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Abstract

We establish a Large Deviations Principle for stochastic processes with
Lipschitz continuous oblique reflections on regular domains. The rate
functional is given as the value function of a control problem and is proved
to be good. The proof is based on an original viscosity solution approach.
The idea consists in interpreting the probabilities as the solutions of some
PDEs, make the logarithmic transform, pass to the limit, and then identify
the action functional as the solution of the limiting equation.
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1 Introduction

According to the terminology of Varadhan [46], a sequence (Xε) of random vari-
ables with values in a metric space (X , d) satisfies a Large Deviations Principle
(LDP in short) if

There exists a lower semi-continuous functional λ : X → [0,∞] such that for
each Borel measurable set G of X
(I) lim sup

ε→0

{

−ε2 lnP[Xt,x,ε ∈ G]
}

≤ inf
g∈

o

G

λt,x(g) (LDP’s upper bound),

(II) inf
g∈G

λt,x(g) ≤ lim inf
ε→0

{

−ε2 lnP[Xt,x,ε ∈ G]
}

(LDP’s lower bound),
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λ is called the rate functional for the large Deviations principle (LDP). A rate
functional is good if for any a ∈ [0,∞), the set {g ∈ X : λ(g) ≤ a} is compact.

We refer the reder to the books [1], [22], [30], [45],[46], [16], [17] for the
general theory, references and different approches to Large Deviations.

Partial Differential Equations (in short PDEs) methods have been applied to
establish different types of Large Deviations estimates starting from [27]. The
idea consists in interpreting the probabilities as the solutions of some PDEs,
make the logarithmic transform, pass to the limit, and then identify the action
functional as the solution of the limiting equation. The notion of viscosity
solutions (cf. [15], [36]-[38], [14]) appeared to be particularly adapted to this
problem. Indeed, the half-relaxed semi-limit method (cf. [9]) allows to pass
to the limit very easily, moreover the notion of strong uniqueness for viscosity
solution allows to identify the solution of the limiting equation with the action
functional. A number of Large Deviations results have been proved by using
this method [23], [28], [9], [10], [6], [3], [41]. However it was a long lasting critic
to this method not to provide the general Large Deviations Principle. The aim
of this work was to overcome this gap. We carry out this method in order to
establish a LDP for small diffusions with oblique Lipischitz continuous direction
of reflections which explains the technicity. This result is new to the best of our
knowledge. Our method which was developed in [35], seems very efficient and
we hope it gives a new insight.

Recently [25] came to our knowledge. This book shows also, in a very general
setting, that viscosity solutions are an adapted tool in order to establish LDPs.

To be more specific we introduce the precise mathematical formulation of
the problem.

Let O be a smooth open bounded subset of IRd. For (t, x) ∈ IR+ × O, we
consider the oblique reflection problem











dXs = b(s,Xs)ds− dks, Xs ∈ O (∀s > t),

ks =

∫ s

t

1∂O(Xτ )γ(Xτ )d|k|τ (∀s > t), Xt = x.
(1)

where b is a continuous IRd-valued function defined on IR+ × O and γ is a
IRd-vector field defined on ∂O. The solutions of problem (1) are pairs (X, k)
of continuous functions from [t,∞) to O and IRd respectively such that k has
bounded variations, and |k| denotes the total variation of k.

We shall denote by n(x) the unit outward normal to ∂O at x, and assume
that

{

γ : IRd → IRd is a Lipschitz continuous function

and ∃c0 ∀x ∈ ∂O, γ(x) · n(x) ≥ c0 > 0.
(2)

When b is Lipschitz continuous, γ satisfies condition (2) and O is smooth,
the existence of the solutions of (1) is given as a particular case of the results of
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Lions and Sznitman [39] and the uniqueness is a corollary of the result of Barles
and Lions [7]. For more general domains existence and uniqueness of solutions
of (1) is given as a particular case of Dupuis and Ishii [21]. The reader can also
use the results given in Appendix B.

Let (Ω,F , (Ft)t≥0,P) be a probability space which satisfies the usual condi-
tions and (Wt)t≥0 be a standard Brownian motion with values in IRm. Consider
for each ε > 0, t ≥ 0, x ∈ O, the following stochastic differential equation











dXε
s = bε(s,X

ε
s )ds+ εσε(s,X

ε
s )dWs − dkεs, Xε

s ∈ O (∀s > t),

kεs =

∫ s

t

1∂O(X
ε
τ )γ(X

ε
τ )d|kε|τ (∀s > t), Xε

t = x,
(3)

where σ is continuous IRd×m-valued. A strong solution of (3) is a couple
(Xε

s , k
ε
s)s≥t of (Fs)s≥t-adapted processes which have almost surely continuous

paths and such that (kεs)s≥t has almost surely bounded variations, and |kε|
denotes its total variation.

Let us now make some comments about this reflection problem. Consider
equation (3) in the case when ε = 1.

This type of stochastic differential equations has been solved by using the
Skorokhod map by Lions and Sznitman in [39] in the case when O belongs to a
very large class of admissible open subsets and the direction of reflection is the
normal direction n, or when O is smooth and γ is of class C2. This problem was
also deeply studied by Dupuis and Ishii [19], [20], [21]. When O is convex these
authors proved in [19] that the Skorokhod map is Lipschitz continuous even
when trajectories may have jumps. As a corollary, this result gives existence
and uniqueness of the solution of the stochastic equation (3) and provides the
Large Deviations estimates as well. Dupuis and Ishii also proved in [21] the
existence of the solution of equation (3) in the following cases: either γ is C2

and O has only an exterior cone condition, or O is a finite intersection of C1

regular bounded domains Oi and γ is Lipschitz continuous at points x ∈ ∂O
when x belongs to only one ∂Oi but when x is a corner point, γ(x) can even
be multivaluated. A key ingredient is the use of test functions that Dupuis and
Ishii build in [18], [31] and [20] in order to study oblique derivative problems for
fully nonlinear second-order elliptic PDEs on nonsmooth domains.

Let us point out that these type of diffusions with oblique reflection in do-
mains with corners arise as rescaled queueing networks and related systems with
feedback (see [3] and the references within).

We study in the present paper Large Deviations of (1) under the simpler
condition of a domain without corners. More precisely we suppose that

O is a W 2,∞ open bounded set of IRd. (4)
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Let us precise now what is the regularity we require on the coefficients b, σ
and bε, σε and how bε and σε are supposed to converge to b and σ.

For all ε > 0, let bε, b ∈ C([0,+∞)×O; IRd), σε, σ ∈ C([0,+∞)×O; IRd×m).
And assume that for each T > 0, there exists a constant CT such that for all
ε > 0, for all t ∈ [0, T ], for all x, x′ ∈ O one has

|b(t, x)− b(t, x′)|, |bε(t, x)− bε(t, x
′)| ≤ CT |x− x′|,

‖σ(t, x) − σ(t, x′)‖, ‖σε(t, x) − σε(t, x
′)‖ ≤ CT |x− x′|. (5)

We also assume that

(bε), (σε) converge uniformly to b and σ on [0, T ]×O. (6)

By [21] for all ε > 0 and for all (t, x) ∈ [0, T ] × O, there exists a unique
solution (Xt,x,ε, kt,x,ε) of (3) on [t, T ]. Morever Xt,x,ε converges in probability
to the solutionXt,x of (1) when ε converges to 0. Obtaining the Large Deviations
estimates provides the rate of this convergence.

We now turn to the definition of the rate functional λ. It is defined under
conditions (2)-(4)-(5) as the value function of a non standard contole problem
of a deterministic differential equation with L2 coefficients and with oblique
reflections.

More precisely, let (t, x) ∈ [0, T ] × O and α ∈ L2(t, T ; IRm) and consider
equation











dYs = (b(s, Ys)− σ(s, Ys)αs) ds− dzs, Ys ∈ O, (∀s > t),

zs =

∫ s

t

1∂O(Yτ )γ(Yτ )d|z|τ , (∀s > t), Yt = x.
(7)

We prove in Appendix B that there exists a unique solution (Y t,x,α
s , zt,x,αs )s∈[t,T ]

of (7), and we study the regularity of Y with respect to t, x, α and s.

In the following we note

X = C([0, T ];O) and for g ∈ X , ‖g‖X = sup
t∈[0,T ]

|g(x)|.

We make the following abuse of notations. For G ⊂ X and for g ∈ C([t, T ];O)
for some t ∈ [0, T ], we write g ∈ G if there exists a function in G whose restriction
to [t, T ] coincides with g.

For all g ∈ X , we define λt,x(g) by

λt,x(g) = inf

{

1

2

∫ T

t

|αs|2ds; α ∈ L2(t, T ), Y t,x,α = g

}

. (8)

Note that λt,x(g) ∈ [0,+∞].
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The main result of our paper is the proof of the full Large Deviations type
estimates for (3), as well as the identification of the rate functional which is
proved to be good.

Theorem 1.1 Assume (2)-(4)-(5)-(6). For each (t, x) ∈ [0, T ]×O, and ε > 0,
denote by Xt,x,ε the unique solution of (3) on [t, T ]. Consider λt,x defined by
(8). Then (Xt,x,ε)ε satisfies a Large Deviations Principle with rate functional
λt,x. Moreover the rate functional is good.

As far as the partial differential equations are concerned, we use the notion
of viscosity solutions. We shall not recall the classical results of the theory of
viscosity solutions here and we refer the reader to M.G. Crandall, H. Ishii and P.-
L. Lions [14] (Section 7 for viscosity solutions of second order Hamilton-Jacobi
equations), to W.H. Fleming and H.M. Soner [29] (Chapter 5 for stochastic
controlled processes) and to G. Barles [4] (Chapter 4 for viscosity solutions of
first order Hamilton-Jacobi equations with Neumann type boundary conditions
and Chapter 5 Section 2 for deterministic controlled processes with reflections).

The paper is organised as follows. In section 2, we prove first that assertion
(I) amounts to the proof of this upper bound for a ball B (assertion (A1)).
Second, we prove that if the rate is good, assertion (II) amounts to prove the
lower bound for a finit intersection of complementaries of balls (assertion (A2)).
Finally, we prove that the fact that the rate is good holds true if a stability
result holds true for equation (7) (assertion (A3)). In section 3, we give the
proof of (A1), and we finish in section 4 by the proof of (A2).

An important Appendix follows. It includes, in Appendix B, the study of
equation (7) and the proof of (A3). In Appendix C, we study different mixed
optimal control-optimal single or multiple stopping times problems and we car-
acterize particular value functions as the minimal (resp. maximal) viscosity
supersolution (resp. subsolution) of the related obstacle problems. These car-
acterizations are important in order to establish (A1) and (A2). Eventually, in
Appendix D, we prove a strong comparison result for viscosity solutions of an
obstacle problem with Neumann boundary conditions and quadratic growth in
the gradient in the case of a continuous obstacle. This result is needed in the
proof of the caracterization of the value functions mentioned above. This long
and technical Appendix begins in Appendix A, by the construction of an appro-
priate test function which is usefull in order to establish the results concerning
equation (7) (Appendix B) and the uniqueness result (Appendix D).
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2 A preliminary result

We now define the action functional. For each (t, x) ∈ [0, T ] × O, and for each
G ⊂ X let us define Λt,x(G) as follows:

Λt,x(G) = inf

{

1

2

∫ T

t

|αs|2ds; α ∈ L2(t, T ), Y t,x,α ∈ G
}

, (9)

where Y t,x,α is defined by (7).
It is straightforward that Λt,x is decreasing along increasing sequences of

sets and that

Λt,x(G) = inf
g∈G

λt,x(g) and λt,x(g) = Λt,x({g}).

We use the following notation: for g0 ∈ X and r > 0 we denote by B(g0, r) the
ball of center g0 and of radius r that is B(g0, r) = {g ∈ X , ‖g − g0‖∞ < r}.

We consider the following assertions.

(A1) for all g ∈ X , and r > 0,

lim sup
ε→0

{

−ε2 lnP [Xt,x,ε ∈ B(g, r)]
}

≤ Λt,x(B(g, r)),

(A2) for all i ∈ IN , gi ∈ X , and ri > 0, setting Bi = B(gi, ri), one has for all
N ∈ IN∗,

lim inf
ε→0

{

−ε2 lnP
[

Xt,x,ε ∈
N
⋂

i=1

Bc
i

]}

≥ Λt,x

(

N
⋂

i=1

Bc
i

)

,

(A3) for all αn, α ∈ L2(0, T ; IRm),
if αn ⇀ α weakly in L2 then ‖Y t,x,αn − Y t,x,α‖X → 0.

The following proposition shows that Theorem 1.1 reduces to assertions (A1),
(A2) and (A3).

Proposition 2.1 For all (t, x) ∈ [0, T ]×O one has,
(i) (A1) implies (I),
(ii) If the rate is good then (A2) implies (II).
(iii) (A3) implies that the rate functional λt,x defined by (8) is good.

In particular, the proof of Theorem 1.1 amounts to the proofs of (A1), (A2),
(A3).

Proof: First let us prove (i).

Consider a measurable set G ⊂ X . For all g ∈
o

G, there exists r > 0 such

that B(g, r) ⊂
o

G. Then

−ε2 lnP [Xt,x,ε ∈ G] ≤ −ε2 lnP [Xt,x,ε ∈
o

G] ≤ −ε2 lnP [Xt,x,ε ∈ B(g, r)].
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Hence, by (A1) we obtain

lim sup
ε→0

{

−ε2 lnP [Xt,x,ε ∈ G]
}

≤ lim sup
ε→0

{

−ε2 lnP [Xt,x,ε ∈ B(g, r)]
}

≤ Λt,x(B(g, r)) ≤ λt,x(g),

and we conclude by taking the infimum over all g ∈
o

G. This completes the proof
of point (i).

Let us prove (ii).
Fix a < Λt,x(G) and put K = {g ∈ C([t, T ];O), λt,x(g) ≤ a}. Note that

Λt,x(Kc) ≥ a. One also clearly has K ⊂ Gc
, indeed if g ∈ K one has λt,x(g) ≤ a

and if g ∈ G then λt,x(g) > a hence K∩O = ∅. As a concequence, for all g ∈ K,

there exists r > 0 such that B(g, r) ⊂ Gc
. Since, by (T2), K is compact, there

exists a finite number N of Bi = B(gi, ri) with gi ∈ K and ri > 0, such that

K ⊂
N
⋃

i=1

Bi ⊂ Gc
. In view of the fact that Λt,x is decreasing along increasing

sequences of sets, this yields, passing to the complementaries that

Λt,x

(

N
⋂

i=1

Bc
i

)

≥ Λt,x(Kc) ≥ a.

It is clear that

lim inf
ε→0

{

−ε2 lnP
[

Xt,x,ε ∈ G
]}

≥ lim inf
ε→0

{

−ε2 lnP
[

Xt,x,ε ∈
N
⋂

i=1

Bc
i

]}

.

But, by (A3) we also have

lim inf
ε→0

{

−ε2 lnP
[

Xt,x,ε ∈
N
⋂

i=1

Bc
i

]}

≥ Λt,x

(

N
⋂

i=1

Bc
i

)

,

hence we have shown that for all a < Λt,x(G), we have

lim inf
ε→0

{

−ε2 lnP
[

Xt,x,ε ∈ G
]}

≥ a.

Passing to the limit when a tends to Λt,x(G), we have completed the proof of
(ii).

Let us prove (iii).
We suppose that the rate functional λt,x defined by (8) satisfies (A3). Fix

(t, x) ∈ [0, T ]×O, and a ∈ IR. Put K = {g ∈ X , λt,x(g) ≤ a}. Let (gn)n∈IN be a
sequence of K. Then, for all n, there exists αn ∈ L2(t, T ) such that Y t,x,αn = gn
and

1

2

∫ T

t

|αn(s)|2ds ≤ a+ o(1) [n→ ∞].
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Thus (αn)n∈IN is bounded in L2(t, T ) and extracting a subsequence if necessary,
one can suppose that the sequence (αn)n∈IN converges weakly in L2(t, T ) to some
α ∈ L2(t, T ). By (A2), (Y t,x,αn)n converges uniformly on [t, T ] to Y t,x,α and
since for all n, Y t,x,αn = gn the sequence (gn)n∈IN converges to some g = Y t,x,α

in X . Moreover,

λt,x(g) ≤
1

2

∫ T

t

|αs|2ds ≤ lim inf
n→∞

1

2

∫ T

t

|αn(s)|2ds ≤ a,

hence g ∈ K. We have proved that K is compact, and the proof of point (iii) is
complete. ⋄

3 Proof of assertion (A1)

Fix g0 ∈ X and r > 0 and consider the ball B(g0, r). The aim of this sec-
tion is to prove that for each (t, x) ∈ [0, T ] × O, the probability uε(t, x) de-
fined by uε(t, x) = P [Xt,x,ε ∈ B(g0, r)] satisfies lim sup

ε→0

{

−ε2 lnuε(t, x)
}

≤
Λt,x(B(g0, r)).

Step 1. From a probability to a PDE

We first interpret the probability uε(t, x) as the value function of an optimal
stopping problem.

Let us define the tube B as the set

B = {(t, x) ∈ [0, T ]×O, |x− g0(t)| < r}. (10)

Proposition 3.1 uε(t, x) is the value function of the following optimal stopping
problem

uε(t, x) = inf
θ∈Tt

E[1B(θ,X
t,x,ε
θ )],

where Tt is the set of stopping times θ with value in [t, T ].

The proof can be found at the end of this section.

We now recall that the value function of an optimal stopping time problem
is a viscosity solution of a variational inequality.

More precisely for each bounded Borel function ψ on [0, T ]× IRd consider

Uε[ψ](t, x) = inf
θ∈Tt

E[ψ(θ,Xt,x,ε
θ )], (11)

where Xt,x,ε is the solution of (3), then Uε[ψ] is a solution of















max

(

−∂u
∂t

+ Lεu, u− ψ

)

= 0 in [0, T )×O

∂u

∂γ
= 0 in [0, T )× ∂O, u(T ) = ψ(T ) on O.

(12)
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where Lεu = −ε
2

2
Tr[σεσ

T
ε D

2u]− bε ·Du.

Proposition 3.2 Assume (2), (4) and (5). Then the function Uε[ψ] defined by
(11) is a viscosity solution of (12).

This result is a standard consequence of the well-known Dynamic Programming
Principle. Under regularity conditions the proof goes back to [7]. For a general
proof of the Dynamic Programming Principle see [24] or [11].

This gives that uε = Uε[1B] is a solution of the variational inequality (12)
with obstacle 1B.

Step 2. The logarithmic transform

For all function ψ nonnegative and bounded away from 0, let Vε[ψ] be defined
by

Vε[ψ] = −ε2 ln(Uε[ψ]). (13)

Then Vε[ψ] is a viscosity solution of the following the variational inequality with
obstacle ε2 ln(ψ)















min

(

−∂V
∂t

+Hε(D
2V,DV ), V − ε2 ln(ψ)

)

= 0 in [0, T )×O,

∂V

∂γ
= 0 in [0, T )× ∂O, V (T ) = ε2 ln(ψ(T )) on O,

(14)

where Hε(D
2V,DV ) = − ε2

2 Tr[σεσ
T
ε D

2V ] + 1
2 |σT

ε DV |2− bε ·DV .

Formaly, vε := −ε2 ln(uε) = V [1B] is a viscosity solution of variational
inequality (14) with singular obstacle χBc = −ε2 ln(1B) defined by

χBc(x) =

{

∞ if x ∈ Bc,
0 if x ∈ B.

In order to avoid the singularity, we seek now to approximate the original
obstacle 1B in such a way that after the logarithmic transform, the obstacle
becomes A1Bc with A > 0. We define for all A, ε > 0, the real valued functions
ψA
ε , u

A
ε and vAε by

ψA
ε = exp(−A1Bc/ε2), uAε = U [ψA

ε ] and vAε = V [ψA
ε ]. (15)

Note that ψA
ε ≥ 1B, hence u

A
ε ≥ uε and vAε ≤ vε. As our aim is to majorate

lim sup vε, it seems at first that we have the inequality from the wrong side.
However, the following lemma shows that we can reduce ourselves to the study
of vAε .

Lemma 3.3 For all A > 0, and for all (t, x) ∈ [0, T ]×O, we have

lim sup
ε→0

vAε = lim sup
ε→0

vε ∧ A.

9



The proof can be found at the end of this section.

Clearly vAε is a viscosity solution of variational inequality (14) with obstacle
A1Bc .

Step 3. Passing to the limit

When ε goes to 0, equation (14) with obstacle A1Bc converges to the following
variational inequality with obstacle A1Bc















min

(

−∂v
∂t

+
1

2
|σTDv|2 − b ·Dv, v −A1Bc

)

= 0 in [0, T )×O,

∂v

∂γ
= 0 in [0, T )× ∂O, v(T ) = A1Bc(T ) on O.

(16)

By a general stability result for viscosity solutions (see [4] or [8]), the half-
relaxed upper-limit lim sup∗ vA defined for all (t, x) in [0, T ]×O by

lim sup∗ vAε (t, x) = lim sup
(s,y)→(t,x)

ε→0

vAε (s, y).

is a viscosity subsolution of the limit equation (16).

Step 4. A first order mixed optimal control-optimal stop-
ping problem: back to the action functional

We now study a value function of a mixed optimal control-optimal stopping
problem which appears to be the maximal viscosity subsolution of equation
(16), and which we compare with Λt,x(B).

For each bounded Borel function ψ, and for all (t, x) ∈ [0, T ]×O, define the
following value function

v[ψ](t, x) = inf
α∈L2(t,T )

sup
θ∈[t,T ]

{

1

2

∫ θ

t

|αs|2ds+ ψ(θ, Y t,x,α
θ )

}

(17)

where Y t,x,α is the unique solution of (7).

Proposition 3.4 1. For each bounded Borel function ψ the function v[ψ∗]
defined by (17) is the maximal usc viscosity subsolution of the variational
inequality (16) with obstacle ψ.

2. For all A > 0, (t, x) ∈ [0, T ]×O, one has v[A1Bc ](t, x) ≤ A ∧ Λt,x(B).

The proof can be found in Appendix C for point (1.) and at the end of this
section for point (2.).
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Conclusion

By Lemma 3.3, by using the half-reaxed semi-limit method, and by Proposition
3.4 (1) and (2), we have, for each A > 0,

A ∧ lim sup
ε→0

{

−ε2 lnuε(t, x)
}

≤ lim sup∗vAε (t, x) ≤ v[A1Bc ] ≤ A ∧ Λt,x(B).

As the inequality holds for all A > 0, and proof of (A1) is complete. ⋄

We now turn to the proofs of Propositions 3.1, 3.4 and Lemma 3.3.

Proof of Proposition 3.1:
Obviously, if Xt,x,ε ∈ B then (θ,Xt,x,ε

θ ) ∈ B for all θ ∈ Tt, hence uε(t, x) ≤
E[1B(θ,X

t,x,ε
θ )]. Taking the infimum over θ ∈ Tt we obtain

uε(t, x) ≤ inf
θ∈Tt

E[1B(θ,X
t,x,ε
θ )].

Conversely, let θ̃ be the first exit time of (s,Xt,x,ε
s )s∈[t,T ] from B

θ̃ = inf{s ≥ t, |Xt,x,ε
s − g0(s)| ≥ r}.

Then θ̃ ∧ T is a stopping time which takes value in [t, T ]. Let us show that
almost surely

{(θ̃ ∧ T,Xt,x,ε

θ̃∧T
) ∈ B} ⊂ {Xt,x,ε ∈ B}.

Indeed, suppose (θ̃(ω)∧T,Xt,x,ε

θ̃(ω)∧T
) ∈ B, then θ̃(ω) > T . Hence for all s ∈ [t, T ]

we have |Xt,x,ε
s (ω) − g0(s)| < r, which means, as both Xt,x,ε

. (ω) and g0(.) are
continuous on [t, T ] that ‖Xt,x,ε(ω) − g0‖∞ < r, hence Xt,x,ε(ω) ∈ B and the
proof is complete. ⋄

Proof of Lemma 3.3:
Fix (t, x) ∈ [0, T ] × O, and A > 0. Clearly e−A/ε2 ∨ 1B(t, x) ≤ ψA

ε (t, x) ≤
1B(t, x) + e−A/ε2 . This gives easily,

e−A/ε2 ∨ uε(t, x) ≤ uAε (t, x) ≤ uε(t, x) + e−A/ε2 .

As for any nonegative sequence (uε) one has

lim sup
ε→0

{

−ε2 ln(uε + e−A/ε2)
}

= A ∧ lim sup
ε→0

{

−ε2 lnuε
}

, we obtain

A ∧ lim sup
ε→0

{

−ε2 lnuε
}

≥ lim sup
ε→0

{

−ε2 lnuAε
}

≥ A ∧ lim sup
ε→0

{

−ε2 lnuε
}

,

which completes the proof of the lemma. ⋄

Proof of Proposition 3.4:
Point (1) is detailed in Appendix C (Proposition 5.8).
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Let us prove now the second point. Obviously, vA(t, x) ≤ A. Now, if
Λt,x(B) < A, for each η > 0 such that Λt,x(B) + η < A there exists α̃ ∈
L2(t, T ) such that Y t,x,α̃ ∈ B and

Λt,x(B) ≤
1

2

∫ T

t

|α̃s|2ds ≤ Λt,x(B) + η.

Thus, for any θ ∈ [t, T ], one has 1Bc(θ, Y t,x,α
θ ) = 0 so that

vA(t, x) = inf
α∈L2(t,T )

sup
θ∈[t,T ]

1

2

∫ T

t

|αs|2ds ≤
1

2

∫ θ

t

|α̃s|2ds ≤ Λt,x(B) + η.

We have proved that vA(t, x) ≤ A ∧ Λt,x(B). ⋄

4 Proof of assertion (A2)

Let (gn)n∈IN be a sequence of functions in X and (rn)n∈IN , a sequence of positive
reals. For each nonempty finit subset I of IN and for all (t, x) ∈ [0, T ]×O, we
define

uIε(t, x) = P [Xt,x,ε ∈ G], where G =
⋂

i∈I

B(gi, ri)c, (18)

and we prove that lim inf
ε→0

{

−ε2 lnuIε(t, x)
}

≥ Λt,x(G).

In the following we will denote by θI a multiple stopping time (θi)i∈I with
θi ∈ Tt for each i ∈ I, and we write θI ∈ T I

t .

Step 1. From a probability to a PDE

We first interpret uIε(t, x) as the value of an optimal multiple stopping times
problem.

Proposition 4.1 For all (t, x) ∈ [0, T ] × O, for all ε > 0, and for each finit
nonempty subset I of IN

uIε(t, x) = sup
θI∈T I

t

E

[

∏

i∈I

(1Bc
i
(θi, X

t,x,ε
θi

))

]

where for all i ∈ I, Bi = {(t, x) ∈ [0, T ]×O; |x− gi(t)| < ri}.
Proof: It is similar to the proof of Proposition 3.1. The main difference is in
the choice of the optimal stopping time which is here θ̃I ∈ T I

t where for i ∈ I,
θ̃i is the first exit time in [t, T ] of (s,Xt,x,ε

s ) from Bi. ⋄

As by the logarithmic transform the obstacles would take there values in
[0,∞], the first task is to approximate 1Bc

i
. For all A, ε > 0 and for all i ∈ IN ,

we define

ψ{i},A
ε = exp

(

−A1Bi

ε2

)

. (19)
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Note that for all ε > 0 we have 1Bc
i
≤ ψi,A

ε .
We define for each nonempty finit subset I of IN , for each A, ε > 0, and each
(t, x) ∈ [0, T ]×O the value function

uI,Aε (t, x) = sup
θI∈T I

t

E

[

∏

i∈I

ψ{i},A
ε (θi, X

t,x,ε
θi

)

]

. (20)

Clearly
uIε(t, x) ≤ uI,Aε (t, x). (21)

We now proceed to the reduction of the multiple stopping problem to a
single stopping problem. More precisely let us define for all finit subset I of IN
containing two or more elements, for all A, ε > 0, and for all (t, x) ∈ [0, T ]×O,

ψI,A
ε (t, x) = max

i∈I

{

ψ{i},A
ε (t, x)uI\{i},Aε (t, x)

}

.

One has by Theorem 3.1 in [33]

uI,Aε (t, x) = sup
θ∈Tt

E
[

ψI,A
ε (θ,Xt,x,ε

θ )
]

.

Now, one can show (cf [11]) that uI,Aε is a viscosity subsolution of the following
variational inequality















min

(

−∂u
∂t

+ Lεu, u− ψI,A
ε

)

= 0 in [0, T )×O,

∂u

∂γ
= 0 in [0, T )× ∂O, u(T ) = ψI,A

ε (T ) on O.

Step 2. The logarithmic transform

For all nonempty finit subset I of IN , for all A, ε > 0, let vI,Aε be defined on
[0, T ]×O by

vI,Aε = −ε2 lnuI,Aε . (22)

Then vI,Aε is a viscosity supersolution of the following variational inequality















max

(

−∂v
∂t

+Hε(D
2v,Dv), v − φI,Aε

)

= 0 in [0, T )×O

∂v

∂γ
= 0 in [0, T )× ∂O, v(T ) = φI,Aε (T ) on O

where, for all nonempty finit subset I of IN , for all A, ε > 0,

φI,Aε =

{

A1Bi
if I = {i} with i ∈ IN,

min
i∈I

{

A1Bi
+ vI\{i},Aε

}

if card I ≥ 2.
(23)
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Step 3. A mixed optimal control-optimal multiple stopping
problem

Let us turn now to the study of a mixed optimal control-optimal multiple stop-
ping problem. The value function of this problem will be shown to be smaller
than the half-relaxed lower limit lim∗ v

I,A
ε (t, x) and greater than Λt,x(G) ∧ A.

For all finit and nonempty subset I of IN and for all (t, x) ∈ [0, T ]×O, define
the following value function

vI,A(t, x) = inf
α∈L2

inf
θI∈[t,T ]I

{

1

2

∫ ∨i∈Iθi

t

|αs|2ds+
∑

i∈I

A1Bi
(θi, Y

t,x,α
θi

)

}

, (24)

where Y t,x,α is the unique solution of (7).

This mixed optimal multiple stopping problem can be reduced to a mixed
optimal single stopping problem. More precisely, consider for each bounded real
valued measurable φ defined on [0, T ] × O and for each (t, x) ∈ [0, T ] × O the
following value function

v[φ](t, x) = inf
α∈L2(t,T )

inf
θ∈[t,T ]

{

1

2

∫ θ

t

|αs|2ds+ φ(θ, Y t,x,α
θ )

}

, (25)

where Y t,x,α is the unique solution of (7).
Define also for all nonempty finit subset I of IN , for all A > 0,

φI,A =

{

A1Bi
if I = {i} with i ∈ IN,

min
i∈I

{

A1Bi
+ vI\{i},A

}

if card I ≥ 2.
(26)

Proposition 4.2 Let I be a finit subset of IN and A > 0, and consider the
function vI,A defined by (24). Then

1. for each (t, x) ∈ [0, T ]×O one has vI,A(t, x) = v[φI,A](t, x) where φI,A is
defined by (26),

2. one has for all (t, x) ∈ [0, T ]×O, vI,A(t, x) ≥ A ∧ Λt,x(G).
Proof: The proof of (1) is the concequence of a reduction result for optimal
multiple stopping problems. It is detailed in Appendix C (Proposition 5.9).
Let us prove (2). Suppose vI,A(t, x) < A, then for each η > 0 such that
vI,A(t, x) + η < A, there exists θI ∈ [0, T ]N and α ∈ L2(t, T ) such that

1

2

∫ ∨i∈Iθi

t

|αs|2ds+
∑

i∈I

A1Bi
(θi, Y

t,x,α
θi

) ≤ vI,A(t, x) + η < A.

This means in particular that (θi, Y
t,x,α
θi

) ∈ Bc
i for all i ∈ I and therefore

Y t,x,α ∈ G. We set, for all s ∈ [t, T ],

α̃s =

{

αs if s ≤ ∨i∈Iθi
0 otherwise.
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Then again Y t,x,α̃ ∈ G and

Λt,x(G) ≤
1

2

∫ T

t

|α̃s|2ds ≤ vI,A(t, x) + η

and letting η to 0 the proof is complete. ⋄
We now give some results concerning the mixed optimal single stopping

problem (25), and its links with the following variational inequality:















max

(

−∂v
∂t

+
1

2
|σTDv|2 − b ·Dv, v − φ

)

= 0 in [0, T )×O

∂v

∂γ
= 0 in [0, T )× ∂O, v(T ) = φ(T ) on O

(27)

Proposition 4.3 Let φ : [0, T ]×O be a measurable, bounded, real valued func-
tion then the function v[φ∗] is the minimal lsc viscosity supersolution of the
variational inequality (27).

The proof is similar and even simpler than the proof of Proposition 5.8. Let us
remark that this result is well known for deterministic systems with Lipschitz
coefficients in IRn (see Barles and Perthame [8]). The main difficulty in the
present case is to prove the minimality of v[φ∗]. This point is the concequence
of a strong comparison result for equation (27) when the obstacle is bounded
and continuous on [0, T ]×O. The proof of this strong comparison result, which
is highly technical, is detailed in Appendix D.

Step 4. Passing to the limit

Let us now prove the following lemma

Lemma 4.4 For each finit non-empty subset I of IN and for each A > 0, one
has

lim inf∗ v
I,A
ε (t, x) ≥ v[φI,A](t, x).

Proof: The result is established by induction on the cardinal of I. If I = {i}
for some i in IN , then lim inf∗ v

{i},A
ε is a viscosity supersolution of (27) with

φ = φ{i},A. By Proposition 4.3, v[φ{i},A] is the minimal viscosity supersolution
of the same equation, hence the proof is complete.

Suppose now that I has N elements with N ≥ 2 and that the lemma holds
for any subset J of IN∗ containing N −1 elements. Then by using the induction
hypothesis on formula (26), one has lim inf∗ φ

I,A
ε = φ̃I,A ≥ φI,A. By a stabil-

ity result lim inf∗ v
I,A
ε is a viscosity supersolution of (27) with obstacle φ̃I,A.

By Proposition 4.3, as φ̃I,A is lsc, the minimal viscosity supersolution of this
equation is v[φ̃I,A]. Now as φ̃I,A ≥ φI,A one clearly has v[φ̃I,A] ≥ v[φI,A].

Finally we have lim inf∗ v
I,A
ε ≥ v[φ̃I,A] ≥ vI,A which completes the proof of

the lemma. ⋄

15



Conclusion

For all finit nonempty subset I of IN , for all A > 0, and for all (t, x) ∈ [0, T ]×O
one has, by inequality (21), uIε(t, x) ≤ uI,Aε (t, x), hence, by Lemma 4.4 and by
Proposition 4.2,

lim inf
ε→0

{

−ε2 lnuIε(t, x)
}

≥ lim inf∗ v
I,A
ε (t, x) ≥ v[φI,A](t, x) ≥ Λt,x(G) ∧ A.

The proof of (A3) is complete. ⋄

5 Appendix

Appendix A: the test-function

Lemma 5.1 We assume that γ and O satisfy (2) and (4). Then, for all ε, ρ >
0, there exists ψε,ρ ∈ C1(O ×O, IR) such that,

(ψi) ∀x, y ∈ O, 1

2

|x− y|2
ε2

−K
ρ2

ε2
≤ ψε,ρ(x, y) ≤ K(

|x− y|2
ε2

+
ρ2

ε2
),

(ψii)















∀x, y ∈ O, |Dxψε,ρ(x, y) +Dyψε,ρ(x, y)| ≤ K(
|x− y|2
ε2

+
ρ2

ε2
),

∀x, y ∈ O, |Dxψε,ρ(x, y)|+ |Dyψε,ρ(x, y)| ≤ K(
|x− y|
ε2

+
ρ2

ε2
),

(ψiii)

{

∀x ∈ ∂O, y ∈ O, Dxψε,ρ(x, y) · γ(x) > 0,

∀y ∈ ∂O, x ∈ O, Dyψε,ρ(x, y) · γ(y) > 0.

for some constant K depending only on O, ||γ||∞ ||γ||Lip and c0.

We use ideas from [5].
Proof: We first define the Lipschitz continuous IRd-valued function µ on ∂O
by

µ(x) =
γ(x)

γ(x) · n(x)
as well as its smooth approximation (µρ)ρ>0 such that for all ρ > 0, µρ ∈
C1(IRd, IRd),

‖µρ‖+ ‖Dµρ‖ ≤ K1

for some constant K1 > 0 independent of ρ and for all x ∈ ∂O

|µρ(x) − µ(x)| ≤ ρ.

Then we set,

φε,ρ(x, y) =
|x− y|2
ε2

+ 2
(x− y)

ε
· µρ(

x+ y

2
)
(d(x) − d(y))

ε
+A

(d(x) − d(y))2

ε2
.
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We can choose the constant A > 0 large enough in order to get, for some
constant K2 > 0 and for all ε, ρ > 0,

(φi) ∀x, y ∈ O, 1

2

|x− y|2
ε2

≤ φε,ρ(x, y) ≤ K2
|x− y|2
ε2

,

(φii)















∀x, y ∈ O, |Dxφε,ρ(x, y) +Dyφε,ρ(x, y)| ≤ K2
|x− y|2
ε2

,

∀x, y ∈ O, |Dxφε,ρ(x, y)|+ |Dyφε,ρ(x, y)| ≤ K2
|x− y|
ε2

,

(φiii)















∀x ∈ ∂O, y ∈ O, Dxφε,ρ(x, y) · γ(x) ≥ −K2[
|x− y|2
ε2

+
ρ2

ε2
],

∀y ∈ ∂O, x ∈ O, Dyφε,ρ(x, y) · γ(y) ≥ −K2[
|x− y|2
ε2

+
ρ2

ε2
].

Indeed (φi) comes from a simple application of Cauchy-Schwarz inequality,
and from the fact that d is Lipschitz continuous. Now for all U = (u, v) ∈
IRd × IRd, we have

Dφε,ρ(x, y).U =
2(x− y) · (u− v)

ε2
+ 2

u− v

ε2
· µρ(

x+ y

2
)(d(x) − d(y))

−2
x− y

ε2
· µρ(

x+ y

2
)(n(x)u − n(y)v)

+
(x− y)

ε2
·Dµρ(

x+ y

2
)(u+ v)(d(x) − d(y))

−2A

ε2
(d(x) − d(y))(n(x)u − n(y)v).

Taking U = (u, u), as both d and n are Lipschitz continuous, and using Cauchy-
Schwarz inequality we obtain straightforwardly the first inequality in (φii). The
second inequality in (φii) is clear.

Let us now prove (φiii). By symmetry, there is only one inequality to prove.
Take x ∈ ∂O and y ∈ O, and take U = (γ(x), 0), and recall that γ(x).n(x) ≥
c0 > 0. The sum of all the terms that have (d(x)− d(y)) = −d(y) can be made

nonnegative for A large enough. The remaining term is, taking
2(x− y)

ε2
in

factor,

γ(x)− µρ(
x+ y

2
)n(x) · γ(x) =

(

µ(x) − µρ(
x + y

2
)

)

(n(x) · γ(x)).

Writing

|µ(x) − µρ(
x+y
2 )| ≤ |(µ(x) − µ(x+y

2 )|+ |µ(x+y
2 )− µρ(

x+y
2 )| ≤ K|x−y

2 |+ ρ,

we have completed the proof of (φiii).
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Finally, we set, for x, y ∈ O,

ψε,ρ(x, y) = eC(2‖d‖∞−d(x)−d(y))φε,ρ(x, y)−B
ρ2

ε2
(d(x) + d(y)). (28)

By choosing B, then C large enough, we obtain the desired result. ⋄

Appendix B. A deterministic reflection problem

In this section, we suppose that b and σ satisfy (5). We consider for each fixed
α ∈ L2(0, T ; IRm) and for each fixed (t, x) ∈ [0, T ]×O the deterministic equation
with oblique reflection















dYs = (b(s, Ys)− σ(s, Ys)αs) ds− dzs, Ys ∈ O, for all s ∈ [0, T ]

dzs = 1∂O(Ys)γ(Ys)d|z|s for all s ∈ [0, T ],

Yt = x and zt = 0.

(29)

A solution of equation (29) is a couple (Y, z) of continuous functions defined on
[0, T ] with values in IRd such that z has bounded variations, and |z|s denotes
the total variation of z on the interval [0, s].

Theorem 5.2 Assume (2)-(4)-(5) and let α ∈ L2(0, T ; IRd). Then,

1. there exists a unique solution (Y t,x,α, zt,x,α) of (29),

2. for each s ∈ [0, T ], the function (t, x) 7→ Y t,x,α
s is continuous and

|Y t,x,α
s − Y t′,x′,α

s |2 ≤ K(|x− x′|2 + |t− t′|1/4),

3. for each (t, x) ∈ [0, T ]× O the function s 7→ Y t,x,α
s is Hölder continuous

and for each s, s′ ∈ [0, T ],

|Y t,x,α
s − Y t,x,α

s′ | ≤ K|s− s′|1/2,

4. Assumption (A3) holds true, that is: for all αn, α ∈ L2(0, T ; IRd), if αn ⇀
α weakly in L2, then ‖Y t,x,αn − (Y t,x,α‖X → 0

where the constant K in (2) and (3) depends only on O, γ, c0 the Lipschitz
constant KT of b, σ and ‖α‖L2 .

Proof of (1)

For the sake of completness, and as the hypothesis on the coefficient c = b− σα
are slightly more general than in [39] or [21], we present a complete proof. To
that end, we use the Skorokhod problem. More precisely, fix (t, x) ∈ [0, T ]×O,
and α ∈ L2(0, T ; IRd) and define ct(x) = b(t, x) − σ(t, x)αt for all (t, x) ∈
[0, T ]×O.
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By [39], for each X ∈ C([t, T ];O), there exists at least one solution (Y, z) of
the following Skorokhod problem:















Ys = x+

∫ s

t

cu(Xu)du− zs, Y ∈ C([t, T ];O),

zs =

∫ s

t

1∂O(Yu)γ(Yu)d|z|u, z ∈ Cbv([t, T ];O).

(30)

We next show that the solution of (30) is unique and then we prove the exis-
tence and uniqueness for the solutions of equation (29) by a fixed point argu-
ment. Note that, in view of the first equation of (30) it is enough to prove the
uniqueness for Y only.

We define the binary relation S on C([t, T ];O) in the following way: for all
X,Y ∈ C([t, T ];O), Y S X if and only if there exists z ∈ Cbv([t, T ];O) such that
(Y, z) is the solution of (30).

Lemma 5.3 Let X,X ′, Y, Y ′ ∈ C([t, T ];O) and suppose Y SX and Y ′ S X ′.
Then, there exists η > 0, depending only on O, γ, c0 and aT (and indepen-

dent of t), such that for all u ∈ [t, t+ η] ∩ [0, T ],

|Yu − Y ′
u| ≤

1

2
|Xu −X ′

u|.

Proof: We use the function ψε,ρ defined in Lemma 5.1 with ε = 1, and fix
s ∈ [t, T ] and we put fx = Dxψ1,ρ, fy = Dyψ1,ρ. We have

ψ1,ρ(Ys, Y
′
s ) = ψ1,ρ(x, x) +

∫ s

t

fx(Yu, Y
′
u)cu(Xu)du +

∫ s

t

fy(Yu, Y
′
u)cu(X

′
u)du

−
∫ s

t

fx(Yu, Y
′
u)1∂O(Yu)γ(Yu)d|z|u −

∫ s

t

fy(Yu, Y
′
u)1∂O(Y

′
u)γ(Y

′
u)d|z′|u.

By (ψiii), the two last integrals of the right hand side of the above inequality
are non positive. Write the first term of the right hand side of the previous
inequality as

∫ s

t

(fx + fy)(Yu, Y
′
u)cu(Xu)du+

∫ s

t

fy(Yu, Y
′
u)(cu(X

′
u)− cu(Xu))du.

Put au = 1 + |αu|, by using (ψi), (ψii) and as |cu(Xu)| ≤ Kau and |cu(Xu) −
cu(X

′
u)| ≤ Kau|Xu −X ′

u|,

1

2
|Ys − Y ′

s |2 ≤ K

(

2ρ2 +

∫ s

t

(|Yu − Y ′
u|2 + ρ2)audu

+

∫ s

t

(|Yu − Y ′
u|+ ρ2)|Xu −X ′

u|audu
)

.
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This equality holds independently of ρ > 0 and its right-hand term is nonde-
creasing with s therefore, by letting ρ to 0 we have for all s ∈ [t, T ], and writing
for g ∈ X , |g|[t,s] = sup{|g(u)|, u ∈ [t, s]},

|Y − Y ′|2[t,s] ≤ K

(
∫ s

t

audu

)

(

|Y − Y ′|2[t,s] + |Y − Y ′|[t,s]|X −X ′|[t,s]
)

.

Now, by using Cauchy-Shwarz inequality, we have for |t− s| small enough,

|Y − Y ′|[t,s] ≤
2K|s− t| 12 ‖a‖L2

1− 2K|s− t| 12 ‖a‖L2

|X −X ′|[t,s],

and we can chose η > 0 independently of t such that

sup
u∈[t,t+η]∩[0,T ]

|Yu − Y ′
u| ≤

1

2
sup

u∈[t,t+η]∩[0,T ]

|Xu −X ′
u|,

which completes the proof of the lemma. ⋄

Lemma 5.3 shows first that for each X there exists a unique Y such that
X S Y . Changing notation we have proved that S : X 7→ Y is a map. Lemma
5.3 shows also that there exists η such that for all t ∈ [0, T ], S contracts C([t, t+
η]∩ [0, T ];O) onto itself. This gives existence and uniqueness for (29) by a fixed
point argument hence it proves assertion (1) of the theorem.

Proof of (2)

Let us first establish the following lemma.

Lemma 5.4 Fix α, α′ ∈ L2(0, T ; IRd) and t, t′ ∈ [0, T ] with t′ ≤ t, x, x′ ∈ O
and define Y = Y t,x,α and Y ′ = Y t,x′,α′

. Then, there exists a constant K > 0
(which only depends on ‖α‖L2, c0, ‖γ‖Lip, KT and O) such that, for all ρ > 0
and for all s ∈ [t, T ], we have

|Ys − Y ′
s |2 ≤ K

(

gρ(s) +

∫ s

t

gρ(u) · (1 + |αu|+ |α′
u|)du

)

where

gρ(s) = ρ2 + |x− x′|2 + |t− t′|1/2 +
∣

∣

∣

∣

∫ s

t

Dxψ1,ρ(Yu, Y
′
u)σ(u, Yu)(αu − α′

u)du

∣

∣

∣

∣

.

Proof: We put for (s, y) ∈ [0, T ] × O, cs(y) = b(s, y) − σ(s, y)αs, c
′
s(y) =

b(s, y) − σ(s, y)α′
s, and as = 1 + |αs|, a′s = 1 + |α′

s|. Note that there exists
a constant K such that for all (s, y) ∈ [0, T ] × O, one has |cs(y)| ≤ Kas and
|c′s(y)| ≤ Ka′s. Define as before fx = Dxψ1,ρ and fy = Dyψ1,ρ. Recall also
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that the function ψ1,ρ is a continuous function from IRd × IRd to IRd which is
bounded on O × O independently of ρ ∈ (0, 1), and write

ψ1,ρ(Ys, Y
′
s ) = ψ1,ρ(x, x

′) +

∫ t

t′
fy(Yu, Y

′
u)c

′
u(Y

′
u)du

+

∫ s

t

(fx + fy)(Yu, Y
′
u)cu(Xu)du

+

∫ s

t

fy(Yu, Y
′
u)(c

′
u(Y

′
u)− cu(Yu))du

−
∫ s

t′
fx(Yu, Y

′
u)1∂O(Yu)γ(Yu)d|z|u

−
∫ s

t′
fy(Yu, Y

′
u)1∂O(Y

′
u)γ(Y

′
u)d|z′|u

We then follow similar calculations as Lemma 5.3.
By Cauchy-Swharz inequality, the first integral can be majorated by K|t′ −

t|1/2‖a′‖L2, the second integral is smaller than K(ρ2(t−s)+
∫ s

t |Yu−Y ′
u|2audu).

For the third integral write c′u(Y
′
u)− cu(Yu) = b(u, Yu)− b(u, Y ′

u)− (σ(u, Yu)−
σ(u, Y ′

u))α
′
u + σ(u, Yu)(αu − α′

u) and we use (ψii), and eventually we use (ψiii)
in order to estimate the to last integrals. Hence we have

|Ys − Y ′
s |2 ≤ K(|x− x′|2 + (t− t′)1/2‖a′‖2L2 + ρ2) +K

∫ s

t

|Yu − Y ′
u|2audu

+Kρ2(s− t)1/2‖a′‖L2 +K

∫ s

t

|Yu − Y ′
u|2a′udu

+

∣

∣

∣

∣

∫ s

t

Dyψ1,ρ(Yu, Y
′
u) · σ(u, Yu)(αu − α′

u)du

∣

∣

∣

∣

or equivalently

|Ys − Y ′
s |2 ≤ Kgρ(s) +K

∫ s

t

|Yu − Y ′
u|2(1 + |αu|+ |α′

u|)du

for some positive constants C1 and C2. By Gronwall’s lemma the proof is
complete. ⋄

Fix α ∈ L2 and x, x′ ∈ O, and apply Lemma 5.4 to Y = Y t,x,α and to
Y ′ = Y t′,x′,α. We have, have gρ(s) = ρ2 + |x − x′|2 + |t − t′|1/2, which gives
|Ys − Y ′

s |2 ≤ K(ρ2 + |x− x′|2 + |t− t′|1/2). Letting ρ to 0, we have obtained the
desired result.

Fix s0 ∈ [t, T ] and α ∈ L2(0, T ; IRd). Consider Y : s 7→ Y t,x,α
s and Y ′ : s 7→

Y t,x,α
s0 .

Proof of (3)

Let us first prove that for each (t, x) ∈ [0, T ]×O and for each s ∈ [t, T ] one has

sup
u∈[s,t]

|Y t,x,α
u − x| ≤ K

√
t− s. (31)
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Indeed, define Y and Y ′ by Yu = Y t,x,α
u and Y ′

u = x for u ∈ [t, T ]. Put
c(u, y) = b(u, y) − σ(s, y)αs and c′(u, y) = 0 for (u, y) ∈ [t, T ] × O. The same
computation as in Lemma 5.4 gives, for all s′ ∈ [t, s],

ψ1,ρ(Ys′ , x) ≤
∫ s′

t

Dxψ1,ρ(Yu, x)c(u, Yu)du ≤
∫ s

t

K|Yu − x|(1 + |αu|)du,

which gives, using Cauchy-Shwarz inequality

|Ys′ − x|2 ≤ K

(

sup
u∈[t,s]

|Yu − x|
)

√
t− s

(

1 + ‖α‖L2(0,T )

)

.

Passing to the supremum over s′ ∈ [t, s], we obtain sup
u∈[t,s]

|Yu − x| ≤ K
√
t− s.

Fix now (t, x) ∈ [0, T ] × O and s, s′ ∈ [t, T ], with s′ ≤ s. Put x′ = Y t,x
s′ .

By the previous result we have |Y s′,x′

s − x′| ≤ K
√
s− s′, and by the uniqueness

result we have the flow property Y t,x
s = Y s′,x′

s , hence we have proved that
|Y t,x

s − Y t,x
s′ | ≤ K

√
s− s′.

Proof of (4)

We apply Lemma 5.4 to Y = Y t,x,α and Y n = Y t,x,αn

. Then gnρ is given for all
s ∈ [t, T ] by

gnρ (s) = ρ2 +

∫ s

t

fρ(u, Yu, Y
n
u )(αu − αn

u)du.

where fρ(t, y, y
′) = Dxψ1,ρ(y, y

′)σ(t, y) is continuous on [0, T ]×O × O.
We first prove that a subsequence of gnρ converges pointwise to ρ2 as n goes
to ∞. We remark, by assertion (3) of Theorem 5.2, that the sequence (Y n) is
bounded in C0,1/2([0, T ];O) and therefore is relatively compact. Let Y be one
of its limit in X . Let us prove that this limit is Y . Extracting a subsequence if
necessary, one can suppose that the sequence (Y np)p converges to Y . We write

gnp

ρ (s) = ρ2 +

∫ s

t

(fρ(u, Yu, Y
np

u )− fρ(u, Yu, Y u))(αu − αnp

u )du

+

∫ s

t

fρ(u, Yu, Y u) · (αu − αnp

u )du.

The first integral converges to 0 as p goes to ∞ by Lebesgue’s Theorem and the
second integral converges to 0 by definition of the weak convergence of (αn) to
α. Now as (αn) is bounded in L2(0, T ; IRd) there exists K > 0 (independent of
n and ρ) such that for all n ∈ IN and for all s ∈ [0, T ],

gnρ (s) ≤ ρ2 +K.

It follows, applying again Lebesgue’s Theorem in the inequality given by Lemma
5.4, that for all ρ ∈ (0, 1) and for all s ∈ (t, T ),

lim
p→∞

|Ys − Y np

s |2 ≤ ρ2(1 +

∫ s

t

|αu|du),
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Letting ρ to 0, we deduce that (Y np)p converges pointwise, and even uniformly
to Y and by uniqueness of the limit we have Y = Y . This implies that the whole
sequence (Y n)n converges uniformly to Y and the proof of (A3) is complete.

The proof of Theorem 5.2 is now complete. ⋄

Appendix C: discontinuous mixed single or mul-

tiple optimal stopping problems

In this appendix we first study a mixed optimal control-optimal stopping time
problem and we prove that a particular value function is the maximal viscosity
supersolution of a variational inequality. Then we prove a reduction result: the
value function of a mixed optimal control-optimal multiple stopping problem
can be writen as the value function of a mixed optimal control-optimal single
stopping problem with a new reward defined recursively.

C.1. A deterministic mixed optimal control-optimal single
stopping problem

We first study the following mixed optimal control-optimal single stopping prob-
lem. For each bounded borelian real valued function ψ defined on [0, T ] × O
and for each (t, x) in [0, T ]×O define the value function V [ψ](t, x) by

V [ψ](t, x) = inf
α∈L2(t,T )

sup
θ∈[t,T ]

{

1

2

∫ θ

t

|αs|2ds+ ψ(θ, Y t,x,α
θ )

}

, (32)

where Y t,x,α is the unique solution of (7).
When ψ is upper-semicontinuous (usc), we show that this value function is

caracterized as the maximal viscosity subsolution of the following equation















min

(

−∂V
∂t

+
1

2
|σTDV |2 − b ·DV, V − ψ

)

= 0 in [0, T )×O

∂V

∂γ
= 0 in [0, T )× ∂O, V (T ) = ψ(T ) on O

(33)

The proof follows different results of Barles and Perthame [8]. We adapt them
here to our context.

Lemma 5.5 V [ψ∗] is usc and V [ψ∗] is lsc. In particular, if ψ is continuous,
V [ψ] is continuous.

Proof: Step 1: Suppose, by contradiction, that V [ψ∗] is not usc. Then there
exist (t, x) ∈ [0, T ]×O, a sequence (tn, xn)n that converges to (t, x) and ε > 0
such that,

V [ψ∗](t, x) + 2ε ≤ lim
n→∞

V [ψ∗](tn, xn). (34)
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Now from the one hand there exists α such that for all θ ∈ [t, T ],

1

2

∫ θ

t

|αs|2ds+ ψ∗(θ, Y t,x,α
θ ) ≤ V [ψ∗](t, x) + ε. (35)

From the other hand for each n ∈ IN there exists θn ∈ [tn, T ] such that

V [ψ∗](tn, xn) ≤
1

2

∫ θn

tn

|αs|2ds+ ψ∗(θn, Y
tn,xn,α
θn

).

Extracting a sequence if necessary, we have that θn converges to θ ∈ [t, T ]. By
the regularity of Y given by Appendix B, we obtain that

lim
n→∞

V [ψ∗](tn, xn) ≤
1

2

∫ θ

t

|αs|2ds+ ψ∗(θ, Y t,x,α

θ
). (36)

Now by (35) with θ = θ and by (34) and (36) we obtain

1

2

∫ θ

t

|αs|2ds+ψ∗(θ, Y t,x,α

θ
)+ε ≤ V [ψ∗](t, x)+2ε ≤ 1

2

∫ θ

t

|αs|2ds+ψ∗(θ, Y t,x,α

θ
),

hence ε ≤ 0, which is the expected contradiction.

Step 2: Suppose by contradiction that V [ψ∗] is not lsc. Then there exist
(t, x) ∈ [0, T ]×O, a sequence (tn, xn)n that converges to (t, x) and ε > 0 such
that,

V [ψ∗](t, x) ≥ lim
n→∞

V [ψ∗](tn, xn) + 3ε. (37)

Note that for each n there exists αn ∈ L2 such that

V [ψ∗](tn, xn) + ε ≥ sup
θ∈[tn,T ]

1

2

∫ θ

tn

|αn
s |2ds+ ψ∗(θ, Y

tn,xn,α
n

θ ) (38)

hence the sequence (αn) is bounded in L2 and extracting a subsequence if nec-
essary, we can suppose that it converges to α weakly in L2.

Now, as sup
θ∈[t,T ]

1

2

∫ θ

t

|αs|2ds + ψ∗(θ, Y
t,x,α
θ ) ≥ V [ψ∗](t, x) there exists θ ∈

[t, T ] such that

1

2

∫ θ

t

|αs|2ds+ ψ∗(θ, Y
t,x,α

θ
) + ε ≥ V [ψ∗](t, x), (39)

For each n ∈ IN define θn = tn ∧ θ. One has θn ∈ [tn, T ] and as tn → t one has

θn → θ. By (38) we have V [ψ∗](tn, xn)+ε ≥
1

2

∫ θn

tn

|αn
s |2ds+ψ∗(θn, Y

tn,xn,α
n

θn
).
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Adding 2ε and passing to the liminf we obtain, by continuity of Y and lower
semicontinuity of ψ∗

lim
n→∞

V [ψ∗](tn, xn) + 3ε ≥ 1

2

∫ θ

t

|αs|2ds+ ψ∗(θ, Y
t,x,α

θ
) + 2ε. (40)

Now by (39), (37) and (40) we obtain

1

2

∫ θ

t

|αs|2ds+ψ∗(θ, Y
t,x,α

θ
)+ε ≥ V [ψ∗](t, x) ≥

1

2

∫ θ

t

|αs|2ds+ψ∗(θ, Y
t,x,α

θ
)+2ε,

and the expected contradiction 0 ≥ ε follows. ⋄

Lemma 5.6 V [ψ∗] (resp. V [ψ∗]) is a viscosity subsolution (resp. superso-
lution) of (33) with obstacle ψ. In particular, if ψ is continuous, V [ψ] is a
continuous solution of (33) with obstacle ψ.

For completness let us recall the definition of a viscosity subsolution and superso-
lution of equation (33). For simplicity we define H(Dϕ)(t, x) = 1

2
|σTDϕ(t, x)|2 − b ·

Dϕ(t, x)

Definition 1 An usc locally bounded function v defined on [0, T ] × O is a viscosity
subsolution of equation (33) if and only if

∀ϕ ∈ C1([0, T ]×O), if (t0, x0) ∈ [0, T ]×O is a local minimum of v − ϕ, then

1. if (t0, x0) ∈ [0, T ]×O, min
(

−
∂ϕ

∂t
+H(Dϕ), v − ψ∗

)

(t0, x0) ≤ 0,

2. if (t0, x0) ∈ [0, T ]× ∂O, min

(

−
∂ϕ

∂t
+H(Dϕ), v − ψ∗,

∂ϕ

∂γ

)

(t0, x0) ≤ 0.

A lsc locally bounded function u defined on [0, T ] × O is a viscosity supersolution
of equation (33) if and only if

∀ϕ ∈ C1([0, T ]×O), if (t0, x0) ∈ [0, T ]×O is a local maximum of u− ϕ, then

1. if (t0, x0) ∈ [0, T )×O, min
(

−
∂ϕ

∂t
+H(Dϕ), u− ψ∗

)

(t0, x0) ≥ 0,

2. if (t0, x0) ∈ {T} × O, v(t0, x0)− ψ∗(t0, x0) ≥ 0,

3. if (t0, x0) ∈ [0, T )× ∂O, max

(

min(−
∂ϕ

∂t
+H(Dϕ), u− ψ∗),

∂ϕ

∂γ

)

(t0, x0) ≥ 0,

4. if (t0, x0) ∈ {T} × ∂O, max

(

u(t0, x0)− ψ∗(t0, x0),
∂ϕ

∂γ
(t0, x0)

)

≥ 0.

Proof: Let us first recall the Dynamic Programming Principle, which proof is
well known in the deterministic case, even for a discontinuous reward.

For each (t, x) ∈ [0, T ]×O and for each τ ∈ [t, T ] we have

V [ψ](t, x) = inf
α∈L2

sup
θ∈[t,T ]

{

1

2

∫ θ∧τ

t

|αs|2ds+ ψ(θ, Y t,x,α
θ )1{θ<τ} (41)

+V [ψ](τ, Y t,x,α
τ )1{θ≥τ}

}

.
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Step 1: Let us first prove that V [ψ∗] is a viscosity subsolution.
Let ϕ ∈ C1([0, T ] × O) and suppose that (t0, x0) is a local maximum of

V [ψ∗] − ϕ. Without loss of generality we can suppose that V [ψ∗](t0, x0) =
ϕ(t0, x0), and we fix r > 0 such that for all (t, x) ∈ [0, T ]×O if |t− t0| < r and
|x− x0| < r then V [ψ∗](t, x) ≤ ϕ(t, x).

If
[

V [ψ∗](t0, x0) ≤ ψ∗(t0, x0) or
(

x0 ∈ ∂O and ∂ϕ
∂γ (t0, x0) ≤ 0

)]

there is noth-

ing to prove. Suppose that
[

V [ψ∗](t0, x0) > ψ∗(t0, x0) and
(

if x0 ∈ ∂O then ∂ϕ
∂γ (t0, x0) > 0

)]

.

Fix α ∈ L2(t, T ; IRm) a constant control, and denote by θ a real number

in [t0, T ] which maximizes 1
2

∫ θ

t0
|α|2du + ψ∗(θ, Y t0,x0,α

θ ) on [t0, T ]. One has

ϕ(t0, x0) = V [ψ∗](t0, x0) ≤ 1
2 (θ − t0)|α|2 + ψ∗(θ, Y t,x,α

θ
), and in particular,

θ > t0. Consider also θ̃ = inf{s ∈ [t0, T ], |Y t0,x0,α
s − x0| ≥ r}. One has θ̃ > t0.

Fix τ ∈ (t0, T ] such that τ < min(θ, θ̃, t0 + r). By the Dynamic Programming
Principle one has ϕ(t0, x0) = V [ψ∗](t0, x0) ≤ 1

2 (τ−t0)|α|2+V [ψ∗](τ, Y t0,x0,α
τ ) ≤

1
2 (τ−t0)|α|2+ϕ(τ, Y t0,x0,α

τ ). Substracting ϕ(t0, x0), dividing by−h = t0−τ < 0,
and letting h to 0 we obtain, for each α ∈ IRm,

−∂ϕ
∂t

(t0, x0)−Dϕ(t0, x0) · b(t0, x0)−
(

1

2
|α|2 −Dϕ(t0, x0) · σ(t0, x0)α

)

≤ 0.

If we chose α = (−Dϕ ·σ)(t0, x0) we obtain
(

−∂ϕ
∂t +H(Dϕ)

)

(t0, x0) ≤ 0, hence

we have proved that V [ψ∗] is a viscosity subsolution.

Step 2: Let us prove now that V [ψ∗] is a viscosity supersolution.
Let ϕ ∈ C1([0, T ] × O) and suppose that (t0, x0) is a local minimum of

V [ψ∗] − ϕ. Without loss of generality we can suppose that V [ψ∗](t0, x0) =
ϕ(t0, x0), and fix r > 0 such that for all (t, x) ∈ [0, T ]×O if |t− t0|+ |x−x0| < r
then V [ψ∗](t, x) > ϕ(t, x).
Clearly, if x0 ∈ ∂O and one has ∂ϕ

∂γ (t0, x0) ≥ 0 there is nothing to prove. We

suppose that, if x0 ∈ ∂O one has ∂ϕ
∂γ (t0, x0) < 0. For each α ∈ L2(t0, T ) one

has clearly, supθ∈[t0,T ]
1
2

∫ θ

t0
|αs|2ds + ψ∗(θ, Y

t0,x0,α
θ ) ≥ ψ∗(t0, x0). Taking the

infimum over α ∈ L2(t0, T ) we have V [ψ∗](t0, x0) ≥ ψ∗(t0, x0).
It remains to show that, if t0 6= T then

− ∂ϕ

∂t
+H(Dϕ)(t0, x0) ≥ 0. (42)

Fix τ ∈ (t0, T ]. The Dynamic Programming Principle gives

V [ψ∗](t0, x0) = inf
α∈L2(t0,T )

max

[

sup
θ∈[t0,τ)

1

2

∫ θ

t0

|αs|2ds+ ψ∗(θ, Y
t0,x0,α
θ )

+
1

2

∫ τ

t0

|αs|2ds+ V [ψ∗](τ, Y
t0,x0,α
τ )

]

,
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hence

V [ψ∗](t0, x0) ≥ inf
α∈L2(t0,T )
‖α‖

L2≤K

[

1

2

∫ τ

t0

|αs|2ds+ V [ψ∗](τ, Y
t0,x0,α
τ )

]

,

where K = V [ψ∗](t0, x0). By the regularity of Y with respect to α and τ , there
exists h > 0 such that for all α ∈ L2(t0, T ) with ‖α‖L2 ≤ K, for all τ ∈ [t0, t0+h]
one has |τ − t0| + |Y t0,x0,α

τ − X0| < r. Therefore, for each τ ∈ (t0, t0 + h] we
have

ϕ(t0, x0) = V [ψ∗](t0, x0) ≥ inf
α∈L2(t0,T )

[

1

2

∫ τ

t0

|αs|2ds+ ϕ(τ, Y t0,x0,α
τ )

]

. (43)

Suppose by contradiction that (42) is not satisfied. Then, there exists ε > 0
such that ∂ϕ

∂t (t0, x0) + bDϕ(t0, x0)− 1
2 |σTDϕ|2(t0, x0) ≥ 2ε. Taking r smaller if

necessary, we can suppose that for all (t, x) ∈ [0, T ]×O, if |t− t0|+ |x−x0| < r
then

∂ϕ

∂t
(t, x) + bDϕ(t, x)− 1

2
|σTDϕ|2(t, x) ≥ ε.

Changing the value of r if necessary, we can suppose in the case when x0 ∈ ∂O,
that for all (t, x) ∈ [0, T ] × O, if |t − t0| + |x − x0| < r then ∂ϕ

∂γ (t, x) < 0

and in the case when x0 ∈ O that if |x − x0| < r then x ∈ O. In both
cases, if τ ∈ [t0, t0 + h] then for all α ∈ L2(t0, T ) with ‖α‖L2 ≤ K we have
1∂O(Y

t0,x0,α
τ )∂ϕ∂γ (τ, Y

t0,x0,α
τ ) ≤ 0.

Noticing that inf
α∈IRm

1

2
|α|2 − Dϕσ(t, x)α = −1

2
|σTDϕ(t, x)|2, we have for

τ ∈ (t0, t0 + h],

ϕ(τ, Y t0,x0,α
τ ) ≥ ϕ(t0, x0)+

∫ τ

t0

(
∂ϕ

∂t
+Dϕb−Dϕσα)(u, Y t0,x0,α

u )du ≥ ϕ(t0, x0)+

ε(τ − t0)−
1

2

∫ τ

t0

|αu|2du. Now (43) gives

ϕ(t0, x0) ≥ ϕ(t0, x0) + ε(τ − t0) > ϕ(t0, x0).

which provides the expected contradiction. ⋄

Lemma 5.7 Let (ψn) be a nonincreasing sequence of continuous functions on
[0, T ]×O such that ψ∗ = lim ↓ ψn. Then V [ψ∗] = lim ↓ V [ψn].

Proof: Suppose that ψn ↓ ψ∗. Clearly, V [ψn] ≥ V [ψ∗] and the sequence V [ψn]
is nonincreasing hence we obtain V [ψ∗] ≤ lim ↓ V [ψn]. Let us prove the second
inequality. Fix (t, x) ∈ [0, T ]×O, and ε > 0. There exists α∗ ∈ L2 and θ∗ ∈ [t, T ]
such that for all θ ∈ [t, T ] one has

V [ψ∗](t, x)+ε ≥ 1

2

∫ θ∗

t

|α∗
s|2ds+ψ∗(θ∗, Y t,x,α∗

θ∗ ) ≥ 1

2

∫ θ

t

|α∗
s |2ds+ψ∗(θ, Y t,x,α∗

θ ).

(44)
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Now, for each n ∈ IN , there exists θn ∈ [t, T ] such that V [ψn](t, x) ≤ 1
2

∫ θn
t |α∗

s |2ds+
ψn(θn, Y

t,x,α∗

θn
). Extracting a sequence if necessary, we can suppose that θn tends

to θ. Fix p ∈ IN . For each n ≥ p, we have

V [ψn](t, x) ≤
1

2

∫ θn

t

|α∗
s|2ds+ ψp(θn, Y

t,x,α∗

θn
).

Letting n to∞, limn→∞ V [ψn](t, x) ≤ 1
2

∫ θ

t
|α∗

s |2ds+ψp(θ, Y
t,x,α∗

θ
). Now passing

to the limit in p and using (44) we obtain limn→∞ V [ψn](t, x) ≤ V [ψ∗](t, x)+ ε.
⋄

Proposition 5.8 V [ψ∗] is the maximal usc viscosity subsolution of (33) with
obstacle ψ.

Proof: In view of Lemmas 5.5 and 5.6, the only point which is left to show
is the maximality of the solution. Let v be a usc function which is a viscosity
subsolution of (33) with obstacle ψ. Let ψn be a nonincreasing sequence of
continuous functions on [0, T ]×O such that ψ∗ = lim ↓ ψn. Since ψ

n ≥ ψ∗, v is
also a viscosity subsolution of equation (33) with obstacle ψn. By Lemma 5.6,
V [ψn] is a continuous viscosity solution of the same equation, and v ≤ V [ψn] by
Theorem 5.10. As by Lemma 5.7, V [ψ∗] = lim ↓ V [ψn], we obtain v ≤ V [ψ∗].
⋄

C.2. Reduction of multiple stopping to single stopping
problems

Let (ψi)i∈IN be a family of real valued bounded measurable functions defined
on [0, T ]×O and consider for each nonempty finit subset I of IN and for each
(t, x) ∈ [0, T ]×O the mixed optimal control–optimal multiple stopping problem

vI(t, x) = inf
α∈L2[t,T ]

inf
θI∈[t,T ]N

{

∫ ∨i∈Iθi

t

|αs|2ds+
∑

i∈I

ψi(θi, Y
t,x,α
θi

)

}

. (45)

the value function of the following mixed optimal control–optimal single stop-
ping problem

uI(t, x) = inf
α∈L2

inf
θ∈[t,T ]

{

1

2

∫ θ

t

|αs|2ds+ φ(θ, Y t,x,α
θ )

}

, (46)

where the new reward is defined recursively by

φ =

{

ψi if I = {i} with i ∈ IN,

min
i∈I

{

ψi + vI\{i},A
}

if I contains 2 or more elements.
(47)
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Proposition 5.9 For each finit nonempty subset I of IN let vI be defined by
(45) and let uI be defined by (46) and (47). Then for each (t, x) ∈ [0, T ]× O
one has vI(t, x) = uI(t, x).

Proof: Fix a nonempty finit subset I of IN of cardinal N . When I contains only
one element, there is nothing to prove. Suppose now that I has two or more
elments. Let us prove first that for each (t, x) ∈ [0, T ]×O, vI(t, x) ≤ uI(t, x).
Fix (t, x) ∈ [0, T ]×O. Consider a partition (Aj)j∈I of [t, T ]N such that for each
θI ∈ [t, T ]N if θI ∈ Aj then one has θj = ∧i∈Iθi.

Fix α ∈ L2(t, T ) and θI ∈ [t, T ]N ,

∫ ∨i∈Iθi

t

|αs|2ds+
∑

i∈I

ψi(θi, Y
t,x,α
θi

) =
∑

j∈I

1Aj
(θI)

{

∫ θj

t

|αs|2ds+ ψj(θj , Y
t,x,α
θj

)

+

∫ ∨i∈I\{j}θi

θj

|αs|2ds+
∑

i∈I\{j}

ψi(θi, Y
t,x,α
θi

)







= (I).

Clearly, by uniqueness for equation (7), the second terme of the right-hand side
can be minorated by vI\{j}(θj , Y

t,x,α
θj

), hence

(I) ≥
∑

j∈J

1Aj
(θI)

{

∫ θj

t

|αs|2ds+ ψj(θj , Y
t,x,α
θj

) + vI\{j}(θj , Y
t,x,α
θj

)

}

≥
∑

j∈J

1Aj
(θI)

{

∫ θj

t

|αs|2ds+ φ(θj , Y
t,x,α
θj

)

}

≥





∑

j∈J

1Aj
(θI)



 uI(t, x).

Hence (I) ≥ uI(t, x). Taking the infimum over α ∈ L2(t, T ) and θI ∈ [t, T ]N ,
we obtain vI(t, x) ≥ uI(t, x).

Let us now prove the reverse inequality. For simplicity, suppose first that
there exist an optimal time θ∗ ∈ [t, T ] and an optimal control α∗ ∈ L2(t, T ) for
uI(t, x), and for each i ∈ I there exist α̃i∗ ∈ L2(θ∗, T ) and θ̃i∗ ∈ [θ∗, T ]N−1 that

are optimal for vI\{i}(θ∗, Y t,x,α∗

θ∗ ). Define αi∗ = α∗1[t,θ∗)+ α̃
i∗1[θ∗,T ). Note that

αi∗ is optimal for uI(t, x), that Y t,x,α∗

θ∗ = Y t,x,αi∗

θ∗ and that αi∗ is also optimal

for vI\{i}(θ∗, Y t,x,α∗

θ∗ ).
Let (Bi)i∈I be a partition of [t, T ] such that for each s ∈ [t, T ], if s ∈ Bi

then φ(s, Y t,x,α∗

s ) = ψi(s, Y
t,x,α∗

s ) + vI\{i}(s, Y t,x,α∗

s ).

uI(t, x) =

∫ θ∗

t

|α∗
s|2ds+ φ(θ∗, Y t,x,α∗

θ∗ )

=
∑

i∈I

1Bi
(θ∗)

(

∫ θ∗

t

|α∗
s|2ds+

{

ψi + vI\{i}
}

(θ∗, Y t,x,α∗

θ∗ )

)
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=
∑

i∈I

(

1Bi
(θ∗)

{

∫ θ∗

t

|αi∗
s |2ds+ ψi(θ

∗, Y t,x,αi∗

θ∗ )

+

∫ ∨j∈I\{i}θ̃
i∗
j

θ∗

|αi∗
s |2ds+

∑

j∈I\{i}

ψj(θ̃
i∗
j , Y

t,x,αi∗

θ̃i∗
j

)











For each i define θi∗ ∈ [t, T ]N by θi∗i = θ∗i and θi∗j = θ̃i∗j for j ∈ I\{i}. One has
now

uI(t, x) =
∑

i∈I

1Bi
(θ∗)







∫ ∨j∈Iθ
i∗
j

t

|αi∗
s |2ds+

∑

j∈I

ψj(θ
i∗
j , Y

t,x,αi∗

θi∗
j

)







≥ vI(t, x).

In general, there is no optimal stopping control and stopping times, but for each
ε > 0 on can find ε/2 optimal θ∗ and α∗ for uI(t, x) and ε/2 optimal θ̃i∗p and

α̃i∗
p for vI\{i}(θ∗, Y t,x,α∗

θ∗ ). Building αi∗ and θ∗i as above we obtain that for each

ε > 0, uI(t, x) + ε ≥ vI(t, x). ⋄

Appendix D: a strong comparison result

In this appendix we prove a strong comparison result for viscosity solutions of a
first order variational inequality with Neumann boundary conditions and with
continuous obstacle.

Theorem 5.10 Assume (2) and (5)-(6) and let ψ ∈ C([0, T ] × O; IR). If
u, v : [0, T ]×O → IR are respectively usc viscosity subsolution and lsc viscosity
supersolution of















min

(

−∂w
∂t

+
1

2
|σTDw|2 − b ·Dw,w − ψ

)

= 0 in [0, T )×O,

∂w

∂γ
= 0 in [0, T )× ∂O, w(T ) = ψ(T ) on O,

(48)

then u ≤ v on [0, T ]×O.

Note that the difficulty of proving this strong comparison result is double.
First, we have to handle the Neuman condition, and the test function of Ap-
pendix A was built to that aim. Second, even though the equation is of first
order and no Ishii lemma is needed, the quadratic term |σTDv|2 has to be taken
with care.

Proof: In the following we denote for all ε > 0 by Ψε the function defined by
Ψε = ψε,ε2 where ψε,ρ is the test-function of Lemma 5.1.
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Let u, v be respectively a bounded usc viscosity subsolution and a bounded
lsc viscosity supersolution of (48). We first remark that the terminal condition
holds in a stronger sense that the viscosity sense.

Proposition 5.11 For all x ∈ O, u(T, x) ≤ ψ(T, x).

Proof: Fix x0 ∈ O. For all ε > 0, put ϕε(t, x) = Ψε(x, x0)+
T−t
ε2 and let (tε, xε)

be a global maximum of the usc function u− ϕε. Then u(T, x0)− ϕε(x0, x0) ≤
u(tε, xε)− ϕε(xε, x0) which implies, by Lemma 5.1, 1

2
|xε−x0|

2

ε2 −Kε2 + T−tε
ε2 ≤

ϕ(tε, xε) ≤ u(tε, xε)−u(T, x0)+ϕε(T, x0) ≤ 2‖u‖+Kε2.We deduce that tε and
xε go respectively to T and x0 as ε goes to 0 and, by the upper semicontinuity
of u, that,

lim
ε→0

u(tε, xε) = u(T, x0) and lim
ε→0

|xε − x0|2
ε2

= 0, lim
ε→0

T − tε
ε2

= 0. (49)

As, by Lemma 5.1, ∂ϕε

∂γ (t, x) > 0 if x ∈ ∂O, by definition of viscosity subsolution,

one has, for all ε > 0 and xε ∈ O,

min

(

1

ε2
+

1

2
|σTDxϕε|2 − b ·Dxϕε, u− ψ

)

(tε, xε) ≤ 0.

Now, assume that, for some subsequence, u(tε, xε) > ψ(tε, xε). Then, necessar-
ily, for this subsequence,

1 ≤ ε2|DxΨε(xε, x0)|(
‖σ‖2
2

|DxΨε(xε, x0)|+ ‖b‖). (50)

But, by lemma 5.1, ε|DxΨε(xε−x0)| ≤ K( |xε−x0|
ε +ε3) and therefore (50) cannot

occur because of (49) and for all ε > 0, u(tε, xε) ≤ ψ(tε, xε). We conclude by
letting ε go to 0 and using (49). ⋄

For all 0 < ν < 1 and all δ > 0, let

Mν,δ = sup
(t,x)∈[0,T ]×O

(νu(t, x)− v(t, x) − δ(T − t)).

Our aim is to prove that Mν,δ ≤ (1 − ν)‖ψ‖ which will give the conclusion of
the theorem by letting ν and δ tend to 1 and 0 respectively. To do so, we define,

for all ε, α > 0, M ε,α
ν,δ as being the supremum over [0, T ]2 ×O2

of the function

(t, s, x, y) 7→ νu(t, x)− v(s, y)− δ(T − s)−Ψε(x, y)−
(t− s)2

α2

and denote by (t̂, ŝ, x̂, ŷ) an optimal point (recall that u and v are bounded and
respectively usc and lsc).

We first notice that, since Ψε(x, x) = 0 for all x ∈ ∂O,

νu(T, x)− v(T, x) ≤M ε,α
ν,δ
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for all x ∈ ∂O, which implies by Lemma 5.1

1

2

|x̂− ŷ|2
ε2

≤ 2(‖u‖+ ‖v‖) +Kε2 and
(t̂− ŝ)2

α2
≤ 2(‖u‖+ ‖v‖) +Kε2. (51)

Therefore, up to some subsequences, t̂, ŝ and x̂, ŷ converge respectively to some
t and x in [0, T ]×O as α and ε go to 0.

Now we proceed as in Propostion 5.11. For all α, ε > 0

νu(t, x)− v(t, x)− δ(T − t)−Ψε(x, x) ≤M ε,α
ν,δ ,

so that, by Lemma 5.1, the upper semicontinuity of u and the lower semiconti-
nuity of v, as α and ε go to 0,

|x̂− ŷ|2
ε2

+
(t̂− ŝ)2

α2
→ 0. (52)

As a consequence, we get, as α and ε tend to 0,

M ε,α
ν,δ →Mν,δ. (53)

We define, for all (t, x), (s, y) ∈ [0, T ]×O,

ϕ1(t, x) =
1

ν

(

v(ŝ, ŷ) + δ(T − ŝ) + Ψε(x, ŷ) +
|t− ŝ|2
α2

)

ϕ2(s, y) = u(t̂, x̂)− δ(T − s)−Ψε(x̂, y)−
|t̂− s|2
α2

and we apply the definition of viscosity solutions to u and v: u−ϕ1 reaches its
maximum at (t̂, x̂) and when x̂ ∈ ∂O we can check easily thatDϕ1(t̂, x̂)·γ(x̂) > 0
by Lemma 5.1 and therefore the Neumann boundary condition never holds. This
imply that for all α, ε,

min

(

−∂ϕ1

∂t
+

1

2
|σTDϕ1|2 − b · ϕ1, u− ψ

)

(t̂, x̂) ≤ 0. (54)

For v, the situation is slightly different. As in the former case, we deduce from
Lemma 5.1 that the Neumann boundary condition cannot hold when ŷ ∈ ∂O,
but if for some subsequence of (α, ε), ŝ = T then we can have v(ŝ, ŷ) ≥ ψ(ŝ, ŷ)
and no information on the partial differential inequation. In this case, we remark
that t̂ goes to T (hence t=T) and that, by Proposition 5.11 and the upper
semicontinuity of u, for all δ0, u(t̂, x̂) ≤ u(T, x) + δ0/2 ≤ ψ(T, x) + δ0/2 ≤
ψ(t̂, x̂) + δ0 for α and ε small enough. We deduce, from those two inequalities,
by passing to the limit as α and ε go to 0 and using (53), that

Mν,δ = νu(T, x)− v(T, x) ≤ νψ(T, x)− ψ(T, x) + δ0 ≤ (1− ν)‖ψ‖+ δ0ν

for all δ0 > 0, so that finally Mν,δ ≤ (1 − ν)‖ψ‖.
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Now we are left with the case, when ŝ < T at least along a subsequence of
(ε, α). We have

min

(

−∂ϕ2

∂t
+

1

2
|σTDϕ2|2 − b · ϕ2, v − ψ

)

(ŝ, ŷ) ≥ 0. (55)

If, for some subsequence, u(t̂, x̂) > ψ(t̂, x̂) then (54) and (55) give respec-
tively

−∂ϕ1

∂t
(t̂, x̂) +

1

2
|σ(t̂, x̂)TDϕ1(t̂, x̂)|2 − b(t̂, x̂) · ϕ1(t̂, x̂) ≤ 0

and

−∂ϕ2

∂t
(ŝ, ŷ) +

1

2
|σ(ŝ, ŷ)TDϕ2(ŝ, ŷ)|2 − b(ŝ, ŷ) · ϕ2(ŝ, ŷ) ≥ 0.

We multiply the first inequality by ν and substract the second one ; we obtain a
rather complicated inequality which has three kinds of terms: the time derivative
term, the linear term and the quadratic term.
The time derivative term is the simplest one

−ν ∂ϕ1

∂t
(t̂, x̂) +

∂ϕ2

∂t
(ŝ, ŷ) = δ.

The linear term can be writen

(b(ŝ, x̂)− b(t̂, x̂)) ·DxΨε(x̂, ŷ) + (b(ŝ, ŷ)− b(ŝ, x̂)) ·DxΨε(x̂, ŷ)

−b(ŝ, ŷ) · (DxΨε(x̂, ŷ) +DyΨε(x̂, ŷ))

and can be estimated, if ωb andKb denote respectively the modulus of continuity
with respect to t and the Lipschitz constant with respect to x of b on [0, T ]×O
and by using Lemma 5.1, by

K

(

(ωb(|t̂− ŝ|) +Kb|x̂− ŷ|)
( |x̂− ŷ|

ε2
+ ε2

)

+ ‖b‖
( |x̂− ŷ|2

ε2
+ ε2

))

.

We know, by (51), that |t̂− ŝ| ≤ Cα for some constant C independent of α and
ε < 1, therefore, if we choose 1 > ε > ωb(Cα) as α and ε go to 0, this linear
term goes to 0 by (52).
As far as the quadratic term is concerned, we first remark that for all a, b in
IRm and all 0 < ν < 1,

1

ν
|a|2 − |b|2 ≥ − 1

1− ν
|a+ b|2

so that we are reduced to estimate

|σ(t̂, x̂)TDxΨε(x̂, ŷ) + σ(ŝ, ŷ)TDyΨε(x̂, ŷ)|2,
which we do as for the linear term, concluding that it goes to 0 as α and ε go
to 0, providing that 1 > ε > ωσ(Cα).

In conclusion to all those estimates we obtain the contradiction δ ≤ 0, and
finally we necessarily have, for all α and ε > ωb(Cα) small enough, u(t̂, x̂) ≤
ψ(t̂, x̂). This, combined with (55) and (53), yields Mν,δ ≤ (1 − ν)‖ψ‖ and the
proof is complete. ⋄
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