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Abstract

We consider a class of sparsity-inducing regularization terms based on submodular functions.
While earlier work has focused on non-decreasing functions, we explore symmetric submodular
functions and their Lovász extensions. We show that the Lovász extension may be seen as
the convex envelope of a function that depends on level sets: this leads to a class of convex
structured regularization terms that impose prior knowledge on the level sets, and not on the
supports of the underlying predictors. We provide a unified set of optimization algorithms (such
as proximal operators), and theoretical guarantees (allowed level sets and recovery conditions).
By selecting specific submodular functions, we give a new interpretation to known norms, such
as the total variation; we also define new norms, in particular ones that are based on order
statistics, and on noisy cuts in graphs.

1 Introduction

The concept of parsimony is central in many scientific domains. In the context of statistics, signal
processing or machine learning, it may take several forms. Classically, in a variable or feature
selection problem, a sparse solution with many zeroes is sought so that the model is either more
interpretable, cheaper to use, or simply matches available prior knowledge. This can be extended in
various ways, e.g., to matrices, where sparsity of singular values is often used as a prior in several
problems (see, e.g., Srebro et al., 2005; Negahban & Wainwright, 2009; Rohde & Tsybakov, 2010,
and references therein).

In this paper, we consider sparsity-inducing regularization terms that will lead to solutions with many
equal values. A classical example is the total variation in one or two dimensions, which leads to
piecewise constant solutions (Tibshirani et al., 2005; Chambolle & Darbon, 2009). In this paper, we
follow the approach of Bach (2010), who designed sparsity-inducing norms based on non-decreasing
submodular functions, as a convex approximation to imposing a specific prior on the support of the
predictor. Here, we show that a similar parallel holds for some submodular functions which are not
non-decreasing, namely non-negative set-functions which are equal to zero for the full and empty
set. Our main example of such functions are symmetric submodular functions.

We make the following contributions:

− We provide in Section 3 explicit links between priors on level sets and certain submodular
functions.
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− In Section 4, we reinterpret existing norms and design new ones.

− We provide unified algorithms in Section 5.

− We derive unified theoretical guarantees in Section 6.

Notation. For w ∈ R
p and q ∈ [1,∞], we denote by ‖w‖q the ℓq-norm of w. Given a subset A

of V = {1, . . . , p}, 1A ∈ R
p is the indicator vector of the subset A. Moreover, given a vector w

and a matrix Q, wA and QAA are the corresponding subvector and submatrix of w and Q. Finally,
for w ∈ R

p and A ⊂ V , w(A) =
∑

k∈A wk = w⊤1A (this defines a modular set-function). If
w ∈ R

p, and α ∈ R, then {w > α} (resp. {w > α}) denotes the subset of V = {1, . . . , p} defined as
{k ∈ V, wk > α} (resp. {k ∈ V, wk > α}).

2 Review of Submodular Analysis

In this section, we review relevant results from submodular analysis. For more details, see, e.g., Fujishige
(2005) and, for a review with proofs derived from classical convex analysis, see Bach (2010).

Definition. Throughout this paper, we consider a submodular function F defined on the power
set 2V of V = {1, . . . , p}, i.e., such that:

∀A,B ⊂ V, F (A) + F (B) > F (A ∪B) + F (A ∩B).

Without loss of generality, we assume that F (∅) = 0. Unless otherwise stated, we consider functions
which are non-negative (i.e., such that F (A) > 0 for all A ⊂ V ), and that satisfy F (V ) = 0. Usual
examples are symmetric submodular functions, such as cuts in a (directed or undirected) graph with
vertex set V .

Lovász extension. Given any set-function F such that F (V ) = F (∅) = 0, one can define its
Lovász extensionf : Rp → R, as (see, e.g., Bach, 2010):

f(w) =

∫ +∞

−∞

F ({w > α})dα. (1)

The Lovász extension is convex if and only if F is submodular. Moreover, for all A ⊂ V , f(1A) =
F (A) (it is indeed an extension from 2V to R

p); it is always positively homogeneous, and is invariant
by addition of any constant vector (that is, f(w + α1V ) = f(w) for all w ∈ R

p and α ∈ R).

Base polyhedron. We denote by B the base polyhedron (Fujishige, 2005), defined as the set of
s ∈ R

p such that for all A ⊂ V , s(A) 6 F (A), and s(V ) = F (V ), i.e.,

B = {s ∈ R
p, ∀A ⊂ V, s(A) 6 F (A), s(V ) = F (V )},

where we use the notation s(A) =
∑

k∈A sk.

One important result in submodular analysis is that if F is a submodular function, then we have
a representation of f as a maximum of linear functions (Fujishige, 2005; Bach, 2010), i.e., for all
w ∈ R

p,
f(w) = max

s∈B
w⊤s. (2)
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Instead of solving a linear program with 2p contraints, a solution s may then be obtained by the
following “greedy algorithm”: order the components of w in decreasing order wj1 > · · · > wjp , and
then take for all k ∈ {1, . . . , p}, sjk = F ({j1, . . . , jk})− F ({j1, . . . , jk−1}).

Faces of base polyhedron. The polyhedra U = {w ∈ R
p, f(w) 6 1} and B are polar to each

other (Rockafellar, 1997). Therefore, the facial structure of U may be obtained from the one of B.
Given s ∈ B, a set A ⊂ V is said tight if s(A) = F (A). It is known that the set of tight sets is a
distributive lattice, i.e., if A and B are tight, then so are A ∪B and A ∩B (see, e.g., Bach, 2010).

A set A is said separable if there exists a non-trivial partition of A = B ∪ C such that F (A) =
F (B) + F (C). A set is said inseparable if it is not separable. In the case of cuts in an undirected
graph, inseparable sets are exactly connected sets.

Minimization of submodular functions. Submodular functions are particularly interesting
because they can be minimized in polynomial time. In this paragraph, we consider a submodular
function F with potentially negative values (otherwise finding the minimum is trivial). Most algo-
rithms for minimizing submodular functions rely on the following strong duality principle (Edmonds,
2003; Fujishige, 2005):

min
A⊂V

F (A) = max
s∈B

∑

k∈V

min{0, sk}. (3)

Moreover, algorithms for minimizing F will usually output A and s such that F (A) =
∑

k∈V min{0, sk}
as a certificate for optimality. The two main types of algorithms are combinatorial algorithms (that
explicitly look for A) and ones based on convex optimization (that explicitly look for s). The first
type of algorithm leads to strongly polynomial algorithms with best known complexity O(p6) (Orlin,
2009), while the minimum-norm point algorithm of Fujishige (2005) has no worst-time complexity
bounds but is usually much faster in practice (Fujishige, 2005) and is based on the equivalent prob-
lem of finding the minimum-norm point in B, i.e., mins∈B ‖s‖22. Note that in this case, the minimum
point algorithm also allows the construction of a particular s solution of Eq. (3)—which has several
solutions in general.

Minimization of symmetric submodular functions. Such functions can be minimized in time
O(p3) over all non-trivial (i.e., different from ∅ and V ) subsets of V (Queyranne, 1998). Moreover,
the algorithm is valid for the regular minimization of posimodular functions (Nagamochi & Ibaraki,
1998), i.e., functions that satisfy

∀A,B ⊂ V, F (A) + F (B) > F (A\B) + F (B\A).

These include symmetric submodular functions as well as non-decreasing modular functions, and
hence the sum of any of those.

General non-negative submodular functions. If F is non-negative but does not satisfy F (V ) =
0, then F may be decomposed as the sum of F − s and s, for s ∈ R

p. If s ∈ B ∩ R
p
+ (which is

always possible for non-negative F ), then G = F − s is non-negative and such that G(V ) = 0, and
s is submodular non-decreasing. We can thus define a non-negative submodular set-function that is
equal to zero at ∅ and V , from any non-negative submodular function.
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Figure 1: Top: Polyhedral level set of f (projected on the set w(V ) = w⊤1V = 0), for 2 different
submodular symmetric functions of three variables, with different inseparable sets leading to different
sets of extreme points; changing values of F may make some of the extreme points disappear. The
various extreme points cut the space into polygons where the ordering of the component is fixed. Left:
F (A) = 1|A|∈{1,2} (all possible extreme points), F (A) = 11∈A,2/∈A +12∈A,1/∈A +12∈A,3/∈A +13∈A,2/∈A

(leading to f(w) = |w1 − w2|+ |w2 − w3|).

3 Properties of the Lovász Extension

In this section, we derive properties of the Lovász extension for submodular functions, which go
beyond convexity and homogeneity. Throughout this section, we assume that F is a non-negative
submodular set-function that is equal to zero at ∅ and V .

The first proposition shows that the Lovász extension is the convex envelope of a certain combi-
natorial function which depends on all levets sets {w > α} of w ∈ R

p. This shows that indeed
regularizing by the the Lovász extension leads to imposing a prior on level sets.

Proposition 1 (Convex envelope) The Lovász extension f(w) is the convex envelope of the func-
tion w 7→ maxα∈R F ({w > α}) on the set [0, 1]p + R1V = {w ∈ R

p, maxk∈V wk −mink∈V wk 6 1}.

Note the difference with the result of Bach (2010): we consider here a different set on which com-
puting the convex envelope ([0, 1]p + R1V instead of [−1, 1]p), and not a function of the support of
w, but of its level sets.

The next proposition gives conditions under which the Lovász extension leads to a norm, once
removed the invariance by translation.

Proposition 2 (Norm) The Lovász extension f(w) is a norm on {w⊤1V = 0} if and only if, for
all A 6= ∅ and A 6= V , F (A) > 0.

The next proposition describes the set of extreme points of the set U = {w, f(w) 6 1}, giving a
first illustration of sparsity-inducing effects (see example in Figure 1).

Proposition 3 (Extreme points) The extreme points of the set U ∩ {w(V ) = 0} are the projec-
tions of the vectors 1A/F (A) on the plane {w(V ) = 0}, for A such that A is inseparable for F and
V \A is inseparable for B 7→ F (A ∪B)− F (A).
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Figure 2: Examples of graphs. Left: Two-dimensional grid. Middle: chain graph. Right: hidden
chain graph.

4 Examples of Submodular Functions

In this section, we provide examples of submodular functions and of their Lovász extensions. Some
are well-known (such as cut functions and total variations), some are new in the context of supervised
learning (regular functions), while some have interesting effects in terms of clustering (cardinality-
based functions).

Note that we could also consider interesting examples of construction from any non-negative function,
by decomposing it as a sum of an increasing modular function and a non-negative submodular
function which is equal to zero for the full set.

4.1 Cut Functions

Given a set of (non necessarily symmetric) weights d : V × V → R+, define

F (A) =
∑

k∈A,j∈V \A

d(k, j),

which we denote d(A, V \A). The Lovász extension is equal to f(w) =
∑

k,j∈V d(k, j)(wk − wj)+
(which shows submodularity because f is convex). If the weight function d is symmetric, then the
submodular function is also symmetric and the Lovász extension is even.

In Figure 2 (left and middle plots), we give examples of usual graphs, i.e., grids in one or two
dimensions, leading to total variations (Tibshirani et al., 2005; Chambolle & Darbon, 2009). Note
that these functions can be extended to cuts in hypergraphs, which may have interesting applica-
tions in computer vision (Boykov et al., 2001). Moreover, directed cuts may be interesting to favor
increasing or decreasing jumps along the edges of the graph.

4.2 Regular Functions

We can also consider partial minimization to obtain “regular functions” (Boykov et al., 2001; Chambolle & Darbon,
2009). Examples lead to f(w) = maxk∈G wk −mink∈G wk, which corresponds to F (A) = 1A∩G 6=∅ +
1Ac∩G=∅ − 1, for any set G ⊂ V .

It may also lead to “noisy cuts”, i.e., for a given weight function d : V × V → R+, we add p nodes
(see right plot of Figure 2), each of them associated to the original nodes, and consider the associated
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Figure 3: Estimation of noisy piecewise constant 1D signal with outliers (indices 5 and 15 in the
chain of 20 nodes). Left: Original signal. Middle: best estimation with total variation (level sets are
not correctly estimated). Right: best estimation with robust total variation (level sets are correctly
estimated, with less bias).

convex and submodular functions:

f(w) = min
v∈Rp

∑

k,j∈V

d(k, j)(vk − vj)+ + λ‖v − w‖1,

F (A) = min
A⊂V

d(B, V \B) + λ|A∆B|.

This allows for robust versions of cuts, where some gaps may be tolerated. See examples in Figure 3,
illustrating the behavior of the graph displayed in the right plot of Figure 2.

4.3 Cardinality-based Functions

For F (A) = h(|A|) where h is nondecreasing, such that h(0) = h(p) = 0 and h concave, we obtain
a submodular function, and a Lovász extension that depends on the order statistics of w. While
these examples do not provide significantly different behaviors for the non-decreasing submodular
functions explored by Bach (2010) (i.e., in terms of support), they lead to interesting behaviors here
in terms of level sets. See Figure 4 for illustrations. Indeed, as shown in Section 6.1, allowed level
sets A are such that A in inseparable for the function B 7→ F (B ∪ C) − F (B) (for some C ⊂ V ),
which imposes that the interval [|B|, |B|+ |A|] is in the linearity space of h.

1. F (A) = |A| · |V \A| = |A|(p − |A|). This function can be also seen as the cut in the fully
connected graph. All patterns of level sets are allowed as the function h is strongly convex
(see left plots of Figure 4).

2. F (A) = 1 if A 6= ∅ and A 6= V , and 0 otherwise. This function is also piecewise affine: two
large level sets at the top and bottom, all the rest of the variables are in-between and separated
(Figure 4, second plots from the left).

3. F (A) = max{|A|, |V \A|} = max{|A|, p− |A|}. This function is piecewise affine, with only one
kink, thus only one level set of cardinalty greater than one is possible, which is observed in
Figure 4 (third plots from the left).

4. Other piecewise affine functions lead to selecting a given number of large level sets. For
example, if K ⊂ {1, . . . , p}, then the function mink∈K k(p − k) + (|A| − k)(p − 2k)—which is
the concave piecewise affine upper approximation of A 7→ |A|(p − |A|)—leads to selecting at
most |K| sets of cardinality strictly greater than one (see right plot of Figure 4).
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Figure 4: Piecewise linear regularization paths of proximal operators (top) and least-square regres-
sion with non-orthogonal design (bottom) for different functions of cardinality. From left to right:
quadratic function (all level sets allowed), second example in Section 4.3 (two large level sets in the
middle, and single variables at the top and bottom), piecewise linear with two pieces (a single large
level set in the middle), piecewise linear with four pieces (four large level sets).

5 Optimization Algorithms

In this section, we present optimization methods for minimizing convex objective functions regular-
ized by the Lovász extension of submodular functions. These lead to convex optimization problems,
which we tackle using proximal methods (see, e.g., Beck & Teboulle, 2009; Nesterov, 2007).

We first start by mentioning that subgradients may easily be derived (but subgradient descent is
here rather inefficient). Although we have not implemented it, note that with the square loss,
the regularization paths are piecewise affine. This section follows closely the corresponding section
of Bach (2010) for non-decreasing submodular functions.

Subgradient. From f(w) = maxs∈B s⊤w and the greedy algorithm1 presented in Section 2, one
can easily get in polynomial time one subgradient as one of the maximizers s. This allows to use
subgradient descent, with usually slow convergence compared to proximal methods.

Proximal operators. Given regularized problems of the form minw∈Rp L(w) + λf(w), where
L is differentiable with Lipschitz-continuous gradient, proximal methods have been shown to be
particularly efficient first-order methods (see, e.g., Beck & Teboulle (2009)). In this paper, we use
the methods “ISTA” and its accelerated variants “FISTA” (Beck & Teboulle, 2009).

To apply these methods, it suffices to be able to solve efficiently problems of the form: minw∈Rp
1
2‖w−

z‖22 + λf(w). In the case of the ℓ1-norm, this reduces to soft thresholding of z, the following propo-
sition shows that this is equivalent to a particular algorithm for submodular function minimization,
namely the minimum-norm-point algorithm, which has no complexity bound but is empirically faster
than algorithms with such bounds (Fujishige, 2005):

1The greedy algorithm to find extreme points of the base polyhedron should not be confused with the greedy
algorithm (e.g., forward selection) that is common in supervised learning/statistics.
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Proposition 4 (Proximal operator) Let z ∈ R
p and λ > 0, minimizing 1

2‖w − z‖22 + λf(w) is
equivalent to finding the minimum of the submodular function A 7→ λF (A)−z(A) with the minimum-
norm-point algorithm.

As shown by Chambolle & Darbon (2009), if any minimization method (and not necessarily the
minimum-norm-point algorithm) for the submodular function is used, we obtain that for all α ∈ R,
the minimizers of λF (A) − z(A) + α|A| are exactly the sets A so that {w > α} ⊂ A ⊂ {w > α},
where w is the unique optimum of the proximal problem. The proximal opearator may thus be
obtained as a sequence of submodular function minimizations (by any algorithm). This can be done
in general by a decomposition algorithm described by Bach (2010, Section 8.6), which can be applied
to any submodular functions.

Note that using the minimum-norm-point algorithm or the decomposition algorithm leads to generic
algorithms that can be applied to any submodular functions F , and that it may be rather inefficient
for simpler subcases, one of which being cuts, which we now consider.

Fast optimization for cuts. The two examples in Section 4.1 and Section 4.2 are specific, be-
cause they lead to a family of submodular functions for which dedicated fast algorithms exist.
Indeed, minimizing the cut functions or the partially minimized cut, plus a modular function de-
fined by z ∈ R

p, may be done with a min-cut/max-flow algorithm (see, e.g., Boykov et al., 2001;
Chambolle & Darbon, 2009). For proximal methods, we need to solve an instance of a paramet-
ric max-flow problem, which may be done using efficient dedicated algorithms (Gallo et al., 1989;
Hochbaum, 2001; Chambolle & Darbon, 2009).

Proximal path as agglomerative clustering. We consider the problem minw∈Rp
1
2‖w − z‖22 +

λf(w). When λ is equal to zero, then w∗ = z, while for λ large enough, w is constant. In this para-
graph, we provide conditions under which the regularization path may be obtained by agglomerative
clustering (i.e., if two variables are together for a certain λ, they must be so for all greater λ).

Proposition 5 (Agglomerative clustering) Assume that for all sets A,B,C such that B∩A = ∅

and C ⊂ A, A is inseparable for C 7→ F (B∪C)−F (B), then |C|(F (B∪A)−F (B)) 6 |A|(F (B∪C)−
F (B)). Then the regularization path for the problem minw∈Rp

1
2‖w − z‖22 + λf(w) is agglomerative,

that is, if two variables are in the same group for a certain λ0 ∈ R+, so are they for all larger λ > λ0.

The assumptions required for by Prop. 5 are satisfied by (a) all submodular set-functions that
only depend on the cardinality, and (b) by one-dimensional total variation–we thus recover results
from Harchaoui & Lévy-Leduc (2008); Hoefling (2009).

Adding an ℓ1-norm. Following Tibshirani et al. (2005), we may add the ℓ1-norm ‖w‖1 for addi-
tional sparsity of w (on top of shaping its level sets). The following proposition extends the result for
the one-dimensional total variation (Tibshirani et al., 2005; Mairal et al., 2010) to all submodular
functions and their Lovász extensions.

Proposition 6 (Proximal problem for ℓ1-penalized problems) The unique minimizer of 1
2‖w−

z‖22+ f(w) +λ‖w‖1 may be obtained by soft-thresholding the minimizers of 1
2‖w− z‖22+ f(w). That

is, the proximal operator for f + λ‖ · ‖1 is equal to the composition of the proximal operator for f
and the one for λ‖ · ‖1.

8
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{2}

{3,4}
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Figure 5: Left: distributive lattice with 7 elements in 2{1,2,3,4,5,6}. Right: corresponding poset, with
4 elements that form a partition of {1, 2, 3, 4, 5, 6} (the graph is a Hasse diagram: A < B if A is a
descendant of B).

6 Sparsity-inducing Properties

In this section, we consider a fixed design matrixX ∈ R
n×p and y ∈ R

n a vector of random responses.
Given λ > 0, we define ŵ as a minimizer of the regularized least-squares cost:

minw∈Rp
1
2n‖y −Xw‖22 + λf(w). (4)

We study the sparsity-inducing properties of solutions of Eq. (4), i.e., we determine in Section 6.1
which level sets are allowed and in Section 6.2 which sufficient conditions lead to consistent estimation
of level sets.

6.1 Sparsity Patterns

Faces of the unit ball U = {w, f(w) 6 1} will be defined through lattices and their equivalent poset
representations, which now define.

Partially ordered sets and distributive lattices. A subset D of 2V is a (distributive) lattice if
it is invariant by intersection and union. Such lattices may be represented as a partially ordered set
(poset) Π(D) = {A1, . . . , Am}, where the sets Aj , j = 1, . . . ,m form a partition of V , which is such
that elements of D may be identified with ideals of Π(D), i.e., sets J such that if an element of Π(D)
is lower than an element of J , then it has to be in J (Fujishige, 2005). See example in Figure 5.
Distributive lattices and posets are thus in one-to-one correspondence. Troughout this section, we
go back and forth between these two representations.

Faces of U . The faces of U are characterized by lattices D that contain ∅ and V , with their
corresponding poset Π(D) = {A1, . . . , Am}. We denote by U◦

D the set of w ∈ R
p such that (a)

w is piecewise constant with respect to Π(D), with value vi on Ai, and (b) for all pairs (i, j),
Ai <Π(D) Aj ⇒ vi > vj . These will be interior of faces of U , as shown in the next proposition:

Proposition 7 (Faces of U) The relative interiors of all faces of U are exactly of the form U◦
D,

where D is a lattice such that:

(i) the restriction of F to D is modular, i.e., for all A,B ∈ D, F (A)+F (B) = F (A∪B)+F (A∩B),

(ii) for all maximal chains ∅ = S0 ⊂ · · · ⊂ Sm = V of D, the sets Sj, j ∈ {1, . . . ,m} are inseparable
for the submodular function Uj 7→ F (Sj−1 ∪ Uj)− F (Sj−1),

(iii) for all maximal chains ∅ = S0 ⊂ · · · ⊂ Sp = V of 2V compatible with D, then, if s is defined
by s(Sj) = F (Sj) for all j ∈ {1, . . . , p}, then D is the set of tight sets for s.

9



Allowed level sets. In this section, we do not make any assumptions regarding the correct spec-
ification of the linear model. We show that with probability one, only certain level sets are allowed.
For simplicity, we assume invertibility of X⊤X , but we could consider assumptions similar to the
ones used by Jenatton et al. (2009).

Proposition 8 (Stable sparsity patterns) Assume y ∈ R
n has an absolutely continuous density

with respect to the Lebesgue measure and that X⊤X is invertible. Then the minimizer ŵ of Eq. (4)
is unique and, with probability one, all level sets of ŵ correspond to a face of U , i.e., to a set U◦

D for
a certain lattice D that satisfies the conditions of Prop. 7.

Note the difference with the analysis of Bach (2010), who considered a specific aspect of the faces
of the unit ball, namely the stability of the support.

Cut functions. For cut functions, inseparability for the restricted submodular function is equiva-
lent to inseparability for F , i.e., connectedness in the graph. Thus only connected level sets {w = α}
are allowed.

6.2 Theoretical Analysis

In this section, we consider a particular interior of a face U◦
D, for a lattice D and its associated poset

Π(D) = (A1, . . . , Am). We denote by M = (1A1 , . . . , 1Am) the indicator matrix of the clusters.

Decomposability. We consider an element w of U◦
D; then, for all t ∈ R

p small enough so that for
all pairs (i, j), Ai <Π(D) Aj ⇒ (w + t)Ai > (w + t)Aj , then we have the decomposition f(w + t) =
f(w) +

∑m
j=1 fj(tAj ), where fj is the Lovász extension of the submodular function defined on Aj ,

by Fj : B 7→ F (A1 ∪ · · · ∪ Aj−1 ∪ B) − F (A1 ∪ · · · ∪ Aj−1). We have assumed that the sets Aj are
ordered along a maximal chain of D (and by condition (i) of Prop. 7, the function fj is independent
of the choice of the chain). We now use the notation Bi = A1 ∪ · · · ∪ Ai.

Support/levels sets recovery. We can now use the decomposability property to derive a general
support recovery result. We consider the submodular function defined on 2Aj :

Gj : Cj 7→ F (Bj−1 ∪ Cj)− F (Bj−1)− 1⊤Cj
QM(M⊤QM)−1t,

where tj = F (Bj−1 ∪ Aj) − F (Bj−1). It is submodular, such that Gj(∅) = 0, and Gj(Aj) =
F (Bj−1 ∪ Aj)− F (Bj−1)− δ⊤j M

⊤QM(M⊤QM)−1t = 0. We make that the assumption that Gj is
strictly positive for all nontrivial subsets Cj of Aj (see examples below). We denote by g∗j (s) the

function on R
Aj , defined as

g∗j (s) = max
Cj⊂Aj,Cj /∈{∅,Aj}

s(Cj)

Gj(Cj)
.

The next theorem provides a general result regarding the recovery of level sets.

Theorem 1 (Level set recovery) Assume that y = Xw∗+σε, where ε is a standard multivariate
normal vector. Let Q = 1

nX
⊤X ∈ R

p×p. Assume w∗ belongs to the interior of the face U◦
D, i.e.,

w∗ = Mv∗ with η = minAi<Π(D)Aj{v∗i − v∗j } > 0. Assume that all Gj are strictly positive on
non-trivial subsets of Aj.

10



Moreover, assume λ‖(M⊤QM)−1t‖∞ 6 η/4 and M⊤QM invertible. Then, with probability greater
than

1−
m
∑

j=1

P(g∗j (zj) > λn1/2σ−1)−
m
∑

j=1

exp

(

− nη2

32σ2((M⊤QM)−1)jj

)

,

the estimate ŵ is on the same face than w∗, with zj normal with zero mean and covariance matrix
QAjAj −QAjV M(M⊤QM)−1M⊤QV Aj .

Following similar results in support recovery for the ℓ1-norm or norms associated with non-decreasing
submodular functions (Bach, 2010), there are two types of assumptions:

(a) η > 0 corresponds to having non-zero components which are bounded away from zero (i.e., we
are in the interior of a face, and bounded away from its boundary).

(b) Strict positivity of Gj corresponds to the irrepresentable condition. The main difference is
that for support recovery, this assumption is always met for the orthogonal design, while here
it is not always met, even for the orthogonal design. Interestingly, the validity of level set
recovery for the orthogonal design is related to the agglomerativity of proximal paths.

Application to identity design matrix. If we have Q = I and τ2 = σ2/n. The constraints in
the assumptions of Theorem 1 are that, for all j ∈ {1, . . . ,m}:

λ

∣

∣

∣

∣

F (Bj)− F (Bj−1)

|Aj |

∣

∣

∣

∣

6 η/4.

The function Gj is then equal to:

Gj : Cj 7→ F (Bj−1 ∪ Cj)− F (Bj−1)− |Cj |
F (Bj−1 ∪ Aj)− F (Bj−1)

|Aj |
.

The strict positivity of Gj is not always satisfied, but it is for the 1D total variation and certain
functions of the cardinality (as we show below).

Moreover, we have

m
∑

j=1

exp

(

− nη2

32σ2((M⊤QM)−1)jj

)

=

m
∑

j=1

exp

(

− nη2|Aj |
32σ2

)

.

Concentration inequality. For a general submodular function F which is non-negative and sat-
isfies F (V ) = 0, we can compute an upper bound to P(f∗(s) > u) for s normally distributed with
zero mean and covariance matrix Σ that has 1V as a singular vector (which is our case for zj and
Gj in Theorem 1). A simple technique is to use the union bound:

f∗(s) = max
A inseparable

s(A)

F (A)

P(f∗(s) > u) 6
∑

A inseparable

P(s(A) > uF (A))

6
∑

A inseparable

exp

(

− u2F (A)2

2× 1⊤AΣ1A

)

.
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Figure 6: Signal approximation with two-dimensional total variation: For two piecewise constant
images with two values, the estimation may (left case) or may not (right case) recover the correct
level sets, even with infinitesimal noise. For the two cases, left: original pattern, right: best possible
recovered level sets.

One-dimensional total variation. The constraints become λ 6
η
4 minj |Aj |. Moreover,

Gj(Cj)
2

|Cj|(1−|Cj|/|Aj |)

is lower bounded by 1/|Aj|2 for all non trivial inseparable subsets of Aj , and the number of insepa-
rable sets is less than |Aj |2. Thus, we have the probability in Theorem 1 greater than

1−
m
∑

j=1

exp

(

− η2|Aj |
32τ2

)

−
m
∑

j=1

|Aj |2 exp
(

− λ2

2τ2|Aj |2
)

.

We get a probability greater than

1− 2

m
∑

j=1

|Aj |2 exp
(

− λ2

2τ2|Aj |2
)

.

If we choose λ = 4τ maxj |Aj |
√
log p, which imposes that minj |Aj |η/4 > 4τ maxj |Aj |

√
log p (i.e.,

the level sets have approximatively the same number of elements depending on the noise level), we
have a probability of correct level set recovery (for no design matrix) which is greater than 1− 2/p.
Note that we could also derive general results when an additional ℓ1-penalty is used, thus extending
results from Rinaldo (2009).

Two-dimensional total variation. While for the one-dimensional version, the assumption with
respect to the positivity of functions Gj is always satisfied for Q = I, this is not the case anymore
for the two-dimensional version, which has always been noticed in continuous settings (see, e.g.,
Duval et al., 2009). We illustrate this in Figure 6, where we show that depending on the shape of
the level sets (which still have to be connected), we may not recover the correct pattern, even with
very small noise.

Clustering with F (A) = |A| · |Ac|. If we assume that the design is orthogonal, then Gj(Cj) =
|Cj | · |Aj\Cj |, and, we can use

g∗j (zj) 6
2

|Aj |
‖zj‖∞,

to get the following lower bound on the probability of correct support recovery:

1−
m
∑

j=1

exp

(

− λ2|Aj |2
8τ2

)

−
m
∑

j=1

exp

(

− η2|Aj |
32τ2

)

,

with the constraint that λ 6
η
4 . We also get a lower bound on the sizes of the clusters.
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7 Conclusion

We have presented a family of sparsity-inducing norms dedicated to incorporating prior knowledge or
structural constraints on the level sets of linear predictors. We have provided a set of common algo-
rithms and theoretical results, as well as simulations on synthetic examples illustrating the behavior
of these norms. Several avenues are worth investigating: first, we could follow current practice in
sparse methods, e.g., by considering related adapted concave penalties to enhance sparsity-inducing
capabilities, or by extending some of the concepts for norms of matrices, with potential applications
in matrix factorization or multi-task learning (see, e.g., Krause & Cevher, 2010, for application of
submodular functions to dictionary learning).

Acknowledgements. This paper was partially supported by the Agence Nationale de la Recherche
(MGA Project), the European Research Council (SIERRA Project) and Digiteo (BIOVIZ project).

A Proof of Proposition 1

Let s ∈ R
p, we consider the function g : w 7→ maxα∈R F ({w > α}), and we compute its Fenchel

conjugate (see, e.g. Boyd & Vandenberghe, 2004):

g∗(s) = max
w∈[0,1]p+R1V

w⊤s− g(w)

= max
(A1,...,Am) partition

max
t1>···>tm, t1−tm61

m−1
∑

j=1

(tj − tj+1)s(A1 ∪ · · · ∪ Aj) + tms(V )

− max
j∈{1,...,m}

F (A1 ∪ · · · ∪ Aj)

= ιs(V )=0(s) + max
(A1,...,Am) partition

{

max
j∈{1,...,m}

s(A1 ∪ · · · ∪ Aj)− max
j∈{1,...,m}

F (A1 ∪ · · · ∪ Aj)

}

,

where ιs(V )=0 is the indicator function of the set {s(V ) = 0} (with values 0 or +∞).

Let h(s) = ιs(V )=0(s) + maxA⊂V s(A) − F (A). We clearly have g∗(s) > h(s), because we take a
maximum over a larger set (consider m = 2). Moreover, for all partitions (A1, . . . , Am), if s(V ) = 0,
maxj∈{1,...,m} s(A1∪· · ·∪Aj) 6 maxj∈{1,...,m}(h(s)+F (A1∪· · ·∪Aj)) = h(s)+maxj∈{1,...,m} F (A1∪
· · · ∪ Aj), which implies that g∗(s) 6 h(s). Thus g∗(s) = h(s).

Moreover, we have, for f symmetric,

max
w∈[0,1]p+R1V

w⊤s− f(w) = ιs(V )=0(s) + max
w∈[0,1]p

w⊤s− f(w)

= ιs(V )=0(s) + max
A⊂V

s(A)− F (A) = h(s).

Thus f and g have the same Fenchel conjugates. The result follows from the convexity of f .

B Proof of Proposition 2

What needs to be proved is that f(w) = 0 implies that w is a constant vector. This is implied by
the strict positivity of F on all non-trivial subsets of V and the definition of the Lovász extension f .
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C Proof of Proposition 3

Extreme points of U correspond to full-dimensional faces of B. From Fujishige (2005, Corollary
3.4.4), these facets are exactly the ones that correspond to sets A with the given conditions. These
facets are defined as the intersection of {s(A) = F (A)} and {s(V ) = F (V )}, which leads to the
desired result.

D Proof of Proposition 5

Optimality conditions for a w in a certain face interior U◦
D, i.e., which is constant on Ai (with value

vi) and such that vi > vj for all Ai <Π(D) Aj are that:

(a) v minimizes
1

2
‖z −Mv‖22 + λt⊤v,

where ti = F (A1 ∪ · · · ∪ Ai) − F (A1 ∪ · · · ∪ Ai−1) and M ∈ R
p×m is the matrix of indicator

vectors of the sets Ai. We thus get

v = (M⊤M)−1(M⊤z − λt).

(b) v is such that (z −Mv)/λ ∈ B.

Note that
z −Mv = (I −M(M⊤M)−1M⊤)z + λM(M⊤M)−1t,

and that for all i ∈ {1, . . . ,m},
1⊤Ai

(I −M(M⊤M)−1M⊤)z = 0,

and
1⊤Ai

M(M⊤M)−1t = ti = F (A1 ∪ · · · ∪ Ai)− F (A1 ∪ · · · ∪Ai−1),

so that, if Bi = A1 ∪ · · · ∪ Ai, [(I −M(M⊤M)−1M⊤)z](Bi) = 0, [M(M⊤M)−1t](Bi) = F (Bi).

Thus if (z −Mv)/λ ∈ B for a certain λ, with our assumption (z −Mv)/µ ∈ B for all µ larger than
λ. Indeed, we then have

∀Ci ⊂ Ai, [M(M⊤M)−1t](Ci) 6 F (Bi−1 ∪ Ci)− F (Bi−1),

which implies by submodularity that [M(M⊤M)−1t](C) 6 F (C) for all C ⊂ V . Indeed, we have:

[M(M⊤M)−1t](C) =
m
∑

j=1

[M(M⊤M)−1t](C ∩ Aj)

6

m
∑

i=1

F (Bi−1 ∪ (C ∩ Aj))− F (Bi−1)

6

m
∑

i=1

F ((Bi−1 ∩C) ∪ (C ∩ Aj))− F (Bi−1 ∩ C)

=
m
∑

i=1

F (Bi ∩ C)− F (Bi−1 ∩ C) = F (C).

This shows that when µ increases, the only way to break the optimality conditions is by having some
vi = vj , i.e., clusters Ai and Aj merge.
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E Proof of Proposition 6

We denote by w the unique mininum of 1
2‖w − z‖22 + f(w) and s the associated dual vector in B.

The optimality conditions lead to w = z− s. We assume that w takes disctinct values v1, . . . , vm on
the sets A1, . . . , Am. We define t as tk = sign(wk)(|wk| − λ)+. The level sets of t are Aj , for j such
that |vj | > λ and zero for the unions of Aj such that |vj | 6 λ. We have t = z− s+ t−w, with t−w
optimal for max‖u‖∞61 u

⊤w. We only need to show that s is optimal for maxs∈B s⊤w, which true
since the level sets of w are finer than the ones of t, with no change of ordering (see Bach, 2010).

F Proof of Proposition 7

Given that the polyhedra U and B are polar to each other (Rockafellar, 1997), the proposition follows
from (Fujishige, 2005, Theorem 3.43).

G Proof of Theorem 1

We denote by M = (1A1 , . . . , 1Am) the indicator matrices of the clusters, and we assume that
w∗ = Mv∗. We first minimize with respect to w = Mv for v ∈ R

m. The cost function may be
written as

1

2
(w − w∗)⊤Q(w − w∗)− q⊤(w − w∗) + λf(w),

where Q = 1
nX

⊤X ∈ R
p×p and q = σX⊤ε/n ∈ R

p. If w = Mv, we have to minimize

1

2
(v − v∗)⊤M⊤QM(v − v∗)− q⊤M(v − v∗) + λv⊤t,

with ti = F (A1 ∪ · · · ∪ Ai) − F (A1 ∪ · · · ∪ Ai−1), with solution v̂ = v∗ + (M⊤QM)−1(M⊤q − λt).
Then ŵ = Mv̂ is the optimal solution if (note that it is then the unique solution because of the
invertibility of M⊤QM):

(a) v̂i > v̂j as soon as Ai <Π(D) Aj ; this is implied by

max{‖(M⊤QM)−1M⊤q‖∞, ‖λ(M⊤QM)−1t‖∞} 6 η/4,

for η = minAi<Π(D)Aj v
∗
i − v∗j . Note that (M⊤QM)−1M⊤q is normally distributed with zero

mean and covariance matrix
σ2

n
(M⊤QM)−1,

which leads to the second part of the probability using standard bound on Gaussian tails.

(b) For all ∆ such that for all j, ∆(Aj) = 0, we have λfj(∆Aj )+(QAjV M(v̂−v∗)−qAj )
⊤∆Aj > 0,

for fj the Lovász extension corresponding to the submodular function Cj 7→ F (Cj ∪Bj−1)−
F (Bj−1). This is equivalent to

λfj(∆Aj ) + (QAjV M(M⊤QM)−1(M⊤q − λt) − qAj )
⊤∆Aj > 0

λfj(∆Aj ) > λ∆⊤
Aj

QAjV M(M⊤QM)−1t+∆⊤
Aj

(qAj −QAjV M(M⊤QM)−1M⊤q),
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λfj(∆Aj ) > λ∆⊤
Aj

QAjV M(M⊤QM)−1t+
σ

n
∆⊤

Aj
X⊤

Aj
(I −X⊤M(M⊤X⊤XM)−1M⊤X⊤)ε,

This is equivalent to QAjV M(M⊤QM)−1t + σ
λnX

⊤
Aj

(I − X⊤M(M⊤X⊤XM)−1M⊤X⊤)ε ∈
Bj + R1Aj , where Bj is the base polyhedron associated with Fj .

Note that for any submodular function, s ∈ B(F )+R1V if and only if for all A ⊂ V , s(A)− s(V )
|V | |A| 6

F (A)− F (V )
|V | |A|.

Moreover, zAj = 1
n1/2X

⊤
Aj

(I −X⊤M(M⊤X⊤XM)−1M⊤X⊤)ε is normally distributed with covari-

ance matrix QAjAj −QAjV M(M⊤QM)−1M⊤QV Aj , and this matrix has 1Aj has a singular vector,
since QAjV M(M⊤QM)−1M⊤QV Aj1Aj = QAjAj1Aj .

The condition for global optimality is thus exactly that g∗j (zAj ) 6
λn1/2

σ .
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