subcategory of Hc−modcoh by definition, this proves any
module satisfying condtion (3) above lies in Hc−modRS .

Conversely, we will show that any M ∈ Hc−modRS satisfies condition (1) above.
This condition is preserved by extensions, and Theorem 1.4(5) shows that M has finite
length, so we may supposeM is irreducible. As usual let Y be in PM with stabiliser W ′.
We may find a homogeneous polynomial f ∈ C[h] which vanishes on each Y ′ ∈ PM \{Y },
but not on Y itself. Note that the kernel of the map

M →
⊕

w∈W

M [(wf)−1]

is ΓZ(M), where Z is the common zero set of all the wf . This is zero by Theorem 1.4(1)
and the irreducibility of M . Since ad eu acts as deg f on each wf , the action of eu on
M extends naturally to one on M [(wf)−1]. Therefore since eu is W -invariant, it suffices
to show that the action of eu on M [f−1] is locally finite.

Let U ⊆ h denote the affine open subset on which f is nonzero, and let IY ⊆ C[h][f−1]
denote the ideal vanishing on U∩Y . Note that IY is generated by some subspace V ⊆ h∗,
so IkYM [f−1] is invariant under eu for each k. Moreover since M [f−1] is supported on

U ∩ Y , we have IKY M [f−1] = 0 for some K > 0. Therefore it suffices to show that
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eu acts locally finitely on each IkYM [f−1]/Ik+1
Y M [f−1]. Finally for each k we have a

surjective map

V ⊗k ⊗C M [f−1]/IYM [f−1] ։ IkYM [f−1]/Ik+1
Y M [f−1]

intertwining 1⊗ eu with eu− k deg f . We may therefore consider just k = 0. But

M [f−1]/IYM [f−1] = O(U ∩ Y )⊗C[h]M

is an O-coherent D-module on U ∩ Y with connection given by Proposition 1.2. It has
regular singularities by assumption. Note that U∩Y is the basic open subset of the vector
space hW

′
on which f |

hW
′ is nonzero. Therefore the vector field ξ of Lemma 3.2 acts

locally finitely. To describe the action of ξ explicitly, let {x1, . . . , xn} and {y1, . . . , yn}
be dual bases for h∗ and h, such that {y1, . . . , yr} span hW

′
. Then xr+1, . . . , xn are zero

in O(U ∩ Y ), and a straighforward calculation shows that

ξm = eum+
∑

s∈S\W ′

2c(s)

1− λs
m+

∑

s∈S∩W ′

2c(s)

1− λs
sm

for m ∈ M . Note that O(U ∩ Y ) ⊗C[h] M admits an action of W ′ commuting with
O(U ∩ Y ). Since ξ and eu have the same commutator with any element of O(U ∩ Y ),
this formula holds for any m ∈ O(U ∩ Y ) ⊗C[h] M . Therefore since ξ and C[W ′] act
locally finitely, so does eu, as required. �

3.2. Characters of modules. Let Z[[t]] denote the space of formal Z-linear combina-
tions of powers of t, such that the exponents appearing belong to A + Z≥0 for some
finite subset A ⊆ C. Let K(W−modfd) denote the Grothendieck group of the category
of finite dimensional representations of W . There is a homomorphism

Ch : K(Hc(W, h)−modRS) → K(W−modfd)⊗Z Z[[t]]

sending [M ] to
∑

λ∈C

[Mλ]t
λ,

where Mλ ⊆ M is the generalised λ-eigenspace of eu, considered as a W -module. If τ
is an irreducible W -module, then

Ch([M(τ)]), Ch([L(τ)]) ∈ [τ ]th(τ) +K(W−modfd)⊗ Z[[t]]th(τ)+1,

where h(τ) is the scalar by which
∑

s∈S

c(s)
2

λs − 1
s

acts on τ . It follows that Ch is injective, and both {[L(τ)]} and {[M(τ)]} form bases
for K(Hc(W, h)−modRS). Moreover the matrix relating the [M(τ)] to [L(τ)] is upper
triangular, when the irreducibles are ordered by Re(h(τ)). It follows that the functor

V ermaW : W−modfd → Hc(W, h)−modRS ,

τ 7→ M(τ)

induces an isomorphism on Grothendieck groups.

3.3. Induction and restriction. Bezrukavnikov and Etingof [4] also construct “para-
bolic induction and restriction” functors for rational Cherednik algebras. The following
theorem summarises their Propositions 3.9, 3.10 and 3.14.

Theorem 3.3. Consider a point b ∈ h, with stabiliser W ′ ⊆W . There exist exact func-
tors Resb : Hc(W, h)−modRS → Hc(W

′, h)−modRS and Indb : Hc(W
′, h)−modRS →

Hc(W, h)−modRS with the following properties:

(1) The functor Indb is right adjoint to Resb.
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(2) The support of Resb(M) is the union of the components of SuppM passing
through b.

(3) The support of Indb(N) is the union of W -translates of SuppN .
(4) The induced maps [Resb] and [Indb] on Grothendieck groups satisfy

[Resb][V ermaW ] = [V ermaW ′ ][Res],

[Indb][V ermaW ′ ] = [V ermaW ][Ind],

where Res : W−modfd → W ′−modfd and Ind : W ′−modfd → W−modfd are
the usual restriction and induction functors.

Moreover by its construction, Resb respects monodromy in the following sense.

Proposition 3.4. Suppose b, v ∈ h have stabilisers W ′, W ′′ ⊆W respectively. Suppose
that W ′′ ⊆ W ′, and that C ⊆ W ′ is a subgroup acting faithfully on Cv. Consider
the map φ : C → h given by φ(z) = b + zv. There is a Zariski open subset U ⊆ C∗

such that φ maps U into Y = hW
′′

reg . Let iY : Y →֒ h denote the inclusion. For any
M ∈ Hc(W, h)−modRS, the D-modules i∗Y Sh(M) and i∗Y Sh(ResbM) satisfy

C((z))⊗OU
φ|∗U i

∗
Y Sh(M) ∼= C((z)) ⊗OU

φ|∗U i
∗
Y Sh(ResbM)

as C[C]⋉C((z))[∂z ]-modules. In particular, the monodromies about the origin of the D-
modules φ|∗U i

∗
Y Sh(M) and φ|∗U i

∗
Y Sh(ResbM) are conjugate, and the same is true when

these equivariant D-modules are pushed down to U/C.

3.4. Type A. Now let W = Sn, the symmetric group Sn on n letters, acting on h = Cn

by permuting coordinates. The reflections in this case are transpositions. As they are
all conjugate, the function c : S → C must be constant, and we identify it with its
value in C. Let h/C denote the quotient of h by the line fixed by W . In this case
we have the following simple criterion for when Hc(W, h/C) admits a finite dimensional
representation.

Theorem 3.5 ([3] Theorem 1.2). Suppose n > 1. The algebra Hc(W, h/C) admits a
nonzero finite dimensional representation if and only if c = r

n for some integer r coprime
with n. In this case the category of finite dimensional modules is semisimple with one
irreducible. Moreover if c = 1

n , this irreducible is one dimensional.

Using this with Theorem 1.4(3) gives the following (see Example 3.25 of [4]).

Theorem 3.6. Suppose c = r
m , where r and m are integers with m positive and coprime

with r. For each nonnegative integer q ≤ n/m, let

X ′q =

{

b ∈ h

∣

∣

∣

∣

bi = bj whenever

⌈

i

m

⌉

=

⌈

j

m

⌉

≤ q

}

and Xq =
⋃

w∈W

wX ′q.

Then any module in Hc(W, h)−modcoh is supported on one of the Xq. If c is irrational
then every such module has full support.

We would like to determine more explicitly which irreducibles in Hc−modRS have
which support sets. The irreducible representations of W = Sn are well known to be
parameterised by partitions of n. Given a partition λ ⊢ n, the corresponding irreducible
is denoted τλ and called the Specht module indexed by λ. We will represent a partition
λ ⊢ n as a nonincreasing sequence of nonnegative integers, λ = (λ1, λ2, . . . , λk), whose
sum is n, where two sequences are identified if their nonzero entries agree. If λ ⊢ n and
µ ⊢ m, we may obtain a partition λ+µ = (λ1+µ1, λ2+µ2, . . .) of n+m. We first prove
a lemma about the induction functor introduced in Theorem 3.3.

Lemma 3.7. Suppose c is a positive real number, and suppose we have partitions λ ⊢ n
and µ ⊢ m. Let b be a point in Cn+m whose stabiliser in Sn+m is Sn × Sm. Then
Indb(L(τλ)⊗ L(τµ)) admits a nonzero map from M(τλ+µ).
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Proof. We first prove
Claim 1: the lowest order term in Ch[Indb(M(τλ)⊗M(τµ))] is [τλ+µ]t

h(τλ+µ).
Indeed, the construction of Verma modules shows that M(τλ)⊗M(τµ) ∼=M(τλ⊗ τµ),

so Theorem 3.3(4) implies that

Ch[Indb(M(τλ)⊗M(τµ))] = Ch[M(Ind(τλ ⊗ τµ))].

The Littlewood-Richardson rule describes how Ind(τλ ⊗ τµ) splits into Specht modules
for Sn+m. In particular, given partitions α and β of n+m, say α dominates β, denoted
α ≥ β, if

p
∑

i=1

αi ≥

p
∑

i=1

βi

for all p ≥ 1. Then

[Ind(τλ ⊗ τµ)] = [τλ+µ] +
∑

ν≤λ+µ

cνλµ[τν ]

for some coefficients cνλµ ∈ Z. Certainly Ch[M(τλ+µ)] has the required lowest order

term, so it suffices to prove that h(τα) < h(τβ) whenever α > β. Recall that h(τα) is
the action of

−c
∑

i 6=j

sij

on S(α). By the Frobenious character formula (see Exercise 4.17(c) of [13]), this is

h(τα) = −c
∑

i≥1

1

2
α2
i −

(

i−
1

2

)

αi.

Using the Abel summation formula,

h(τα)− h(τβ) = −c
∑

i≥1

(αi − βi)

(

αi + βi + 1

2
− i

)

= −c
∑

i≥1





i
∑

j=1

(αj − βj)





(

αi − αi+1 + βi − βi+1

2
+ 1

)

< 0,

if α > β. Here we have used that
∑i

j=1(αj −βj) = 0 for i sufficiently large. This proves
Claim 1. From this we will deduce

Claim 2: the lowest order term in Ch[Indb(L(τλ)⊗M(τµ))] is [τλ+µ]t
h(τλ+µ).

We prove Claim 2 by descending induction on h(λ); that is, suppose it holds for
all pairs (ν, µ) with h(ν) > h(λ). Of course this assumption is vacuous when h(λ) is
maximal, so we need not prove the base case. We have

[M(τλ)] = [L(τλ)] +
∑

h(ν)>h(λ)

dνλ[L(τν)]

for some nonnegative integers dνλ. Tensoring by M(τµ) and applying Indb and Ch, we
obtain

Ch[Indb(M(τλ)⊗M(τµ))]

= Ch[Indb(L(τλ)⊗M(τµ))] +
∑

h(ν)>h(λ)

dνλCh[Indb(L(τν)⊗M(τµ))].

By Claim 1, the lowest order term in this expression is [τλ+µ]t
h(τλ+µ). However, each

summand on the right has nonnegative integer coefficients. Therefore this must be
the lowest order term of one of the summands. For h(ν) > h(λ), the lowest order

term of Ch[Indb(L(τν) ⊗M(τµ))] is [τν+µ]t
h(τν+µ) by induction. Clearly if ν 6= λ then
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ν +µ 6= λ+µ, so the term [τλ+µ]t
h(τλ+µ) can only come from Ch[Indb(L(τλ)⊗M(τµ))],

as required. We now conclude
Claim 3: the lowest order term in Ch[Indb(L(τλ)⊗ L(τµ))] is [τλ+µ]t

h(τλ+µ).
Indeed this follows from Claim 2 using the same argument by which Claim 2 followed

from Claim 1. This proves that the h(τλ+µ)-eigenspace of eu in Indb(L(τλ)⊗ L(τµ)) is
isomorphic to τλ+µ as an Sn+m-module, and is killed by h ⊆ Hc(Sn+m, h). We therefore
have a nonzero C[Sn+m]⋉C[h∗]-module homomorphism

τλ+µ → Indb(L(τλ)⊗ L(τµ)),

where h is defined to act as 0 on τλ+µ. By definition of the Verma module, we obtain a
nonzero map

M(τλ+µ) → Indb(L(τλ)⊗ L(τµ)),

as required. �

Now suppose c = r
m where r is coprime with m. We say λ is m-regular if no part of λ

appears m or more times. Any partition λ ⊢ n can be written uniquely as λ = mµ + ν
such that ν ′ is m-regular. Let qm(λ) = |µ|. More explicitly

qm(λ) =
∑

i≥1

i

⌊

λi − λi+1

m

⌋

.

We will eventually show, in Theorem 1.6, that the support of L(τλ) is Xqm(λ) for c > 0
and Xqm(λ′) for c < 0. For the moment we prove one direction:

Theorem 3.8. With c = r
m and h = Cn as above, the support of the Hc-module L(τλ)

is contained in Xqm(λ) if c > 0, and contained in Xqm(λ′) if c < 0.

Proof. We denote Xq by Xn
q throughout this proof, as we will be considering support

sets for other values of n. Suppose c > 0.
Let q = qm(λ), and write λ = mµ+ ν for some partitions µ ⊢ q and ν ⊢ n− qm, such

that qm(ν) = 0. By Proposition 9.7 and Theorem 9.8 of [5], the support of L(τmµ) is
contained in Xqm

q . Thus the support of L(τmµ)⊗L(τν) is contained in Xqm
q ×Cn−qm ⊆

Xn
q . By Theorem 3.3(3), the same is true of Indb(L(τmµ) ⊗ L(τν)), where b ∈ Cn is a

point whose stabiliser in Sn is Sqm × Sn−qm. By Lemma 3.7, we have a nonzero map

φ :M(τλ) → Indb(L(τmµ)⊗ L(τν)).

Now L(τλ) is the only irreducible quotient of M(τλ), so the image of φ admits L(τλ) as
a quotient. Thus L(τλ) is a subquotient of Indb(L(τmµ) ⊗ L(τν)), so its support must
be contained in Xn

q . This proves the c > 0 case.
There is an automorphism of C[W ] sending s ∈ S to −s. Twisting by this automor-

phism sends τλ to τλ′ . Moreover it extends to an isomorphism Hc(W, h) → H−c(W, h),
which is the identity on h and h∗. Therefore the statement for c < 0 follows from that
for c > 0. �

Finally we will require the following classification of two-sided ideals in Hc(W, h), due
to Losev.

Theorem 3.9 ([16] Theorem 4.3.1 and [11] Theorem 5.10). There are ⌊n/m⌋+1 proper
two-sided ideals of Hc(W, h),

0 = J0 ( J1 ( . . . ( J⌊n/m⌋ ( Hc(W, h).

Moreover if c > 0 then the polynomial representation admits a filtration

0 = I0 ( I1 ( . . . ( I⌊n/m⌋ ( C[h]

such that Z(Iq) = Xq and AnnHc(W,h)(C[h]/Iq) = Jq. Each Iq is radical if and only if

c = 1
m .
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4. Minimal Support for Type A

In this section we consider the algebra Hc = H 1
m
(Sn,C

n), and study modules in

Hc−modRS whose support is the smallest possible set, namely Xq where q = ⌊n/m⌋.
In particular, we will show that the full subcategory of such modules is semisimple. We
begin with a general lemma concerning the localisation functor for linear actions.

Lemma 4.1. Consider a finite group W acting linearly on a finite dimensional vector
space h. Suppose α ∈ C[h]W is a symmetric polynomial, and let U ⊆ h denote the open
set on which α is nonzero. Moreover suppose no nonzero module in Hc(W, h)−modRS
is supported on the zero set of α. Then the localisation functor

L : Hc(W, h)−modcoh → Hc(W,U)−modcoh

identifies Hc(W, h)−modRS with a full subcategory of Hc(W,U)−modcoh closed under
subquotients.

Proof. Let A denote the full subcategory of Hc(W,U)−modcoh consisting of modules
M such that every m ∈ M is killed by hnαn for some n. This is clearly closed under
subquotients.

Certainly L is exact, since C[h][α−1] is flat over C[h], and its image lies in A. Con-
versely suppose M ∈ A, and let V ⊆ M be a finite dimensional subspace generating
M over C[h][α−1]. Multiplying V by some power of α, we may suppose that h acts
nilpotently on V . Since Hc(W, h) = C[h] ⊗C C[W ] ⊗C C[h∗], the Hc(W, h)-submodule
N of M generated by V is finitely generated over C[h], and h acts locally nilpotently
on N . Thus N ∈ Hc(W, h)−modRS . Moreover M is generated by N over C[h][α−1], so
M ∼= L(N) is in the image of the localisation functor. Therefore A is exactly the image
of L.

Define the functor E : Hc(W,U)−mod → Hc(W, h)−mod sending M to the subspace
E(M) ⊆ M on which h acts nilpotently. Note that E(M) is stable under the action
of Hc(W, h). We will show that if M ∈ Hc(W, h)−modRS , then EL(M) is naturally
isomorphic to M . The kernel of the natural map M → L(M) is exactly the submodule
ΓZ(α)(M) defined in Theorem 1.4(1). This is zero since we have assumed no modules
are supported on Z(α). We may therefore identify M with a submodule of EL(M).
Consider any v ∈ EL(M). As above, the Hc(W, h)-submodule N of L(M) generated by
v is in Hc(W, h)−modRS . Thus M

′ =M +N ⊆ L(M) is also in Hc(W, h)−modRS , and
L(M ′) ∼= L(M). Using the exactness of localisation, we conclude that L(M ′/M) = 0,
so that M ′/M is supported on Z(α). Again this implies that M ′/M = 0, so v ∈
M . Thus M is exactly EL(M). We have shown above that the localisation functor
L : Hc(W, h)−modRS → A is essentially surjective, so E and L are mutually inverse
functors. �

We will also need the following simple algebraic geometry lemma.

Lemma 4.2. Suppose U is an open subset (not necessarily affine) of an affine integral
Noetherian scheme SpecA, and M is a torsion free coherent sheaf on U . Then Γ(U,M)
is finitely generated over O(U).

Proof. By Exercise II.5.15 of [15], there is a finitely generated A-module N such that
M ∼= Sh(N)|U . We may replace N by its image in Γ(U,M). Since A → Γ(U,OU )
is injective, N will then be torsion free. Therefore the natural map N → K ⊗A N is
injective, where K is the field of fractions of A. Since N is finitely generated, K ⊗A N
is finite dimensional, with some basis {x1, . . . , xn}. Dividing this basis by some nonzero
element of A, we may suppose that the free A-module F = Ax1 ⊕ . . . ⊕ Axn contains
N . Hence

Γ(U,M) = Γ(U,Sh(N)) →֒ Γ(U,Sh(F )) = Γ(U,OU )
⊕n.

Since Γ(U,OU ) is Noetherian, the result follows. �
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Finally we require the following well-known result.

Lemma 4.3. Suppose a unital associative algebra H contains an idempotent e such that
HeH = H. Then the functors

H−mod → eHe−mod, M 7→ eM

and
eHe−mod → H−mod, N 7→ He⊗eHe N

are mutually inverse equivalences.

Now consider the algebra Hc = H 1
m
(Sn,C

n). Let

h = Cn = SpecC[x1, . . . , xn],

where Sn permutes the xi. Let q = ⌊n/m⌋ and write n = qm + p, so that 0 ≤ p < m.
Let h′ = Cq+p, with coordinate ring C[h′] = C[z1, . . . , zq, t1, . . . , tp], on which Sq × Sp
acts naturally. Define

π : C[h] ։ C[h′]

by

π(xi) =

{

z⌈i/m⌉ if i ≤ qm

ti−qm if i > qm.

This identifies h′ with one of the components of Xq ⊆ h. The map π restricts to a map
π : C[h]Sn → C[h′]Sq×Sp . Unfortunately this is not surjective if p > 0. We therefore
localise as follows. Let [n] = {1, 2, . . . , n}, and let

αd =
∑

J⊆[n]
|J|=p





∑

j∈J

xdj





∏

j∈J, i/∈J

(xi − xj).

Clearly αd is symmetric. Moreover using that p < m, it can be shown that

π(αd) =





r
∑

j=1

tdj





∏

1≤i≤q
1≤j≤p

(zi − tj)
m.

Let U ⊆ h and U ′ ⊆ h′ denote the affine open subsets on which α0 and π(α0) are
nonzero, respectively. Let A = O(U)Sn and B = O(U ′)Sq×Sp , and let φ : A → B be
the map induced by π. Now B is generated as a C-algebra by π(α0)

−1,
∑p

j=1 t
d
j and

∑q
i=1 z

d
i . We have

p
∑

j=1

tdj = φ

(

p
αd
α0

)

and

q
∑

i=1

zdi = φ

(

1

m

n
∑

i=1

xdi −
p

m

αd
α0

)

,

so φ is surjective. Moreover since Xq is the union of the Sn translates of h′, the kernel
of φ is (O(U)Iq)

Sn , where Iq is the ideal vanishing on Xq.
Now consider the idempotents

e =
1

n!

∑

w∈Sn

w ∈ C[Sn] ⊆ Hc(Sn, h) ⊆ Hc(Sn, U),

e′ =
1

q!p!

∑

w∈Sq×Sp

w ∈ C[Sq × Sp] ⊆ H(m,c)(Sq × Sp, h
′) ⊆ H(m,c)(Sq × Sp, U),

where (m, c) indicates the function which takes the value m on transpositions in Sq and
c on those in Sp. For convenience, we omit the subscripts c and (c,m) for the rest of
this section. It is known (see Corollary 4.2 of [4]) that H(Sn, h)eH(Sn, h) = H(Sn, h),
so that H(Sn, U)eH(Sn, U) = H(Sn, U), and M 7→ eM is an equivalence of categories
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from H(Sn, U)-mod to eH(Sn, U)e-mod by Lemma 4.3. Similar results hold for e′.
In particular the faithful action of H(Sq × Sp, U

′) on O(U ′) gives a faithful action of
e′H(Sq × Sp, U

′)e′ on B. Also O(U)Iq is an H(Sn, U)-submodule of O(U) by Theorem
5.10 of [11], so eH(Sn, U)e acts on A/ ker φ ∼= B.

Proposition 4.4. The image of the homomorphism σ : eH(Sn, U)e → EndC(B) de-
scribing the above action is exactly e′H(Sq × Sp, U

′)e′ ⊆ EndC(B), and the kernel is
generated by eIqe.

Proof. Let {x∨a } and {z∨i , t
∨
j } be the bases of h and h′ dual to {xa} and {zi, tj}. For

d ≥ 0, let

px(d) =

n
∑

a=1

xda,

and similarly for pt, pz, px∨, pz∨, pt∨ . It is known that eH(Sn, h)e is generated as an
algebra by eC[h]e and px∨(2) (see the proof of Proposition 4.9 of [10], and Corollary 4.9
of [2]). It follows that eH(Sn, U)e is generated by Ae and px∨(2)e, and that

e′H(Sq × Sp, U
′)e′

is generated by Be′, pz∨(2)e
′ and pt∨(2)e

′. For f, g ∈ A, we have

σ(fe)φ(g) = φ(fg) = φ(f)φ(g),

so the image under σ of Ae ⊆ eH(Sn, U)e is Be′ ⊆ e′H(Sq × Sp, U
′)e′. Next, recalling

that φ : A→ B is the restriction of π : O(U) → O(U ′), we show that

π(∂x∨a f) =

{

1
m∂z∨i φ(f) if π(xa) = zi,

∂t∨j φ(f) if π(xa) = tj
for f ∈ A. (1)

Indeed, this holds when f = px(d), since

1

m
∂z∨i φ(px(d)) =

1

m
∂z∨i (mpz(d) + pt(d)) = dzd−1i

and
∂t∨j φ(px(d)) = ∂t∨j (mpz(d) + pt(d)) = dtd−1j .

Now as functions of f , both sides of (1) are C-derivations from A to O(U ′). Therefore
(1) holds on the subring generated by the px(d), namely C[h]Sn , whence it holds on
C[h]Sn [α−10 ] = A. Now for f ∈ A we have

px∨(2)f =

n
∑

a=1

x∨a∂x∨a f

=

n
∑

a=1



∂2x∨a f − c
∑

b6=a

∂x∨a f − sab∂x∨a f

xa − xb





= △xf − c
∑

a6=b

∂x∨a f − ∂x∨b f

xa − xb
,

where △x denotes the Laplacian in the variables xa. Similar formulae hold for the
actions of pz∨(2) and pt∨(2) on B. Define P ∈ e′H(Sq × Sp, U

′)e′ by

P =
1

m
pz∨(2)e

′ + pt∨(2)e
′ − 2

∑

1≤i≤q
1≤j≤p

1

zi − tj

(

1

m
z∨i − t∨j

)

e′.

Note that
∑

1≤i≤q
1≤j≤p

1

zi − tj

(

1

m
z∨i − t∨j

)



24 STEWART WILCOX

is symmetric under Sq×Sp, so final sum is an element of e′H(Sq×Sp, U
′)e′, though the

individual summands are not. We claim that

φ(px∨(2)f)− Pφ(f) = 0

for f ∈ A. We first show that the left hand side is a derivation. Indeed

φ(px∨(2)(fg)) = φ

(

fpx∨(2)g + gpx∨(2)f +
∑

a

(∂x∨a f)(∂x∨a g)

)

= φ(f)φ(px∨(2)g) + φ(g)φ(px∨(2)f)

+
∑

i

1

m
(∂z∨i φ(f))(∂z∨i φ(g)) +

∑

j

(∂t∨j φ(f))(∂t∨j φ(g)),

using (1). Also

P (fg) = fP (g) + gP (f) +
∑

i

1

m
(∂z∨i f)(∂z∨i g) +

∑

j

(∂t∨j f)(∂t∨j g). (2)

Subtracting, we see that φ(px∨(2)f) − Pφ(f) is indeed a derivation in f . By the same
argument as above, it suffices to check the equation when f = px(d). We calculate

φ(px∨(2)px(d)) = φ



d(d − 1)px(d− 2)− cd
∑

a6=b

xd−1a − xd−1b

xa − xb



 .

If π(xa) = π(xb) = zi, then

π

(

xd−1a − xd−1b

xa − xb

)

= π

(

d−2
∑

i=0

xiax
d−2−i
b

)

= (d− 1)zd−2i .

Therefore recalling that c = 1
m ,

φ(px∨(2)px(d))

= d(d− 1)(mpz(d− 2) + pt(d− 2)) − cd(d− 1)m(m− 1)pz(d− 2)

− cdm2
∑

i 6=i′

zd−1i − zd−1i′

zi − zi′
− 2cdm

∑

i,j

zd−1i − td−1j

zi − tj
− cd

∑

j 6=j′

td−1j − td−1j′

tj − tj′

=



d(d− 1)pz(d− 2)−md
∑

i 6=i′

zd−1i − zd−1i′

zi − zi′





+



d(d− 1)pt(d− 2)− cd
∑

j 6=j′

td−1j − td−1j′

tj − tj′



− 2d
∑

i,j

zd−1i − td−1j

zi − tj

= pz∨(2)pz(d) + pt∨(2)pt(d) − 2
∑

i,j

∂z∨i pz(d)− ∂t∨j pt(d)

zi − tj

= P (mpz(d) + pt(d))

= Pφ(px(d)),

as required. Therefore Imσ is the subalgebra of EndC(B) generated by Be′ and P . Now
(2) shows that for fe′ ∈ Be′ ⊆ e′H(Sq × Sp, U

′)e′, we have

[P, fe′] = P (f)e′ +
∑

i

1

m
(∂z∨i f)z

∨
i e
′ +
∑

j

(∂t∨j f)t
∨
j e
′.
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In particular,

[P, π(α0)e
′] = P (π(α0))e

′ +
∑

1≤i≤q
1≤j≤p

mπ(α0)

zi − tj

(

1

m
z∨i − t∨j

)

e′.

Therefore Imσ contains

P +
2

mπ(α0)

(

[P, π(α0)e
′]− P (π(α0))e

′
)

=
1

m
pz∨(2)e

′ + pt∨(2)e
′.

We also have

[P, pz(2)e
′] = P (pz(2))e

′ +
2

m

∑

i

ziz
∨
i e
′,

so Imσ contains
[

1

m
pz∨(2)e

′ + pt∨(2)e
′,
∑

i

ziz
∨
i e
′

]

=
2

m
pz∨(2)e

′.

Thus Imσ contains Be′, pz∨(2)e
′ and pt∨(2)e

′, so it is exactly e′H(Sq × Sp, U
′)e′.

Finally since H(Sn, U)eH(Sn, U) = H(Sn, U), the two-sided ideals of the algebra
eH(Sn, U)e are in one to one correspondence with those in H(Sn, U). The latter are
determined by their inverse image in H(Sn, h). Clearly the kernel of σ is proper and
contains eIqe, so by Theorem 3.9 it is generated by eIqe. �

We have identified h′ with a subspace of h, and the stabiliser of a generic point of h′

in Sn is a natural copy of Sqm ⊆ Sn. Let h
′
reg denote the elements of h′ with exactly this

stabiliser. Note that h′reg is contained in U , since the zero set of

π(α0) = p
∏

1≤i≤q
1≤j≤p

(zi − tj)
m

consists of elements whose stabiliser in Sn is at least as large as Sm+1×S
q−1
m . Also note

that the normaliser subgroup NSn(S
q
m) ⊆ Sn acts on h′reg. Each coset of Sqm in NSn(S

q
m)

has a unique representative of minimal length, and these representatives form a subgroup
isomorphic to Sq×Sp. The induced action of Sq×Sp on h′ = SpecC[z1, . . . , zq, t1, . . . , tp]
is the natural one. We now use the homomorphism σ to analyse the subcategory of
H(Sn, h)−modqRS of minimally supported modules. Some of this information is gener-
alised by Theorems 1.8 and 1.6.

Theorem 4.5. Let H(Sn, h)−modqRS be the full subcategory of H(Sn, h)−modRS, con-
sisting of modules supported on Xq. There is an equivalence of categories

F : H(Sn, h)−modqRS → H(Sq × Sp, h
′)−modRS ,

such that O(h′reg) ⊗C[h] M ∼= O(h′reg) ⊗C[h′] F (M) as C[Sq × Sp] ⋉ D(h′reg)-modules. In

particular, H(Sn, h)−modqRS is semisimple, and its irreducibles are exactly the L(τλ) for
which qm(λ) = q.

Proof. Let eH(Sn, U)e−modcoh denote the full subcategory of eH(Sn, U)e−mod consist-
ing of modules finitely generated over eC[h]e, and similarly for H(Sq×Sp, U

′). Recall the
equivalences H(Sn, U)−modcoh

∼→ eH(Sn, U)e−modcoh and H(Sq × Sp, U
′)−modcoh

∼→
e′H(Sq × Sp, U

′)e′−modcoh; we denote the functors by e and e′. By Lemma 4.1,
we also have localisation functors L : H(Sn, h)−modRS → H(Sn, U)−modcoh and
L′ : H(Sq × Sp, h

′)−modRS → H(Sq × Sp, U
′)−modcoh which identify their domains

with full subcategories of their codomains closed under subquotients. Finally the pre-
vious proposition gives a functor σ∗ identifying e′H(Sq × Sp, U

′)e′−modcoh with a full
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subcategory of eH(Sn, U)e−modcoh, again closed under subquotients.

H(Sn, h)−modRS
� � L // H(Sn, U)−modcoh

e
∼

// e′H(Sq × Sp, U
′)e′−modcoh

H(Sq × Sp, h
′)−modRS

� � L′ // H(Sq × Sp, U
′)−modcoh

e′

∼
// e′H(Sq × Sp, U

′)e′−modcoh.
?�

σ∗

OO

Note that these functors are all exact. We make the following claims about them:
Claim 1: If M ∈ H(Sn, h)−modqRS , then the O-coherent D-module O(h′reg)⊗C[h] M

on h′reg has regular singularities and trivial monodromy around each irreducible compo-

nent of Z(α0) ∩ h′.
Claim 2: If N ∈ H(Sq × Sp, U

′)−modcoh is such that the O-coherent D-module
O(h′reg) ⊗O(U ′) N on h′reg has regular singularities and trivial monodromy around each
component of Z(α0) ∩ h′, then N ∼= L′(N ′) for some N ′ ∈ H(Sq × Sp, h

′)−modRS .
Claim 3: If M ∈ H(Sn, U)−modcoh and N ∈ H(Sq × Sp, U

′)−modcoh are such
that eM ∼= σ∗e′N , then the Sq × Sp-equivariant D-modules O(h′reg) ⊗O(U) M and

O(h′reg)⊗O(U ′) N on h′reg are isomorphic.
Let us first see how these results imply the statements of the theorem. The composites

eL and σ∗e′L′ identify H(Sn, h)−modqRS and H(Sq × Sp, h
′)−modRS with full subcate-

gories of eH(Sn, U)e−modcoh closed under subquotients, which we call the images of eL
and σ∗e′L′. Now consider any M ∈ H(Sn, h)−modqRS . Theorem 3.9 shows that Iq kills
M , so eL(M) is killed by eIqe, and therefore by the kernel of σ. Thus eL(M) ∼= σ∗e′N
for some N ∈ H(Sq × Sp, U

′)−modcoh. By claim 3,

O(h′reg)⊗O(U ′) N
∼= O(h′reg)⊗O(U) L(M) ∼= O(h′reg)⊗C[h] M

as D(h′reg)-modules. By claim 1, this D-module has regular singularities and trivial

monodromy around each component of Z(α0) ∩ h′. Therefore by claim 2, N ∼= L′(N ′)
for some N ′ ∈ H(Sq×Sp, h

′)−modRS , so that eL(M) ∼= σ∗e′L′(N ′). This proves that the
image of eL is contained in that of σ∗e′L′, so there is an exact fully faithful embedding
F : H(Sn, h)−modqRS → H(Sq × Sp, h

′)−modRS such that eL = σ∗e′L′F , and whose
image is closed under subquotients. Now H(Sq × Sp, h

′)−modRS is semisimple and has
pqpp (isomorphism classes of) irreducibles, where pn is the number of partitions of n.
On the other hand, by Theorem 3.8, the pqpp distinct irreducibles

{L(τmλ+ν) | λ ⊢ q, ν ⊢ p}

lie in H(Sn, h)−modqRS . It follows that F is an equivalence of categories, and that the
above are all of the irreducibles in H(Sn, h)−modqRS . Finally forM ∈ H(Sn, h)−modqRS ,
we have eL(M) ∼= σ∗e′L′F (M), so claim 3 implies

O(h′reg)⊗C[h]M = O(h′reg)⊗O(U) L(M) ∼= O(h′reg)⊗O(U ′)L
′F (M) = O(h′reg)⊗C[h′] F (M)

as Sq × Sp-equivariant D-modules on h′reg. It remains to prove the three claims.

Proof of claim 1: Fix M ∈ H(Sn, h)−modqRS . By assumption, O(h′reg)⊗C[h]M has

regular singularities. Let b ∈ h′ be a “generic” point of Z(α0)∩h′, that is, a point whose

stabiliser isW ′ ∼= Sm+1×S
q−1
m . By Proposition 3.4, it suffices to show that theH(W ′, h)-

module N = ResbM is such that O(h′reg)⊗C[h]N has trivial monodromy around b. This

depends only on the action of H(Sm+1,C
m) ⊆ H(W ′, h), so we may suppose n = m+1.

But N has minimal support by Theorem 3.3(2). The proof of Corollary 4.7 of [4] shows
that the only irreducible in Hc(Sm+1,C

m)−modRS with minimal support is L(C), where
C denotes the trivial representation of Sm+1. Moreover Lemma 2.9 of [14] shows that
Ext1(L(C), L(C)) = 0, so N is a direct sum of copies of L(C). Thus O(h′reg) ⊗C[h] N is
a free module with trivial connection, and in particular has trivial monodromy.

Proof of claim 2: Suppose N ∈ H(Sq × Sp, U
′)−modcoh has the given properties.

Let U ′′ ⊆ h′ denote the subset of points with trivial stabiliser in Sq × Sp, so that
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h′reg = U ′ ∩ U ′′. Then Sh(N)|h′reg is an O-coherent D-module on h′reg with regular

singularities and trivial monodromy around Z(π(α0)), so it extends to an O-coherent
D-module N ′′ on U ′′ with regular singularities. We may glue Sh(N) and N ′′ to obtain a
coherent sheaf N1 on U

′∪U ′′. Note that the complement of U ′∪U ′′ in h′ has codimension
2, so Γ(U ′∪U ′′,Oh′) = C[h′]. Also N ′′ is torsion free since it is an O-coherent D-module.
Therefore N1 is torsion free, so Lemma 4.2 shows that

N ′ = Γ(U ′ ∪ U ′′,N1)

is finitely generated over C[h′]. Also H(Sq × Sp, U
′′) ∼= D(U ′′) acts on N ′′ consistently

with the action of H(Sq ×Sp, U
′) on N , so we obtain an action of H(Sq ×Sp, h

′) on N ′.
Finally since N ′|U ′′ = N ′′ has regular singularities, we have N ′ ∈ H(Sq×Sp, h

′)−modRS
and L′(N ′) = O(U ′)⊗C[h′] N

′ = N .
Proof of claim 3: We have a natural C[Sq ×Sp]⋉D(h′reg) action on O(h′reg)⊗O(U ′)

H(Sq × Sp, U
′) given by

w(f ⊗ a) = wf ⊗ wa

and

∇y(f ⊗ a) = y(f)⊗ a+ f ⊗ ya−
∑

s∈S′

cs〈y, αs〉
f

αs
⊗ (s− 1)a,

where S′ ⊆ Sq×Sp is the set of reflections. For N ∈ H(Sq×Sp, U
′)−modcoh, the natural

isomorphism

O(h′reg)⊗O(U ′) H(Sq × Sp, U
′)⊗H(Sq×Sp,U ′) N

∼→ O(h′reg)⊗O(U ′) N

preserves the equivariant D(h′reg)-module structures by Proposition 1.2. By Lemma 4.3,
we may write the above as

O(h′reg)⊗O(U ′) N
∼= L′ ⊗e′H(Sq×Sp,U ′)e′ e

′N,

where L′ is the (C[Sq × Sp]⋉D(h′reg), e
′H(Sq × Sp, U

′)e′)-bimodule

L′ = O(h′reg)⊗O(U ′) H(Sq × Sp, U
′)e′.

Since H(Sq × Sp, U
′) = O(U ′)C[(h′)∗]C[Sq × Sp], we have

L′ = O(h′reg)⊗O(U ′) H(Sq × Sp, U
′)e′H(Sq × Sp, U

′)e′

= O(h′reg)⊗O(U ′) C[(h
′)∗]e′H(Sq × Sp, U

′)e′

=
⋃

d≥0

O(h′reg)⊗O(U ′) C[(h
′)∗]≤de′H(Sq × Sp, U

′)e′.

But

f ⊗ ya = ∇y(f ⊗ a)− y(f)⊗ a+
∑

s∈S′

cs〈y, αs〉
f

αs
⊗ (s− 1)a,

so

O(h′reg)⊗O(U ′) C[(h
′)∗]≤d+1e′H(Sq × Sp, U

′)e′

⊆ D(h′reg)O(h′reg)⊗O(U ′) C[(h
′)∗]≤de′H(Sq × Sp, U

′)e′.

Since C[(h′)∗]≤0 = C, it follows that L′ is generated as a bimodule by 1 ⊗ e′. Now
H(Sq × Sp, U

′) acts faithfully on O(U ′), so we have an injection

H(Sq × Sp, U
′)e′ →֒ Hom C(e

′O(U ′),O(U ′)).

Note that e′O(U ′) = O(U ′)Sq×Sp = B. Also O(h′reg) is flat over O(U ′), so we obtain an
inclusion

i : L′ →֒ Hom C(B,O(h′reg)).

Now C[Sq×Sp]⋉D(h′reg) and e
′H(Sq×Sp, U

′)e′ act on Hom C(B,O(h′reg)) from the left

and right, respectively, via their inclusions in EndC(O(h′reg)) and EndC(B), and i is a
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homomorphism of bimodules. Finally i(1 ⊗ e′) is the natural map φ : B → O(h′reg), so

L′ is the sub-bimodule of Hom C(B,O(h′reg)) generated by φ.
Similarly O(h′reg)⊗O(U) H(Sn, U) admits an action of C[Sq × Sp]⋉D(h′reg) given by

w(f ⊗ a) = wf ⊗ wa

and

∇y(f ⊗ a) = y(f)⊗ a+ f ⊗ ya−
1

m

∑

s∈S\Sq
m

〈y, αs〉
f

αs
⊗ (s− 1)a,

where S ⊆ Sn is the set of reflections. We are now identifying Sq × Sp with a subgroup
of Sn as discussed before the theorem. Again for M ∈ H(Sn, U)−modcoh, we have a
C[Sq × Sp]⋉D(h′reg)-module isomorphism

O(h′reg)⊗O(U) M ∼= O(h′reg)⊗O(U) H(Sn, U)e⊗eH(Sn,U)e eM.

Therefore if eM ∼= σ∗e′N , then

O(h′reg)⊗O(U) M ∼= L⊗e′H(Sq×Sp,U ′)e′ e
′N

where L is the (C[Sq × Sp]⋉D(h′reg), e
′H(Sq × Sp, U

′)e′)-bimodule

L = O(h′reg)⊗O(U) H(Sn, U)e⊗eH(Sn,U)e e
′H(Sq × Sp, U

′)e′.

The exact sequence

eH(Sn, U)IqH(Sn, U)e →֒ eH(Sn, U)e։ e′H(Sq × Sp, U
′)e′

gives rise to a right exact sequence of right eH(Sn, U)e-modules

O(h′reg)⊗O(U) H(Sn, U)IqH(Sn, U)e→ O(h′reg)⊗O(U) H(Sn, U)e
ρ
։ L,

since H(Sn, U)eH(Sn, U) = H(Sn, U). As above, we have

O(h′reg)⊗O(U) H(Sn, U)e =
⋃

d≥0

O(h′reg)⊗O(U) C[h
∗]≤deH(Sn, U)e.

Now h is spanned by h′ and x∨i − x∨j , for all i 6= j such that xi − xj vanishes on h′.

Fix such i and j, and let g ∈ C[h] vanish on all components of Xq except h′, such
that g is nonzero on h′reg. Then sijf − f is divisible by xi − xj for any f ∈ C[h], so
g(sij − 1) ∈ H(Sn, h) sends C[h] into Iq. But the annihilator of C[h]/Iq in H(Sn, h) is
H(Sn, h)IqH(Sn, h), so

H(Sn, U)IqH(Sn, U) ∋ [x∨i , g(sij − 1)] = [x∨i , g](sij − 1) + g(x∨i − x∨j )sij.

Note that [x∨i , g](sij − 1) ∈ C[h]C[Sn]. But g is invertible in O(h′reg), so

x∨i − x∨j ∈ O(h′reg)⊗C[h] H(Sn, U)IqH(Sn, U) +O(h′reg)C[Sn],

whence

O(h′reg)⊗O(U) C[h
∗]≤d+1eH(Sn, U)e ⊆ O(h′reg)⊗O(U) h

′C[h∗]≤deH(Sn, U)e

+O(h′reg)⊗O(U) C[h
∗]≤deH(Sn, U)e

+O(h′reg)⊗O(U) H(Sn, U)IqH(Sn, U)e.

Applying ρ, and using the same argument as above, we obtain

ρ
(

O(h′reg)⊗O(U) C[h
∗]≤d+1eH(Sn, U)e

)

⊆ D(h′reg)ρ
(

O(h′reg)⊗O(U) C[h
∗]≤deH(Sn, U)e

)

.

Thus L is generated as a bimodule by ρ(1⊗ e). Finally H(Sn, U) acts on O(U)/IqO(U)
with annihilator H(Sn, U)IqH(Sn, U), so we have an inclusion

H(Sn, U)e/H(Sn, U)IqH(Sn, U)e →֒ Hom C(e(O(U)/IqO(U)),O(U)/IqO(U))
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of (O(U)/IqO(U), eH(Sn, U)e)-bimodules. Note that e(O(U)/IqO(U)) = B. Since
O(h′reg) is flat over O(U)/IqO(U), we obtain an inclusion

j : L →֒ Hom C(B,O(h′reg))

of (O(h′reg), e
′H(Sq × Sp, U

′)e′)-bimodules. Again j preserves the left action of

C[Sq × Sp]⋉D(h′reg),

and sends ρ(1⊗ e) to φ, so L is the sub-bimodule of Hom C(B,O(h′reg)) generated by φ.

In particular, L ∼= L′ as bimodules, so

O(h′reg)⊗O(U) M ∼= L⊗e′H(Sq×Sp,U ′)e′ e
′N ∼= L′ ⊗e′H(Sq×Sp,U ′)e′ e

′N ∼= O(h′reg)⊗O(U ′) N

as C[Sq × Sp]⋉D(h′reg)-modules, as required. �

5. The Monodromy Functors for Type A

We continue to study the case W = Sn, h = Cn and c = 1
m . Previously we studied

the modules in Hc−modRS supported on Xq, where q = ⌊n/m⌋. Now let q be any
integer satisfying 0 ≤ qm ≤ n, and let Hc−modqRS denote the Serre subcategory of
Hc−modRS consisting of all modules supported on Xq. Our goal in this section is to

construct an equivalence of categories from Hc−modqRS/Hc−modq+1
RS to the category of

finite dimensional representations of a certain Hecke algebra (where Hc−mod
⌊n/m⌋+1
RS is

the subcategory containing only the zero module). From this we will deduce Theorem
1.6.

Let us fix an integer q as above, and put p = n − qm. Consider the natural copy
Sqm ⊆ Sn, and put h′ = hS

q
m and h′reg = hS

q
m

reg . As in the previous section, we may identify

h′ with SpecC[z1, . . . , zq, t1, . . . , tp] via the map

π : C[h] ։ C[z1, . . . , zq, t1, . . . , tp], π(xi) =

{

z⌈i/m⌉ if i ≤ qm

ti−qm if i > qm.

Note that h′ is one of the components of Xq ⊆ h. By Proposition 1.2, we have a functor

Locq : Hc−modqRS → C[Sq × Sp]⋉D(h′reg)−modRS ,

M 7→ O(h′reg)⊗C[h] M,

where C[Sq×Sp]⋉D(h′reg)−modRS denotes the category of coherent Sq×Sp-equivariant
D(h′reg)-modules with regular singularities.

Lemma 5.1. The functor Locq is exact, and induces a faithful functor

Hc−modqRS/Hc−modq+1
RS → C[Sq × Sp]⋉D(h′reg)−modRS ,

which we also denote by Locq.

Proof. Any M ∈ Hc−modqRS is annihilated by some power of Iq. By Theorem 3.9,
IqM = 0. Let b be any point in h′reg, and let U ⊆ h denote the affine Zariski open set

U = {x ∈ h | xi 6= xj whenever bi 6= bj}.

Then U ∩ h′ = U ∩ Xq = h′reg, so IqO(U) → O(U) → O(h′reg) is right exact. Thus
O(U)⊗C[h]M → O(h′reg)⊗C[h]M is an isomorphism. Since M 7→ O(U)⊗C[h]M is exact,

so is Locq. Clearly the objects killed by Locq are exactly those in Hc−modq+1
RS . The

result now follows from general categorical considerations. �

We now want to determine the “image” of Locq. The Riemann-Hilbert correspondence
[7] gives an equivalence of categories

C[Sq × Sp]⋉D(h′reg)−modRS
∼→ D(h′reg/Sq × Sp)−modRS
∼→ π1(h

′
reg/Sq × Sp)−modfd,
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where the latter denotes the category of finite dimensional representations of the group
π1(h

′
reg/Sq × Sp) over C. Let φ denote the composite functor. Under the identification

h′ = SpecC[z1, . . . , zq, t1, . . . , tp] ∼= Cq+p, the open subset h′reg consists of points with all

coordinates distinct. By the correspondence between covering spaces of h′reg/Sq+p and
subgroups of π1(h

′
reg/Sq+p), we have a homomorphism

µ : π1(h
′
reg/Sq+p) ։ Sq+p,

and π1(h
′
reg/Sq × Sp) = µ−1(Sq × Sp). The fundamental group π1(h

′
reg/Sq+p) is known

as the braid group Bq+p. We need to describe some explicit elements of Bq+p. Suppose
x1, x2, . . . , xq+p ∈ C are the vertices of a convex (q+p)-gon in the complex plane, listed
counterclockwise. We take the point

x = (x1, x2, . . . , xq+p) ∈ Cq+p ∼= h′

as the basepoint of π1(h
′
reg). Suppose 1 ≤ i, j ≤ q + p and i 6= j. Pick ǫ > 0 such that

2ǫ|xi − xj| < |xi + xj − 2xk| for all k. Let γij : [0, 1] → h′reg be the path

γij(t) =

{

tsijx+ (1− t)x if |t− 1
2 | > ǫ

1
2(sijx+ x) + iǫe

1
2ǫ
iπ(t− 1

2
)(x− sijx) otherwise.

from x to sijx. Geometrically, as γij is traversed, xi and xj switch positions linearly,

traversing small semicircles counterclockwise around 1
2 (xi + xj) to avoid intersecting.

Pushing this path down to h′reg/Sq+p gives an element Sij ∈ Bq+p such that µ(Sij) = sij.

Note that there is a unique component Z of h′ \ h′reg passing through 1
2(sijx+ x), and

for M ∈ C[Sq × Sp] ⋉ D(h′reg)−modRS , the action of Sij on φ(M) is conjugate to the

monodromy around Z of the induced local system on h′reg/Sq × Sp.

Lemma 5.2. We have a surjection π1(h
′
reg/Sq×Sp) ։ Bq×Bp whose kernel is generated

by {S2
ij | i ≤ q, j > q}.

Proof. Let Uq ⊆ Cq and Up ⊆ Cp denote the open subsets on which all coordinates are
distinct. We have a natural continuous map h′reg → Uq × Up, and the natural action
of Sq × Sp on the latter space makes this map equivariant. We may therefore identify
h′reg/Sq × Sp with an open subset of (Uq/Sq) × (Up/Sp), and the complement Z is the
image of

{x ∈ Uq × Up ⊆ Cq+p | xi = xj for some i ≤ q, j > q}.

Note that (Uq/Sq) × (Up/Sp) is a smooth complex variety, and Z is an irreducible
divisor. Moreover Z is invariant under the action of R∗, and is therefore contractible.
Van Kampen’s Theorem now gives a surjection

π1(h
′
reg/Sq × Sp) ։ π1((Uq/Sq)× (Up/Sp)) = Bq ×Bp,

whose kernel is generated by a loop around Z. That is, the kernel is generated by S2
ij

for any i ≤ q and j > q. �

The group Bq has a standard presentation; namely it is generated by {Si,i+1 | 1 ≤
i < q} subject to the braid relations

Si,i+1Si+1,i+2Si,i+1 = Si+1,i+2Si,i+1Si+1,i+2,

Si,i+1Sj,j+1 = Sj,j+1Si,i+1if |i− j| > 1.

The kernel of Bq → Sq is generated by {S2
ij}. For any q ∈ C∗, the Hecke algebra of type

Ap−1 is the algebra

Hq(Sp) = C[Bp]/〈(Sij − 1)(Sij + q)〉.

We will take q = e2πi/m. Combining the above, we have a surjection

ψ : C[π1(h
′
reg/Sq × Sp)] ։ C[Sq]⊗C Hq(Sp)
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whose kernel is generated by

{S2
ij − 1 | i ≤ q or j ≤ q} ∪ {(Sij − 1)(Sij + q) | i, j > q}. (3)

This gives rise to a fully faithful embedding

ψ∗ : C[Sq]⊗C Hq(Sp)−modfd → π1(h
′
reg/Sq × Sp)−modfd,

whose image is the full subcategory A of π1(h
′
reg/Sq×Sp)−modfd consisting of modules

on which the relations (3) vanish.

Lemma 5.3. The composite functor φLocq sends each module into A.

Proof. Consider any M ∈ Hc−modqRS . We must show that each of the relations (3)
vanish on φLocq(M). That is, for each component Z of h′ \ h′reg, we must show that
the monodromy of the induced local system on h′reg/Sq × Sp around Z satisfies the
appropriate equation. Let b ∈ Z be a “generic” point, that is, chosen from Z so that its
stabiliser W ′ ⊆ Sn is minimal. By Proposition 3.4, it suffices to prove the appropriate
equation for the monodromy of the local system corresponding to N = ResbM . There
are three possibilities, depending on which two coordinates we have set equal.

Case 1: W ′ ∼= Sq−2m ×S2m. We are required to show that the monodromy of the local
system on h′reg (ignoring the equivariance structure) around Z is trivial. The monodromy

depends only on the action of Hc(S2m,C
2m) ⊆ Hc(W

′, h), so we may suppose n = 2m.
But N has minimal support by Theorem 3.3(2). By Theorem 4.5, it suffices to consider
the module F (N) ∈ Hm(S2,C

2)−modRS . However, the latter category is semisimple
with irreducibles L(τ(2)) and L(τ(1,1)), so it suffices to check that these modules give rise
to local systems with trivial monodromy around the diagonal. This is clear from the
description of the connection given in Proposition 1.2.

Case 2: W ′ ∼= Sq−1m × Sm+1. Again we must show that the monodromy of the local
system on h′reg around Z is trivial. Now the monodromy depends only on the action of

Hc(Sm+1,C
m+1) ⊆ Hc(W

′, h), so we may suppose n = m+ 1. The result follows as in
the proof of Claim 1 in Theorem 4.5.

Case 3: W ′ ∼= Sqm × S2. This case is well known (see [14] Theorem 5.13) but we
give the calculation here for convenience. Now the monodromy depends on the action
of Hc(S2,C

2) ⊆ Hc(W
′, h), so we may suppose n = 2. Since h acts locally nilpotently

on N , we can find a surjection

(Hc(S2,C
2)/Hc(S2,C

2)hk)⊕l ։ N

for some k and l. We may replace N by the former module. Then

V = (C[S2]⊗C C[h∗]/hk)⊕l ⊆ N

freely generates N over C[h] and is invariant under the actions of h and S2. By Propo-
sition 1.2, the corresponding D-module on hreg is freely generated over O(hreg) by V ,
and has connection

∇yv = yv −
〈y, αs〉

αs
c(s− 1)v

for v ∈ V , where S2 = {1, s}. In particular, the residue of this connection acts as 0
on the 1-eigenspace of s in V , and as 2c on the −1-eigenspace. Therefore after pushing
down to h/S2, the monodromy acts as 1 on the 1-eigenspace and −e2πic = −q on the
−1-eigenspace. This proves the required relation. �

Proposition 5.4. The functor Locq induces an equivalence

Hc−modqRS/Hc−modq+1
RS

∼= φ−1A.
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Proof. By the above lemmas, Locq induces a faithful functor

Hc−modqRS/Hc−modq+1
RS → φ−1A,

and it remains to show that this functor is full and essentially surjective. Both statements
will follow from the existence of a functor G : φ−1A → Hc−modqRS such that LocqG is
naturally equivalent to the identity functor. This will take some work, so we proceed in
a sequence of lemmas.

Lemma 5.5. Let N ⊆ Sn denote the normaliser of the subgroup Sqm ⊆ Sn, and choose a
set C of left coset representatives for N in Sn. Let h

⊥ denote the orthogonal complement
to h′ with respect to the natural Sn-invariant inner product on h = Cn. There is a functor

Ḡ : C[Sq × Sp]⋉D(h′reg)−modRS → Hc(Sn, h)−mod

such that

ḠM ∼= C[Sn]⊗C[N ] M =
⊕

w∈C

wM

as an Sn-module, and the actions of x ∈ h∗ and y ∈ h are given by

x(w ⊗ v) = w ⊗ π(xw)v,

y(w ⊗ v) = w ⊗∇ρ(yw)v −
1

m

∑

i,j
π(xi) 6=π(xj)

〈yw, xi − xj〉(w + wsij)⊗
1

π(xi − xj)
v,

where π : C[h] ։ C[h′] is as above, and ρ : h ։ h′ is the projection with kernel h⊥. Note
that if π(xi) 6= π(xj), then π(xi − xj) is invertible in O(h′reg).

Proof. Under the natural identification h′ × h⊥ ∼= h, the set h′reg × h⊥ is identified with
an open subset U ⊆ h. Let

Ū = Sn ×N U =
∐

w∈C

wU.

We have a natural étale morphism Ū → h, so by Propositions 2.3, 2.4 and 2.6 we have
algebra homomophisms

Hc(Sn, h) → Hc(Sn, Ū) → Mat[Sn:N ](C[N ]⋉C[Sq
m] Hc(S

q
m,Spf ÔU,h′reg)),

But

Hc(S
q
m,Spf ÔU,h′reg) = ÔU,h′reg ⊗O(U) Hc(S

q
m, U) =

(

lim
←

O(U)/Ik
)

⊗O(U) Hc(S
q
m, U),

where I ⊆ O(U) is the kernel of O(U) → O(h′reg). Since U
∼= h′reg × h⊥, we have

Hc(S
q
m, U) = Hc(S

q
m, h

⊥)⊗C D(h′reg).

Moreover h⊥ ∼= (Cm/C)q, so by Theorem 3.5 and Lemma 3.1 we have an algebra homor-
morphism Hc(S

q
m, h⊥) → C whose kernel contains (h⊥)∗. This induces a homomorphism

Hc(S
q
m, h

⊥)⊗C D(h′reg) → D(h′reg)

which kills IHc(S
q
m, h⊥)⊗CD(h′reg). This therefore factors through the completion, and

we obtain

C[N ]⋉C[Sq
m] Hc(S

q
m, ÔU,h′reg) → C[N ]⋉C[Sq

m] D(h′reg) = C[N/Sqm]⋉D(h′reg).

Since N/Sqm ∼= Sq × Sp, we obtain functors

C[Sq × Sp]⋉D(h′reg)−modRS → C[N ]⋉C[Sq
m] Hc(S

q
m, ÔU,h′reg)−mod

∼= Mat[Sn:N ](C[N ]⋉C[Sq
m] Hc(S

q
m, ÔU,h′reg))−mod

→ Hc(Sn, h)−mod.
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Let Ḡ be the composite functor. Following through the construction in Proposition 2.6,
we see that ḠM is exactly as descibed in the statement. �

Now let

z∨i = mρ(x∨mi) =

m−1
∑

j=0

x∨mi−j , t∨a = ρ(x∨mq+a) = x∨mq+a.

These form the basis of h′ dual to the basis {zi, ta} of (h′)∗. As in the previous section,
denote

px∨(2) =

n
∑

i=1

(x∨i )
2 ∈ Hc(Sn, h),

and similarly for pz∨(2) and pt∨(2).

Lemma 5.6. The element eu ∈ Hc(Sn, h) acts locally finitely on ḠM . Also px∨(2) acts
on symmetric elements of ḠM via the formula

px∨(2)
∑

w∈Sn

w ⊗ v =
∑

w∈Sn

w ⊗ ζv,

where ζ ∈ D(h′reg) is the differential operator

ζ =
1

m
pz∨(2) + pt∨(2)− 2

∑

i 6=j

z∨i − z∨j
zi − zj

−
2

m

∑

i,a

z∨i −mt∨a
zi − ta

−
2

m

∑

a6=b

t∨a − t∨b
ta − tb

.

Proof. Consider the Euler vector field

ξ =

q
∑

i=1

ziz
∨
i +

r
∑

i=1

tit
∨
i ∈ D(h′).

This acts locally finitely on M by Lemma 3.2. Calculating the action of the Euler
element eu ∈ Hc on v ∈M ⊆ ḠM gives

eu v = ∇ξv −
n(n− 1)

2m
v.

Since eu centralises Sn, we conclude that eu acts locally finitely on ḠM . The second
statement also follows by a straightforward calculation. �

Clearly the support of ḠM lies in Xq, and O(h′reg)⊗C[h]ḠM ∼=M . If ḠM were finitely

generated over C[h], this would be the required module in Hc−modqRS . Unfortunately
it is too large. We will construct the required module GM as a submodule of ḠM . For
each irreducible component Z of h′ \ h′reg, let xZ ∈ (h′)∗ be an element with kernel Z.
Let

α =
∏

Z

x2Z ∈ C[h′]Sq×Sp .

Note that the zero set of α is exactly h′ \ h′reg.

Lemma 5.7. For each component Z of h′ \ h′reg, there is a subspace DZM ⊆ M satis-
fying:

(1) DZM is functorial in M ,
(2) DZM is preserved by the actions of ζ and π(C[h]Sn) ⊆ C[h′]
(3) If U ⊆ h′ is a Zariski open subset such that V ⊆ O(U ∩ h′reg) ⊗O(h′reg) M freely

generates O(U ∩ h′reg)⊗O(h′reg) M over O(U ∩ h′reg), then setting

U ′ = U ∩ int(h′reg ∪ Z),

we have DZM ⊆ x−KZ O(U ′)V for some integer K.

(4) If M ∈ φ−1A then MSq×Sp = C[α−1](DZM)Sq×Sp.
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Proof. Choose a generic point b ∈ Z with stabiliser W ′ ⊆ Sn. Let B ⊆ h′ be an open
ball around b which doesn’t intersect the other components of h′ \ h′reg. Since Z ⊆ h′

is a codimension 1 complex subspace, π1(B ∩ h′reg)
∼= Z. Let B̄ ։ B ∩ h′reg denote the

universal cover, and let Oan
B and Oan

B̄
denote the rings of analytic functions on B and B̄

respectively. Now Oan
B̄

⊗O(h′reg) M is naturally an analytic O-coherent D-module on B̄.

Since B̄ is simply connected, we have

Oan
B̄ ⊗C Mflat

∼→ Oan
B̄ ⊗O(h′reg) M,

where Mflat ⊆ Oan
B̄

⊗O(h′reg)M is the space of flat sections. Let i :M → Oan
B̄

⊗O(h′reg)M

denote the inclusion. Again we consider three cases, depending on which two coordinates
are equal on Z.

Case 1: W ′ ∼= Sqm×S2, so Z is the kernel of xZ = ta− tb ∈ (h′)∗. Let s ∈ Sq ×Sp be
the transposition switching ta with tb, and let Oan,s

B denote the subspace of Oan
B fixed

by s. We may think of Oan,s
B as consisting of functions involving only even powers of

xZ . Let λ = 2
m + 1, and let

DZM = i−1
(

Oan,s
B Mflat + xλZO

an,s
B Mflat

)

,

noting that xλZ is a well-defined function inOan
B̄
. We first check that this is independent of

the choice of b and B. Suppose b′ and B′ are chosen to satisfy the same conditions. Since
hW

′

reg is connected, we may find a path joining b to b′, and some tubular neighbourhood
T of this path in h′ will contain B and B′, such that the inclusions B ∩ h′reg →֒ T ∩ h′reg
and B′ ∩ h′reg →֒ T ∩ h′reg are homotopy equivalences. This allows us to identify B̄ and

B̄′ with open subsets of the universal cover T̄ of T ∩ h′reg. Thus i may be expressed as
a composite

M
j
→ Oan

T̄ ⊗O(h′reg) M
k
→ Oan

B̄ ⊗O(h′reg) M.

Now Oan,s
T + xλZO

an,s
T is the inverse image of Oan,s

B + xλZO
an,s
B under Oan

T̄
→ Oan

B̄
, so

Oan,s
T Mflat + xλZO

an,s
T Mflat = k−1(Oan,s

B Mflat + xλZO
an,s
B Mflat).

It follows that DZM = j−1(Oan,s
T Mflat + xλZO

an,s
T Mflat), so using b′ and B′ instead of b

and B produces the same subspace. Property (1) is clear.
Now π : C[h] → C[h′] is equivariant with respect to the action of Sq × Sp, so

π(C[h]Sn) ⊆ C[h′]Sq×Sp ⊆ Oan,s
B .

Therefore DZM is preserved by the action of π(C[h]Sn). To show it is preserved by ζ,
note that

ζxλZ = 2λ(λ− 1)xλ−2Z −
4

m
λxλ−2Z − 2

∑

i

(

1

ta − zi
−

1

tb − zi

)

λxλ−1Z

−
2

m

∑

c 6=a,b

(

1

ta − tc
−

1

tb − tc

)

λxλ−1Z

= 2
∑

i

1

(ta − zi)(tb − zi)
λxλZ +

2

m

∑

c 6=a,b

1

(ta − tc)(tb − tc)
λxλZ

∈ xλZO
an,s
B .

Also setting x∨Z = t∨a − t∨b , we may write

ζ ∈
1

2
(x∨Z)

2 −
2

m

x∨Z
xZ

+
∑

y∈Z

Cy2 +Oan
B y,
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so for f ∈ Oan,s
B , we have

[ζ, f ] ∈ x∨Z(f)x
∨
Z −

2

m

x∨Z(f)

xZ
+
∑

y∈Z

Cy(f)y +Oan
B y(f) +Oan,s

B .

But x∨Z(f)/xZ ∈ Oan,s
B and s fixes ζ, so we conclude that

[ζ,Oan,s
B ] ⊆ Oan,s

B xZx
∨
Z +Oan,s

B Z +Oan,s
B .

Hence

ζ(Oan,s
B Mflat + xλZO

an,s
B Mflat)

⊆ [ζ,Oan,s
B ]Mflat + [ζ,Oan,s

B ]xλZMflat +Oan,s
B ζ(xλZ)Mflat

⊆ Oan,s
B Mflat + xλZO

an,s
B Mflat,

proving property (2).
Now suppose that U and V are as in property (3). If U ∩ Z = ∅ then O(U ∩ h′reg) =

O(U ′), and the property is clear. Otherwise we may suppose that B ⊆ U . Then

Oan
B̄ ⊗C Mflat = Oan

B̄ ⊗O(h′reg) M = Oan
B̄ ⊗C V,

so Mflat = XV , where X ∈ GLOan
B̄
(Oan

B̄
⊗C V ) satisfies

X ∈
∑

µ∈Λ,
l∈L

EndC(V )⊗C Oan
B xµZ(log xZ)

l,

X−1 ∈
∑

µ∈Λ,
l∈L

EndC(V )⊗C Oan
B x−µZ (log xZ)

l

for some finite subsets Λ ⊆ C and L ⊆ Z≥0. Thus

Mflat ⊆
∑

µ∈Λ,
l∈L

Oan
B xµZ(log xZ)

lV,

V ⊆
∑

µ∈Λ,
l∈L

Oan
B x−µZ (log xZ)

lMflat.

Thus

DZM ⊆ (O(U ∩ h′reg)⊗C V ) ∩







∑

µ∈Λ,
l∈L

(Oan
B xµZ(log xZ)

l +Oan
B xµ+λZ (log xZ)

l)V







⊆ x−KZ O(U ′)V

for some integer K, proving (3).
Proceeding with the above notation, suppose now that M ∈ φ−1A. Let S be the

endomorphism of Oan
B̄

⊗O(h′reg) M given by

S(f ⊗ v) = (s̄∗f)⊗ sv,

where s̄∗ ∈ EndC(O
an
B̄
) is induced by the automorphism s̄ : B̄ → B̄ obtained by lifting

s : B → B. That is, s̄∗ sends xZ to e−πixZ , and fixes any function killed by x∨Z . The
restriction of S to Mflat is exactly the monodromy of the corresponding local system on
h′reg/Sq × Sp around Z, which is assumed to satisfy

(S|Mflat
− 1)(S|Mflat

+ q) = 0.
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Thus Mflat decomposes into eigenspaces M1
flat and M

−q
flat for S. The above shows that

M ⊆
∑

µ∈Λ,
l∈L

Oan
B x−µZ (log xZ)

lMflat

=
∑

µ∈Λ,
l∈L

Oan
B x−µZ (log xZ)

lM1
flat +Oan

B x−µZ (log xZ)
lM−qflat.

But −q = eλπi, so the elements fixed by s must be contained in

M s ⊆ Oan,s
B [x−2Z ]M1

flat +Oan,s
B [x−2Z ]xλZM

−q
flat.

If v ∈MSq×Sp ⊆M s, then for some K > 0 we have

αKv ∈M ∩
(

Oan,s
B M1

flat +Oan,s
B xλZM

−q
flat

)

⊆ DZM.

Since α is also Sq × Sp-invariant, we conclude that MSq×Sp ⊆ C[α−1](DZM)Sq×Sp ,
proving (4).

Case 2: W ′ ∼= Sq−2m ×S2m, so Z is the kernel of xZ = zi− zj ∈ (h′)∗. Let s ∈ Sq×Sp
be the transposition switching zi with zj , and again let Oan,s

B denote the subspace of
Oan
B fixed by s. We now set λ = 2m+ 1, and again define

DZM = i−1
(

Oan,s
B Mflat + xλZO

an,s
B Mflat

)

.

The arguments proceed as in the previous case, the only difference being the following
two calculations. We have

ζxλZ =
2λ(λ− 1)

m
xλ−2Z − 4λxλ−2Z − 2

∑

k 6=i,j

(

1

zi − zk
−

1

zj − zk

)

λxλ−1Z

−
2

m

∑

a

(

1

zi − ta
−

1

zj − ta

)

λxλ−1Z

= 2
∑

k 6=i,j

1

(zi − zk)(zj − zk)
λxλZ +

2

m

∑

a

1

(zi − ta)(zj − ta)
λxλZ

∈ xλZO
an,s
B .

Also, setting x∨Z = z∨i − z∨j , we have

ζ ∈
1

2m
(x∨Z)

2 − 2
x∨Z
xZ

+
∑

y∈Z

Cy2 +Oan
B y,

so for f ∈ Oan,s
B , we have

[ζ, f ] ∈
1

m
x∨Z(f)x

∨
Z − 2

x∨Z(f)

xZ
+
∑

y∈Z

Cy(f)y +Oan
B y(f) +Oan,s

B .

The properties follow as above.
Case 3: W ′ ∼= Sq−1m × Sm+1, so Z is the kernel of xZ = zi − ta. Let x

∨
Z = z∨i −mt∨a ,

and define

Oan+
B = {f ∈ Oan

B | x∨Z(f) ∈ xZO
an
B },

DZM = i−1(Oan+
B Mflat).

Properties (1), (3) and (4) follow as in the previous two cases. Now suppose f ∈ C[h]Sn ,
and pick j and k such that π(xj) = zi and π(xk) = ta. Then (x∨j −x

∨
k )f is antisymmetric
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under sjk, so (x
∨
j −x

∨
k )f ∈ (xj−xk)C[h]. Using equation (1) from the proof of Proposition

4.4, applying π gives

1

m
x∨Zπ(f) ∈ xZC[h

′].

Therefore π(C[h]Sn) ⊆ Oan+
B , so DZM is preserved by the action of π(C[h]Sn). Finally

note that, for j 6= i we have

1

zj − zi
−

1

zj − ta
=

xZ
(zj − zi)(zj − ta)

∈ xZO
an
B and

x∨Z

(

m

zj − zi
+

1

zj − ta

)

=
m

(zj − zi)2
−

m

(zj − ta)2

=
mxZ(2zj − zi − ta)

(zj − zi)2(zj − ta)2
∈ xZO

an
B , whence

m

zj − zi
+

1

zj − ta
∈ Oan+

B .

Thus

−2
z∨i − z∨j
zi − zj

−
2

m

z∨j −mt∨a

zj − ta

=
2

m+ 1

(

1

zj − zi
−

1

zj − ta

)

(z∨i −mt∨a )

+
2

m+ 1

(

m

zj − zi
+

1

zj − ta

)

(

z∨i + t∨a − (1 + 1/m)z∨j
)

∈ xZO
an
B x∨Z +Oan+

B Z.

Similarly for b 6= a, we have

−
2

m

z∨i −mt∨b
zi − tb

−
2

m

t∨a − t∨b
ta − tb

=
2

m(m+ 1)

(

1

tb − zi
+

1

ta − tb

)

(z∨i −mt∨a )

+
2

m(m+ 1)

(

m

tb − zi
−

1

ta − tb

)

(

z∨i + t∨a − (m+ 1)t∨b
)

∈ xZO
an
B x∨Z +Oan+

B Z.

Finally

1

m
(z∨i )

2 + (t∨a )
2 =

1

m(m+ 1)
(x∨Z)

2 +
1

m+ 1
(z∨i + t∨a )

2,

so

ζ ∈
1

m(m+ 1)
(x∨Z)

2 −
2

m

x∨Z
xZ

+ xZO
an
B x∨Z +

∑

y∈Z

Cy2 +Oan+
B y.
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Now suppose f ∈ Oan+
B , so x∨Z(f)/xZ ∈ Oan

B . We have [x∨Z , xZ ] = (m+ 1), so

x∨Zζ(f) ∈
1

m(m+ 1)

(

(x∨Z)
2xZ − 2(m+ 1)x∨Z

) x∨Z(f)

xZ

+ x∨ZxZO
an
B x∨Z(f) +

∑

y∈Z

Cx∨Zy
2(f) + x∨ZO

an+
B y(f)

⊆
1

m(m+ 1)
xZ(x

∨
Z)

2

(

x∨Z(f)

xZ

)

+ x∨Z
(

x2ZO
an
B

)

+
∑

y∈Z

Cy2x∨Z(f) + xZO
an
B y(f) +Oan+

B yx∨Z(f)

⊆ xZO
an
B +

∑

y∈Z

Cy2 (xZO
an
B ) +Oan+

B y (xZO
an
B )

⊆ xZO
an
B .

Thus ζ(f) ∈ Oan+
B , proving property (2). �

Lemma 5.8. Consider the intersection

DM =
⋂

Z

DZM

over all components of h′ \ h′reg. This subspace has the following properties:

(1) DM is functorial in M .
(2) DM is preserved by the actions of ζ and π(C[h]Sn) ⊆ C[h′].
(3) DM is finitely generated over π(C[h]Sn).
(4) If M ∈ φ−1A then MSq×Sp = C[α−1](DM)Sq×Sp .

Proof. Certainly (1), (2) and (4) follow immediately from the corresponding properties
of DZM . To prove (3), let {Ui} denote a Zariski open cover of h′reg such that

O(Ui)⊗O(h′reg) M
∼= O(Ui)⊗C Vi.

We may suppose Ui consists of points in h′reg where gi 6= 0, for some gi ∈ C[h′]. Moreover

we may suppose gi does not vanish on any component of h′\h′reg. Now C[h′] is a UFD, so

we have the notion of the order of pole of any element of O(Ui) = C[h′][α−1, g−1i ] along
some component Z. Property (3) of DZM states that the coefficients of any v ∈ DZM
relative to Vi have poles along Z of order at most K, for some integer K. Thus

DM ⊆ O(U ′i)α
−KVi,

where U ′i = SpecC[h′][g−1i ] ⊆ h′. In particular, O(U ′i)DM is finitely generated over
O(U ′i), so O(U ′)DM is a coherent sheaf on U ′, where U ′ is the union of the U ′i . We
have O(U ′)DM ⊆ M , and the latter is locally free, so O(U ′)DM is torsion free. By
Lemma 4.2, we conclude that O(U ′)DM is finitely generated over O(U ′). However,
h′ \ U ′ is contained in h′ \ h′reg, but doesn’t contain any component of the latter, so it

has codimension at least 2. Therefore O(U ′) = C[h′], so C[h′]DM is finitely generated
over C[h′]. Finally C[h′] is finite over π(C[h]Sn), and the latter ring is Noetherian, so (3)
follows. �

We may now complete the proof of Proposition 5.4. Consider the subspaces

EM =

{

∑

w∈Sn

w ⊗ v

∣

∣

∣

∣

∣

v ∈ (DM)Sq×Sp

}

⊆ eḠM,

GM = HcEM,

where, as usual, e = 1
n!

∑

w∈Sn
w. Property (2) of DM implies that EM is preserved

by the actions of px∨(2)e ∈ Hc and C[h]Sne ⊆ Hc. These generate the subalgebra
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eHce ⊆ Hc, so EM is an eHce-submodule of eḠM . Also EM ∼= (DM)Sq×Sp as C[h]Sn-
modules, so EM is finitely generated over C[h]Sn . Since eu acts locally finitely on ḠM ,
we conclude that EM decomposes into finite dimensional generalised eigenspaces for
eu, with eigenvalues in Λ + Z≥0 for some finite subset Λ ⊂ C. The same is true of
GM , since Hc is finite over eHce and ad eu is locally finite on Hc. This ensures that
GM ∈ Hc−modqRS . Moreover the composite

η : LocqGM = O(h′reg)⊗C[h] GM →֒ O(h′reg)⊗C[h] ḠM
∼→M

is a homomorphism of C[Sq × Sp] ⋉ D(h′reg)-modules, by Proposition 1.2. But GM ⊇

EM , so if M ∈ φ−1A, then property (4) of DM ensures that Im (η) contains MSq×Sp .
Theorem 2.3 of [17] shows that

e′ =
1

q!p!

∑

w∈Sq×Sp

w

generates C[Sq×Sp]⋉D(h′reg) as a two-sided ideal, so MSq×Sp = e′M generates M over

C[Sq × Sp]⋉D(h′reg). Therefore η is an isomorphism, proving the result. �

Although we have considered c = 1
m so far in this section, the following result will

allow us to generalise to c = r
m . The first statement follows from Corollary 4.3 of [4] in

the case m = 2, and from Theorem 5.12 and Proposition 5.14 of [19] when m > 2. The
second is Theorem 5.10 of [19].

Theorem 5.9. There is an equivalence of categories H r
m
−modRS ∼= H 1

m
−modRS

which identifies H r
m
−modqRS with H 1

m
−modqRS . There is a C-algebra isomorphism

He2πir/m(Sp) ∼= He2πi/m(Sp).

We may now combine the above to prove our remaining main results.

Proof of Theorem 1.8. Certainly when c = 1
m , the above shows that φLocq and ψ∗

identify Hc−modqRS/Hc−modq+1
RS and C[Sq] ⊗C Hq(Sp)−modfd, respectively, with the

full subcategory A ⊆ π1(h
′
reg/Sq × Sp)−modfd. The case c = r

m follows immediately

from the case c = 1
m by the previous theorem. �

Proof of Theorem 1.6. Consider the case c > 0; the case c < 0 follows from this as in
the proof of Theorem 3.8. We will prove by induction on q that if qm(λ) = q, then
Supp (L(τλ)) = Xq. Suppose it holds for q′ < q. If the support of L(τλ) is Xq, then
qm(λ) ≤ q by Theorem 3.8. However we cannot have qm(λ) < q by the inductive

hypothesis. Therefore the irreducibles in Hc−modqRS/Hc−modq+1
RS are a subset of

Ω = {L(τλ) | qm(λ) = q}.

We have a bijection

{µ ⊢ q} × {ν ⊢ p | qm(ν) = 0} → {λ ⊢ n | qm(λ) = q}

given by (µ, ν) 7→ mµ+ν. The irreducibles in C[Sq]−modfd are indexed by {µ ⊢ q}, and
those in Hq(Sp)−modfd by {ν ⊢ p | qm(ν) = 0}. Therefore |Ω| is exactly the number
of irreducibles in C[Sq] ⊗C Hq(Sp)−modfd. Since the latter category is equivalent to

Hc−modqRS/Hc−modq+1
RS , it follows that each module in Ω must be an irreducible in

Hc−modqRS/Hc−modq+1
RS ; that is, they must all be supported on Xq. This completes

the induction. �

Proof of Corollary 1.7. Let us again denote by pn the number of partitions of n, and
let pn,m = |{λ ⊢ n | qm(λ) = 0}| denote the number of m-regular partitions of n. By
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the previous proof, the number of irreducibles in H r
m
−modRS(Sn,C

n) whose support is

Xq is pqpn−qm,m. This is the coefficient of sntqm in the formal power series

N(s, t) =
∑

p,q≥0

pqpp,ms
qm+ptqm.

It is well known that
∑

n≥0

pnt
n =

∏

n>0

1

1− tn
.

Every partition λ of n can be written uniquely as λ = mµ + ν where ν is m-regular.
Therefore

∏

n>0

1

1− tn
=
∑

n≥0

pnt
n =

∑

p,q≥0

pqpp,mt
mq+p =





∏

q>0

1

1− tmq









∑

p≥0

pp,mt
p



 ,

giving
∑

p≥0

pp,mt
p =

∏

n>0
m∤n

1

1− tn
.

Thus

N(s, t) =





∑

p≥0

pp,ms
p









∑

q≥0

pq(st)
qm



 =







∏

p>0
m∤p

1

1− sp











∏

q>0

1

1− (st)qm



 .

Now consider the operator

Am =
∑

i>0

α−imαim

acting on Fock space F . The elements
∏

i>0

ανi−i + span{Aαi | i > 0} ∈ F

form a basis for F , where the νi are nonnegative integers with only finitely many nonzero.
This element is an eigenvector for Am with eigenvalue

∑

i>0
m|i

iνi.

Therefore

trF (s
A1tAm) =

∑

ν

(

∏

i>0

siνi

)







∏

i>0
m|i

tiνi







=







∏

i>0
m∤i

∑

νi≥0

siνi













∏

i>0
m|i

∑

νi≥0

(st)iνi







=







∏

i>0
m∤i

1

1− si







(

∏

i>0

1

1− (st)mi

)

= N(s, t),

as required. �
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