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Abstract

Dirac chord method may be used in many areas of physics for calcula-

tion of specific six-dimensional integrals for a convex body using probabil-

ity density of chord length distribution. Attempts to apply similar meth-

ods for nonconvex bodies in some cases may produce instead of probabil-

ity density some function with negative values. In the work is discussed

interpretation of such a function using alternating sums of probability

distributions. It is also shown an agreement of such construction with an

alternative definition via second derivative of autocorrelation function. It

is discussed application of such quasi-probability distributions for Monte

Carlo calculations of some integrals for single body of arbitrary shape and

for systems with two or more objects.

1 Introduction

Let us consider an integral

F
B2

B1
(ϕ) =

∫

B2

∫

B1

ϕ(|r1 − r2|)

4π|r1 − r2|2
dV1dV2, (1)

there B1 and B2 — are three-dimensional bodies, vectors r1 = (x1, y1, z1) ∈ B1

and r2 = (x2, y2, z2) ∈ B2 represent pair of points, dV1 = dx1dy1dz1 and
dV2 = dx2dy2dz2.

Similar integrals are used in many different physical applications, e.g for
calculations based on point-kernel method in radiation shielding and dosimetry
[1, 2].

If B1 = B2 = B — is the same convex body, the Dirac chord method [3] may
be applied for calculation of the particular case of the double integral Eq. (1)
over pairs of points in the convex body B using probability density of chord
lengths distribution, µ(l)

DB(ϕ) =

∫

B

∫

B

ϕ(|r1 − r2|)

4π|r1 − r2|2
dV1dV2 =

SB
4

∫ ∞

0

µ(l)
(

∫ l

0

∫ r

0

ϕ(x)dx dr
)

dl. (2)
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Here vectors r1, r2 ∈ B represent pair of points of the body B and SB is the
surface area of B. The infinite upper limit of integration is used in the right-
hand side of Eq. (2) and many similar equations below, because µ(l) = 0 for
l > lmax, there lmax is maximal possible length of a chord.

Such a formula may be used in analytical and numerical methods of the
calculation of the integrals likeDB(ϕ). The most obvious advantage is reduction
of six-dimensional integration to simpler expressions like Eq. (2). It is possible
to obtain direct analytical expressions for chord length distribution (CLD) for
some shapes and it was initially used by Dirac et al [4].

Analytical expressions may be found only for few simple shapes and it is
reasonable to consider application of Eq. (2) for numerical calculations of inte-
grals, e.g., for Monte Carlo methods [5]. It is indeed very promising and briefly
discussed below. For application of Monte Carlo methods here is also important
possibility to get rid of singularity 1/R2 in left-hand side of Eq. (2), and it may
be also actual for Eq. (1) with two neighboring or intersecting bodies B1 and
B2.

However, even generalization of Eq. (2) for single nonconvex body is not
unique, because straight line may intersect such body more than one time and
appropriate choice of definition of CLD is not quite clear in such a case.

There are three different and widely used definitions of CLD for nonconvex
body [6, 7, 8, 9, 10, 11, 12, 13]. We may consider all intervals of the same line
inside of nonconvex body as separate chords and produce multi-chord distribu-
tion (MCD). It is also possible to calculate sum of lengths of all such intervals
to define one-chord distribution (OCD).

The third definition introduces “generalized chord distribution” via second
derivative of autocorrelation function divided on some normalizer (e.g., SB/4)
[9, 10, 12, 14]. It is justified, because for a convex body such a formal expression
is equal to probability density for CLD. In more general case such a definition
is also useful, because it ensures validity of Eq. (2) [15] and it is discussed
below. However, for nonconvex bodies such function may be negative for some
arguments [11, 12].

In presented paper are utilized methods of construction of such functions
as a sum of some probability densities alternating in signs. Such approach let
use direct analogue of Eq. (2) for calculation of integrals for nonconvex bodies
[15]. Extensions of this techniques [16] may be used also for treatment of more
difficult case Eq. (1) with two different bodies.

Plan of the paper. In Sec. 2 is revisited a ray method as a facilitated ana-
logue of the Dirac chord method. It produces an understanding physical model
and introduces simplified versions of some tools applied further for chords. In
Sec. 3 are collected some equations useful further for discussion about applica-
tions of chord method in Sec. 4. Applications for the Eq. (1) with two bodies
and multi-body case are discussed in Sec. 5. Methods of applications of consid-
ered techniques for statistical (Monte Carlo) sampling are discussed mainly in
Sec. 2.2, Sec. 4.2, and Sec. 5.3, Sec. 5.4.
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2 Ray method

2.1 Ray length distribution

There is analog of Eq. (2) with probability density of ray length distribution
(RLD), ι(l), i.e. instead of full chord is considered only segment of straight line
drawn from given point inside body to surface. It may be written in such a case

DB(ϕ) = VB

∫ ∞

0

ι(l)
(

∫ l

0

ϕ(x)dx
)

dl, (3)

there VB is volume of B. This expression could be considered as intermediate
step in derivation of Eq. (2) in [3] and may be simpler for explanation.

Let us introduce simple isotropic homogeneous model with particles emitted
inside a convex body B and traveling along straight lines. If absorption of
energy on distance l from source is defined by ϕ(l), the left-hand side of Eq. (2)
or Eq. (3) with six-dimensional integral describes fraction of energy absorbed
inside of the body.

On the other hand, the same value may be calculated using distribution of
particle tracks (rays) inside body. The part of energy, absorbed on a ray with
length l is

Iϕ(l) =

∫ l

0

ϕ(x)dx (4)

and fraction of rays with length l is described by RLD ι(l). Taking into account
total amount of emitted particles proportional to volume of B we conclude
informal visual explanation of Eq. (3).

The example with rays is also useful for explanation of appearance of alter-
nating sum of distributions. Let us consider example with nonconvex body and
a ray with three intersections with the boundary Fig. 1.

l1 l2 l3

Figure 1: Ray in nonconvex body

For each such ray instead of Eq. (4) for calculation of energy absorbed inside
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of the nonconvex body should be used expression

∫ l1

0

ϕ(x)dx +

∫ l3

l2

ϕ(x)dx = Iϕ(l1)− Iϕ(l2) + Iϕ(l3), (5)

were Iϕ is antiderivative of ϕ, defined by Eq. (4). It is possible to introduce three
(or more) distributions ιk (of distances from the source to k-th intersection) and
write instead of Eq. (3)

DB(ϕ) = VB

kmax
∑

k=1

(−1)k+1

∫ ∞

0

ιk(l)
(

∫ l

0

ϕ(x)dx
)

dl

= VB

∫ ∞

0

[

kmax
∑

k=1

(−1)k+1ιk(l)
](

∫ l

0

ϕ(x)dx
)

dl, (6)

there kmax is the maximal number of intersections of a ray with the boundary
of B. The alternating sum in square brackets in Eq. (6) may be considered as
a “quasi-probability distribution” ι̃(l) and it let us write an analogue of Eq. (3)

DB(ϕ) = VB

∫ ∞

0

ι̃(l)
(

∫ l

0

ϕ(x)dx
)

dl, ι̃(l) =

kmax
∑

k=1

(−1)k+1ιk(l). (7)

More rigorous treatment may use so-called signed measures (charges) [17] in-
stead of term quasi-probability distribution used here. Some details may be
found in [15].

The visual derivation of equations with rays in this section is rather informal.
It was used understanding description with particles propagated along straight
lines. Such a model may create a wrong impression about impossibility to apply
such methods to more difficult models with scattering. It is not so, because
the only essential condition is the possibility to use in integrals like Eq. (2)
expressions depending merely on |r1 − r2|.

An example of appropriate model is convex body and absence of the scat-
tering, but yet another case is an arbitrary body inside of the medium with
the same properties. Last example ensures possibility to apply Eq. (2), Eq. (3)
and further generalizations to expressions with so-called buildup factors used in
dosimetry and radiation shielding to take into account scattering [1, 2]. For ho-
mogeneous and isotropic case such buildup factors (for given energy) are again
depending only on distance from point source.

To make consideration more rigor [3] let us introduce polar coordinates in
the second integral Eq. (2) and for convex body it is possible to write

DB(ϕ) =

∫

B

dV1

∫ π

0

sin θdθ

∫ 2π

0

dφ

∫ l(r1,θ,φ)

0

ϕ(R)

4π
dR, (8)

there R = |r1−r2|, together with θ, φ are polar coordinates of vectorR = r2−r1
and l(r1, θ, φ) is length of ray from point r1 with direction given by polar angles
θ and φ.
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The notation dΩ = sin θ dθ dφ for the invariant measure on surface of unit
sphere S may be used for simplification

DB(ϕ) =

∫

B

dV1

∫

S

dΩ

4π

∫ l(r1,Ω)

0

ϕ(R)dR, (9)

where l(r1,Ω) is length of a ray from given point r1 with given direction Ω
(denoted earlier as θ, φ).

Now Eq. (3) may be derived, if to take into account normalizing multipliers
VB (volume of body B) and 4π (area of surface of unit sphere). It is explained
below in Sec. 3. Some additional technical discussion and references may be
also found in [15]. Here is important to emphasize that ray in Eq. (9) is not
necessary a particle trajectory, but formal integration on variable R along an
“axis” R.

Moreover, the formulas with integrations on few disjoint intervals for non-
convex body like Eq. (5) or Eq. (6) are also appropriate here and so Eq. (7) is
valid. It is now possible to use that also for arbitrary homogeneous and isotropic
case, i.e., for models with scattering.

The important example is a body (convex or nonconvex) inside of environ-
ment with identical or similar properties. In such a case the term in left-hand
side of Eq. (2) depends only on distance |r1− r2| even for points r2 near bound-
ary. For convex body with straight tracks it is also true, but the environment
does not matter, because trajectories of particles between two points inside of
the body may not intersect environment unlike the case with scattering.

2.2 Method Monte Carlo with rays

A useful application of Eq. (2) and Eq. (3) is Monte Carlo calculation of the
integrals. There is additional advantage for the calculation of such integrals with
many different ϕ(l) for each body. In such a case CLD or RLD for given body is
calculated only once and used further with different functions ϕ(l). Functions,
expressed via the definite integrals (single or double) of ϕ(l) in right-hand side
of the equations may be calculated either numerically or analytically.

Monte Carlo sampling of a distribution is a standard procedure and may
be visually represented as some histogram. Interval between zero and maximal
possible length is divided on n bins, i.e. intervals lj < l ≤ lj+∆l, j = 0, . . . , n−1
and during simulation for each step number of “hits” in appropriate bin is
increased by one. For equal bins the number j is simply integer part of l/n
and tracing of such data in Monte Carlo simulations is fairly fast and useful
procedure.

For application of Eq. (7) it is possible instead of construction kmax different
distributions to directly create ι̃ at once. If a ray intersects boundary in few
points it is necessary to consider intervals from origin to all points of intersection.
For length of each interval with odd index (first, second, etc.) it is necessary
to add unit to number of hits in a bin, but for interval with even index it is
necessary to subtract unit from a number in relevant bin.
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Such a method describes Monte Carlo algorithm for generation of function
ι̃(l). More difficult algorithms for quasi-probability distributions of chords is
discussed below. However, it is reasonable at first to discuss some methods for
explanation, why such algorithms are relevant with alternative definitions via
derivatives of autocorrelation function.

3 Helpful analytical equations

There are few functions related with presented models. It was already mentioned
the chord length (distribution) density µ(l), the ray length (distribution) density
ι(l), and autocorrelation function, denoted further as γ(l). It is also convenient
to consider probability density of the distances distribution (DD) η(l). There
are important relations between these functions [6, 7, 8, 9, 10, 12, 14, 15, 18, 19]

µ(l) =
l̄

VB
γ′′(l), (10)

µ(l) = −l̄ ι′(l) (11)

ι(l) = −
1

VB
γ′(l), (12)

η(l) =
4πl2

V 2
B

γ(l), (13)

where VB is volume of body B and l̄ =
∫∞

0
l µ(l)dl is average chord length, that

may be simply found for convex body due to widely used Cauchy relationship
[3, 18, 20, 21, 22]

l̄ = 4
VB
SB

. (14)

Autocorrelation function γ(l) is defined here for body with density ρ(r) = 1 for
r ∈ B as

γ(r) =

∫

B

ρ(r1)ρ(r1 + r)dV1, γ(l) =
1

4πl2

∫

|r|=l

γ(r)dΩ, (15)

i.e. dV1 = dx1dy1dz1, r1 = (x1, y1, z1) and γ(l) is an average of γ(r) on a sphere
with radius l. Definition of γ here is lack of 1/VB multiplier in comparison with
other works [15] and it causes insignificant difference in few equations. In fact,
further is only used property Eq. (13) for γ(l) and so formal definition Eq. (15)
is presented for completeness.

Distances distribution η(l) is simply defined for convex, nonconvex body and
also for system of two bodies. For explanation of relations between derivatives
of γ in Eq. (10) and Eq. (12) it is convenient to start with expression

1

V 2
B

DB(ϕ) =
1

V 2
B

∫

B

∫

B

ϕ(|r1 − r2|)

4π|r1 − r2|2
dV1dV2 =

∫ ∞

0

ϕ(l)

4πl2
η(l)dl. (16)

It may be explained using some methods of probability theory appropriate here
due to discussion on statistical sampling methods. Left-hand side of Eq. (16)
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may be considered as average of some function Φ(R) = ϕ(R)/(4πR2) of a vari-
able R = |r1 − r2| defined on space B × B.

The multiplier V 2
B is measure (“6D volume”) of this six-dimensional space

B ×B and division on this value follows from standard definition of averaging.
On the other hand, due to standard relation of an average (E) with mathemat-
ical expectation [23]

EΦ(R) =

∫

Φ(l) dlFR(l), (17)

where FR(l) is (cumulative) distribution function of random variable R and
dlFR(l) denotes probability density of R, but it is just DD density defined earlier
η(l)dl = dlFR(l), because R is distance between points and double integral
(averaging) corresponds to homogeneous distribution of such points.

Due to relation Eq. (13) it is possible to rewrite Eq. (16)

DB(ϕ) =

∫ ∞

0

ϕ(l) γ(l)dl. (18)

After integration by parts it is possible to rewrite Eq. (18)

DB(ϕ) =

∫ ∞

0

[−γ′(l)]
(

∫ l

0

ϕ(x)dx
)

dl. (19)

For a convex body Eq. (19) is in agreement with Eq. (3) and Eq. (12).
Really, Eq. (3) also may be proven using analogue of statistical approach

discussed above. A proof may be found elsewhere [15] and only briefly sketched
here. It is possible to consider Eq. (9) as averaging on five-dimensional space of
rays, represented as product B × S of body B on unit sphere S. It is necessary
to use for normalization volume VB of B multiplied on surface of unit sphere
4π. In such a case Eq. (3) may be considered as an analogue of Eq. (17) for
mathematical expectation of some function depending on length of ray.

It is possible to derive equivalent of Eq. (12) for nonconvex body with ι̃(l)
introduced in Eq. (7) if to use generalized functions and derivatives. The idea
of generalized function is convenient for further work with integrals like D(ϕ).

The generalized functionmay be defined [17] as a continuous linear functional
T(φ) on a space of a test functions φ. Usual integrable function ψ may be
associated with the functional Tψ defined for a test function φ(x) as

Tψ(φ) =

∫ ∞

−∞

ψ(x)φ(x)dx. (20)

On the other hand the DB : ϕ → DB(ϕ) is also linear functional on test
functions ϕ and may be considered as some generalized function on (0,∞),
defined by given body B. The topology on space of test functions and continuity,
i.e., DB(ϕk) → DB(ϕ) for ϕk → ϕ [17] are not discussed here.

It is often used simplified notation ψ instead of Tψ for such a regular general-
ized function defined by Eq. (20) [17]. In such a case Eq. (18) may be rewritten
as DB = γ.
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The generalized derivative [17] is defined as functional

T′(φ) = −T(φ′). (21)

Due to Eq. (3) it is possible for convex body B to write D′
B = −VB ι and Eq. (7)

for arbitrary body ensures D′
B = −VB ι̃.

4 Chord method

4.1 Chord length distribution

For convex body Eq. (2) may be rewritten with generalized functions and deriva-
tives as D′′

B = (SB/4)µ. Here generalized functions may be more appropriate,
because due to the expression with second derivative CLD is not a regular func-
tion already if DD continuous, but non-smooth in some points.

Formally, for convex body expression with additional integration along a
chord appears due to rearrangement of integral Eq. (8) and consideration of all
possible rays with origins along the same chord Fig. 2 [3].

Figure 2: Consideration of all possible rays along a chord

If to use compact notation
∫

dL for formal integration on four-dimensional
space of straight lines [20, 21], it is possible to rewrite Eq. (9) after such rear-
rangement as

DB(ϕ) =

∫

dL

4π

∫ l(L)

0

∫ r

0

ϕ(x)dx dr, (22)

there l(L) is length of chord produced by intersection of straight line L with
convex body B. In fact, Eq. (22) is an analogue of a standard expression used
for derivation of Dirac chord method [3, Eq. (1.5)].

In such a case we have double integral along a chord due to the additional
integration on source of ray

I(2)ϕ (l) =

∫ l

0

∫ r

0

ϕ(x)dx dr (23)
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For nonconvex body and chords intersecting body on few intervals it is necessary
to consider only integration on “source” point r and “target” point r2 = r + x
inside of these intervals. Using rather technical calculation [15] it is possible to
obtain instead of Eq. (23) more difficult expression with taking into account all
couples of n intervals [x2k, x2k+1], k = 0, . . . n− 1

I(2)ϕ (x0,...,2n−1) =

n−1
∑

k=0

I(2)ϕ (x2k+1 − x2k)

+

n−1
∑

k=1

k−1
∑

j=0

[I(2)ϕ (x2k+1 − x2j) + I(2)ϕ (x2k − x2j+1)]

−

n−1
∑

k=1

k−1
∑

j=0

[I(2)ϕ (x2k+1 − x2j+1) + I(2)ϕ (x2k − x2j)]. (24)

It includes all n(2n− 1) possible ordered pairs of xk, k = 0, . . . , 2n− 1 and may
be rewritten

I(2)ϕ (x0,...,2n−1) =

2n−1
∑

k=1

k−1
∑

j=0

(−1)k−j+1I(2)ϕ (xk − xj). (25)

For example with two intervals there are six terms Fig. 3

I(2)ϕ (x0,...,3) = I(2)ϕ (x1 − x0) + I(2)ϕ (x3 − x2)

+ I(2)ϕ (x3 − x0) + I(2)ϕ (x2 − x1)− I(2)ϕ (x2 − x0)− I(2)ϕ (x3 − x1)

x0 x1 x2 x3

Figure 3: Chord in nonconvex body and six possible segments

Let us rewrite integral Eq. (22)

DB(ϕ) =

∫

dL

4π
I(2)ϕ (L), (26)
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where for convex body due to Eq. (23) I
(2)
ϕ (L) = I

(2)
ϕ (lL). The same expression

also may be used for nonconvex body if to denote I
(2)
ϕ (L) = I

(2)
ϕ (xL0,...,2n−1),

where xL0 , . . . , x
L
2n−1 denote all intersections of line L with the boundary of B.

On the other hand, I
(2)
ϕ (L) may be expressed as a sum Eq. (25) with all

possible (ordered) pair of points. It is possible to rewrite Eq. (26) for nonconvex
case

DB(ϕ) =

∫

dL

4π

2n−1
∑

k=1

k−1
∑

j=0

(−1)k−j+1I(2)ϕ (xLk − xLj ). (27)

The situation is similar with expressions for rays in nonconvex body Eq. (6) and
Eq. (7). Let us denote µjk(l) lengths distributions ljk = xLk − xLj produced by

n(2n− 1) segments (xLj , x
L
k ) of a line L.

If to introduce

µ̃tot(l) =
2n−1
∑

k=1

k−1
∑

j=0

(−1)k−j+1µjk(l), µ̃ = m̃−1µ̃tot(l) (28)

there m̃ is normalization

m̃ =

∫ ∞

0

µ̃tot(l)dl. (29)

It is possible now to write an analogue of Eq. (2) for nonconvex body

DB(ϕ) = s̃B

∫ ∞

0

µ̃(l)I(2)ϕ (l)dl = s̃B

∫ ∞

0

µ̃(l)
(

∫ l

0

∫ r

0

ϕ(x)dx dr
)

dl, (30)

where s̃B is some constant. For convex body s̃B = SB/4
For convex body µ̃(l) = µ(l) and Eq. (30) may be explained using idea of

averaging and mathematical expectation Eq. (17) already discussed for DD and

RLD. Let us consider average of function f(L) = I
(2)
ϕ (lL) on four-dimensional

set L[B] of all straight lines intersecting body B.

1

wB

∫

L[B]

I(2)ϕ (lL)dL =

∫ ∞

0

I(2)ϕ (l)µ(l)dl, (31)

where wB is measure (4D volume) of L[B]. For convex body it may be expressed
as wB = πSB due to Cauchy relationship [15, 20, 21, 22, 24, 25] and after
comparison of Eq. (31) and Eq. (22) we obtain necessary coefficient wB/(4π) =
SB/4 used in Eq. (2).

For nonconvex body there are n(2n− 1) distributions µjk(l) instead of one
and Eq. (30) is obtained via alternating sum Eq. (27) of this distributions and
so here is s̃B = m̃−1

B wB/(4π) with wB is a measure for a set of all straight
lines intersecting B and m̃−1

B is constant used in definition of µ̃(l) Eq. (28).
The problem here is absence of simple methods of calculation wB and m̃B for
nonconvex body and so it may be convenient to consider yet another approach
for finding s̃B.
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It is possible to use analogue of relation Eq. (11). Integration by parts of
Eq. (7) for nonconvex body produces

DB(ϕ) = VB

∫ ∞

0

[−ι̃′(l)]
(

∫ l

0

∫ r

0

ϕ(x)dx dr
)

dl (32)

and after comparison with Eq. (30) it is possible to write

−VB ι̃
′(l) = s̃Bµ̃(l)

−VB

∫ ∞

0

l ι̃′(l)dl = s̃B

∫ ∞

0

l µ̃(l)dl

VB

∫ ∞

0

ι̃(l)dl = s̃B l̄

∫ ∞

0

µ̃(l)dl,

where by definition l̄B =
∫

lµ̃B(l)/
∫

µ̃B(l) and due to normalization condition
for ι̃(l) and µ̃(l)

s̃B = VB/l̄B. (33)

For convex body l̄B is average chord length. For nonconvex body it is equal
to average chord length for multi-chord distribution (MCD) mentioned earlier,
because sums of lengths of all intervals in two last terms of Eq. (24) compensate
each other. It is clarified below in Sec. 4.2 about Monte Carlo simulation.

In fact, the Cauchy relationship Eq. (14) for average chord length for MCD
is proved for broad class of nonconvex bodies [7] and so it is also possible to
write due to Eq. (33) in such a case

s̃B = SB/4. (34)

In numerical methods using Eq. (33) with l̄B sometimes may be preferable.
It is instructive to consider an example with so-called voxel presentation of a
body as a decomposition on small cubes or parallelepipeds. In such a case
surface is not smooth and problem with correct approximation of surface area
may not be resolved even for a formal limiting case with cubes of arbitrary small
dimensions, e.g. for a sphere such a limit is 6πr2 instead of 4πr2.

4.2 Method Monte Carlo with chords

Let us consider some questions of Monte Carlo generation of quasi-probability
distribution µ̃(l). For each straight lines with n > 1 intervals inside a body
B it is necessary to consider 2n points of intersection with the boundary of
B. Tangent points should be counted twice, but such degenerated cases are
not considered here for simplicity. Let us mark the points by numbers xk,
k = 0, . . . , 2n − 1, there x0 = 0 and other xk denote distances along given
straight line, i.e. xk = |rk − r0| there rk are positions of points of intersections
in three-dimensional space.

It is clear from further consideration, that it is possible to use opposite order
of points rk ↔ r2n−k−1 and so direction of a line does not matter. Anyway, in
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real calculations it is often used directed lines. Standard algorithms of generation
of uniform isotropic set of straight lines should be discussed elsewhere.

Let us discuss procedure of construction of µ̃(l) for given line. If line in-
tersects body n times, it is necessary to consider set of 2n numbers xk defined
above and calculate lengths ljk = (xk − xj) for all k > j, i.e. j = 0, . . . , k − 1
for each k = 1, . . . , 2n− 1.

For given ljk number in relevant bin should be increased by unit for odd
k − j and decreased by unit otherwise, i.e if k − j is even. For 2n indexes
there are 1 + 2 + · · · + (2n − 1) = n(2n − 1) ordered pairs. Between them n
pairs (x2k, x2k+1), k = 0, . . . , n− 1 represent usual chords inside body and have
positive contributions.

Remaining n(2n − 2) pairs are not corresponding to continuous intervals
inside body and may be divided on two equal groups. There are n(n− 1) pairs
with positive contribution, i.e. (x2j , x2k+1) or (x2j+1, x2k) with k = 1, . . . , n−1
and j = 0, . . . , k − 1. For other n(n − 1) pairs, i.e. (x2j , x2k) or (x2j+1, x2k+1)
with k = 1, . . . , n− 1 and j = 0, . . . , k− 1, numbers in bins should be decreased.

It is clear also from such representation, that sums of lengths of the pairs in
two last groups compensate each other, because

(x2k+1 − x2j) + (x2k − x2j+1) = (x2k − x2j) + (x2k+1 − x2j+1).

So total contribution to length is equivalent with sum of n chords inside body.
There is also additional subtlety with normalization. For each straight line

the total increase of values in all affected bins is

∆Ntot = n+ n(n− 1)− n(n− 1) = n.

So two different counters are relevant for a simulation: number of lines Nl and
sum of numbers in all bins Ntot ≥ Nl.

For normalization the (quasi)distribution should be divided on Ntot. It is
similar with MCD distribution, then for some lines there are n > 1 chords and
for such a case Ntot corresponds to total number of all chords.

It was shown above, that total sum of all lengths with taking into account
signs is equal with sum of n chords. But the normalization is the same as
for MCD case and so average value of length for quasi-probability distribution
constructed here is the same as for MCD distribution that could be produced
from the same simulation. In a limit Nl → ∞ it produces equality for l̄ already
mentioned and used above in Eq. (34).

Total number of lines Nl corresponds to normalization for OCD case, then
for each line is considered one “aggregated” chord equivalent to union of all n
intervals inside body. It is also related with measure of set of all straight lines
intersecting considered body. Earlier in Eq. (31) this measure was denoted as
wB.

Yet another application of both Ntot and Nl is calculation of a constant m̃
used earlier in Eq. (28). It may be expressed via relation between µ̃tot (that is
not normalized on unit due to contribution of lines intersecting body more than
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one time) and µ̃. So m̃ is limit of ratio between total number of chords Ntot (cf
MCD) and total number of straight lines Nl (cf OCD)

m̃ = lim
Nl→∞

Ntot/Nl. (35)

5 Multi-body case

5.1 Some equations with two different bodies

Let us return to initial question of calculation of integral Eq. (1) with two dif-
ferent bodies. Here is also convenient to consider simple model with particles
moving along straight lines in homogeneous isotropic media and to use inter-
pretation of Eq. (1) as a fraction of energy emitted in B1 and absorbed in B2.

Figure 4: Ray from B1 with interval inside B2

Let us consider a particle emitted in the first body with straight trajectory
intersecting the second one Fig. 4. If the law of absorption is the same in
both bodies and environment between them, it is possible to describe amount
of energy absorbed in second body as

∫ b

a

ϕ(x)dx = Iϕ(b)− Iϕ(a), (36)

where a and b are distances from source to two intersections of second body by
ray and Iϕ is defined above in Eq. (4).

More direct way of calculation for convex B2 Eq. (1) is to write analogue of
Eq. (8)

F
B2

B1
(ϕ) =

∫

B1

dV1

∫ θmax(r1,φ)

θmin(r1,φ)

sin θdθ

∫ φmax(r1)

φmin(r1)

dφ

∫ b(r1,θ,φ)

a(r1,θ,φ)

ϕ(R)

4π
dR, (37)

where θmin, θmax, φmin, φmax describe angular limits of integrations for given
point r1 and a, b is radial distances for given point and direction. It may be
simpler to use an analogue of Eq. (9)

F
B2

B1
(ϕ) =

∫

B1

dV1

∫

S(r1,B2)

dΩ

4π

∫ b(r1,Ω)

a(r1,Ω)

ϕ(R)dR, (38)

where S(r1, B2) is central projection from point r1 of body B2 to surface of unit
sphere.
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5.2 Relation with methods for single body

For two nonconvex bodies expressions may be even more difficult, but it is
possible to use general principle to adapt already developed approach with single
body [16]. Let us consider both bodies as sources and consider four integrals
F
Bk

Bj
(ϕ), j = 1, 2, k = 1, 2, i.e. F

B1

B1
= DB1

, FB2

B2
= DB2

, FB2

B1
= F

B1

B2
. Each

integral take into account only particles emitted in Bj and absorbed in Bk.
The double integrals Eq. (1) and Eq. (2) comply with simple relations

DB1∪B2
(ϕ) = F

B1

B1
(ϕ) + F

B2

B1
(ϕ) + F

B1

B2
(ϕ) + F

B2

B2
(ϕ) (39)

and
2FB2

B1
(ϕ) = DB1∪B2

(ϕ)−DB1
(ϕ)−DB2

(ϕ). (40)

So many equations with two bodies may be reduced to already discussed case
of single body using union of these bodies B = B1 ∪B2.

Here is suggested, that B1 does not intersect B2. For overlapping bodies it
should be taken into account decomposition on three parts: B1∪B2, B1\B2 and
B2 \B1. Instead of Eq. (40) in such a case it may be used modified expression

2FB2

B1
(ϕ) = DB1∪B2

(ϕ) +DB1∩B2
(ϕ) −DB1

(ϕ) −DB2
(ϕ). (41)

Due to such equations numerical methods discussed above let us find Eq. (1)
after separate calculation of three or four terms in Eq. (40) or Eq. (41). How-
ever, more direct methods discussed further are also useful and may be simply
generalized for case with many bodies.

For simpler case of two disjoint bodies it is possible to use almost straight-
forward modifications of Monte Carlo algorithms discussed above [16]. Here
Eq. (39) may be even more convenient for explanation than Eq. (40), because it
demonstrates, that distributions obtained in simulation may be divided on four
parts (for each pair source-target) without significant modification of algorithms
for general nonconvex body discussed above.

5.3 Application to calculations with rays

For sampling with rays are used source points distributed in both bodies with
equivalent density. All intersections of a ray in both bodies are checked and ap-
propriate bins are changed in four histograms Hjk(l) marked by indexes source-
target.

Joint consideration of all distributions let to tackle a problem with nor-
malization. For the function ι̃ term “quasi-probability distribution” could be
justified due to unit normalization and some relation with probability density
for lengths of rays in convex body, but if to write an analogue of Eq. (3) for the
integral Eq. (1)

F
B2

B1
(ϕ) =W12

∫ ∞

0

ι̃(12)(l)
(

∫ l

0

ϕ(x)dx
)

dl, (42)
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where W12 is an unknown constant, it becomes clear that ι̃(12)(l) may not be
normalized for disjoint bodies, because due to Eq. (40)

W12

∫ ∞

0

ι̃(12)(l)dl = (V1 + V2)

∫

ι̃∪(l)dl − V1

∫

ι̃1(l)dl − V2

∫

ι̃2(l)dl = 0

where integrals of all functions ι̃1(l), ι̃2(l) and ι̃∪(l) = ι̃B1∪B2
(l) are normalized

on unit.
However, if to include all four densities as components in the single process

described by quasi-probability distribution, introduced earlier

ι̃∪(l) =
∑

jk

ι̃(jk)(l), (43)

it is possible to consider ι̃(jk)(l) as elements of the same matrix ι̃(l) with the
common normalization. The same approach may be used for more than two
bodies.

5.4 Application to calculations with chords

For expression of Eq. (1) using chords distributions also may be used similar
principles [16]. Here is also appropriate to use Eq. (39). It is considered for a
straight line 2n intersections x0, . . . , x2n−1, there boundaries of both bodies are
taken into account. Each intersection should be marked by additional index xjl ,
where j = 1, 2 for B1, B2.

Each segment (xjl , x
k
m) already has two additional indexes j and k repre-

senting for two bodies four possible combinations and it produces distributions
µ̃(jk), k, j = 1, 2. It only should be mentioned that due to symmetry for chords
“source” and “target” body are hardly could be distinguished. Due to such
property it is reasonable to use only three separate histograms H11, H22 and
H12 +H21 and to define µ̃{jk}(l) as a symmetric matrix.

It may be directly generalized for a case with m bodies with k, j = 1, . . . ,m.
Advantages of application of discussed method may be illustrated by consider-
ation of domain with many different bodies intersected by set of straight lines.
It is possible to calculate all m2 integrals F

Bk

Bj
during the same Monte Carlo

simulation.
Here only m(m − 1)/2 integrals are different due to symmetry, but it is

anyway may be a big number. For medical applications with 15 − 20 objects
(organs) it is calculation of hundreds values in single Monte Carlo simulation.
In fact, speed up may be even more significant due to possibility to split each
body on few zones. Such subdivision may be necessary for taking into account
different intensity of emitters in the different parts of some objects.

There is only one subtlety for calculation with few zones: it is necessary to
split formally each surface between two zones on two coinciding boundaries. In
such a case all equations above are valid, but there are some intervals with zero
length. Such intervals may be simply omitted, because integration along them
produces zero value.
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5.5 Analytical expressions for two bodies

There are useful analogues of expressions discussed in Sec. 3 for the case with
two bodies. Function η(12)(l) may be defined as a probability density of distance
between pair of points homogeneously distributed in first and second body re-
spectively. Analytical expressions written below may be used for testing of
Monte Carlo simulation and some clarification. Technical details may be found
in [16].

The correlation function γ(12)(l) is defined for two bodies with unit densities
ρk(r) = 1 for r ∈ Bk, k = 1, 2 as

γ(12)(r) =

∫

B1

ρ1(r1)ρ2(r1 + r)dV1, γ(12)(l) =
1

4πl2

∫

|r|=l

γ(r)dΩ. (44)

It is possible to derive direct analogue of Eq. (13)

η(12) =
4πl2

V1V2
γ(12)(l) (45)

and generalisation of Eq. (18)

F
B2

B1
(ϕ) =

∫ ∞

0

ϕ(l) γ(12)(l)dl. (46)

Using integrations of Eq. (46) by parts it is possible to to express ι̃(12) and
µ̃(12) as first and second derivatives of correlation function γ(12)(l) respectively.
It is similar with Eq. (12) and Eq. (10). If to use normalization on union of
bodies suggested above and Cauchy equation for average chord length, it may
be written

µ̃(12)(l) =
4

SB1
+ SB2

γ′′(12)(l), (47)

ι̃(12)(l) = −
1

VB1
+ VB2

γ′(12)(l). (48)

So, in already mentioned expression for rays Eq. (42) for normalization on union
of two bodies instead of “unknown constant” should be used

W12 = VB1
+ VB2

(49)

and the generalization of the Dirac chord method for calculation of Eq. (1) may
be expressed formally as

F
B2

B1
(ϕ) =

SB1
+ SB2

4

∫ ∞

0

µ̃(12)(l)
(

∫ l

0

∫ r

0

ϕ(x)dx dr
)

dl. (50)
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6 Conclusion

In this paper is discussed new approach with application of quasi-probability
distributions (signed measures) to calculations of integrals Eq. (1) and Eq. (2)
useful in many areas of physics. It is written with a purpose to present a
fairly brief, but closed description of considered methods. Additional technical
details, proofs of some equations together with appropriate links with theory of
geometrical probabilities may be found elsewhere [15, 16].

It is shown, how models with ray and chord length distributions suitable for
a single convex body should be altered for nonconvex bodies and multi-body
systems. Essential new property of such extensions is necessity to use instead
of probability densities some functions which sometimes are not satisfying non-
negativity condition.

Maybe such a counterintuitive “negative probability” produced certain dif-
ficulty and delay of development and application of this methods despite of
high effectiveness of numerical algorithms based on ray and chord distributions.
On the other hand, such quasi-probability distributions are rather common in
quantum physics due to so-called Wigner function representation [26] and Feyn-
man even wrote an essay about concept of negative probability with reasonable
examples both in quantum and classical physics [27].

In fact, the functions ι̃(l) and µ̃(l) do not necessary directly related with
probability distributions and so should not cause some conceptual challenges.
Appearance of negative values may be simply illustrated using Eq. (5) and Fig. 1.
Here ray (0, l3) includes ray (0, l1) already taken into account and interval (l1, l2)
outside of the body, that should not be counted at all.

Here for work with interval (l2, l3) we have to use expressions like Eq. (5),
but it may be described in standard probability theory. It is known probability
measures for sets R1 = A, R2 = A ∪ B, R3 = A ∪ B ∪ C and it is possible to
write for probability measure of C P(C) = P(R3 \ R2) = P(R3) − P(R2) (cf
constructions of σ-algebra of events [23]).

In construction of ˜ι(l) are used overlapping sets, i.e. rays with the same
origin Fig. 1. Positive and negative terms like P(R3) and −P(R2) used for

calculation of the same P(C) affect two ranges of argument ˜ι(l). So for l = R3

there is some positive gain, but for l = R2 there is the same decrease and it
may produce negative values of ˜ι(l) for some intervals of l. We have added
an additional hit to some bin and trying to compensate that by removal from
another one, but it may produce a negative result.

Construction of ˜ι(l) is simpler, than generalization of chord length distribu-

tion ˜µ(l), but reason of appearance of negative values in both cases are similar.
Number of sets in expression for a ray grows linearly with respect to number
of intersection and for chord it is quadratic dependence. Construction of sets
also more difficult, but here alternating signs in expressions like Eq. (24) again
corresponds to an expression with unions and differences of some overlapped
sets.
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