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Abstract

The family of skew-symmetric distributions is a wide set of probability density func-
tions obtained by combining in a suitable form a few components which are selectable
quite freely provided some simple requirements are satisfied. Intense recent work has
produced several results for specific sub-families of this construction, but much less is
known in general terms. The present paper explores some questions within this frame-
work, and provides conditions on the above-mentioned components to ensure that the
final distribution enjoys specific properties.
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1 Introduction and motivation

1.1 Distributions generated by perturbation of symmetry

In recent years, there has been quite an intense activity connected to a broad class of continu-

ous probability distributions which are generated starting from a symmetric density functions

and applying a suitable form of perturbation of the symmetry. The key representative of this

formulation is the so-called skew-normal distribution, whose density function in the scalar

case is given by

f(x;α) = 2φ(x) Φ(αx), (x ∈ R), (1)

where φ(x) and Φ(x) denote the N(0,1) density function and distribution function, respect-

ively, and α is an arbitrary real parameter. When α = 0, (1) reduces to the N(0,1) distribu-

tion; otherwise an asymmetric distribution is obtained, with skewness having the same sign

of α. Properties of (1) studied by Azzalini (1985) and by other authors show a number of

similarities with the normal distribution, and support the adoption of the name skew-normal.

Furthermore, the same sort of mechanism leading from the normal density function to (1)

has been applied to other symmetric distributions, including extensions to more elaborate

forms of perturbation and constructions in the multivariate setting. Introductory accounts

to this research area are provided by the book edited by Genton (2004) and by the review

paper of Azzalini (2005), to which the reader is referred for a general overview.

For the aims of the present paper, we shall largely rely on the following lemma, presented

by Azzalini and Capitanio (2003). This is very similar to an analogous result developed

independently by Wang et al. (2004); the precise interconnections between the two statements

will be discussed in the course of the paper. Before stating the result, we recall that the

notion of symmetric density function has a simple unique definition only in the univariate

case, but in the multivariate case there exist different formulations; see Serfling (2006) for

an overview. In this paper, we adopt the notion of central symmetry, which in the case of a

continuous distribution on Rd requires that a density function p satisfies p(x−x0) = p(x0−x)

for all x ∈ Rd, for some centre of symmetry x0.

Lemma 1 Denote by f0 a d-dimensional probability density function centrally symmetric

about 0, by G0(·) a continuous distribution function on the real line such that g0 = G′0 is an

even density function, and by w an odd real-valued function on Rd such that w(−x) = −w(x).

Then

f(x) = 2 f0(x)G0{w(x)}, (x ∈ Rd), (2)

is a density function.

This result provides a general mechanism for modifying an initial symmetric ‘base’ density

f0 via the perturbation factor G(x) = G0{w(x)}, whose components G0 and w can be chosen

among a wide set of options. Clearly, the prominent case (1) can be obtained by setting

d = 1, f0 = φ, G0 = Φ, w(x) = αx in (2). The term ‘skew-symmetric’ is often adopted for

distributions of type (2). An important property associated to Lemma 1 is provided by the

next statement.
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Proposition 2 (Perturbation invariance) If the random variable X0 has density f0 and

X has density f , where f0 and f satisfy the conditions required in Lemma 1, then the equality

t(X)
d
= t(X0) , (3)

where ‘
d
=’ denotes equality in distribution, holds for any even q-dimensional function t on

Rd, irrespectively of the factor G(x) = G0{w(x)}.

1.2 A wealth of open questions

The intense research work devoted to distributions of type (2) has provided us with a wealth

of important results. Many of these have however been established for specific subclasses

of (2). The most intensively studied instance is given by the skew normal density which

in the case d = 1 takes the form (1). Important results have been obtained also for other

subclasses, especially when f0 is the Student’s t density or the Subbotin density (also called

exponential power distribution).

Much less is known in general terms, in the sense that there still is a relatively limited

set of results which allow us to establish in advance, on the basis of qualitative properties of

the components f0, G0, w of (2), what will be the formal properties of the resulting density

function f . Results of this kind do exist, and Proposition 2 is the most prominent example,

since it is both completely general and of paramount importance in the associated distribu-

tion theory; from this property, several results on quadratic forms and even order moments

follow. Little is known about the distribution of non-even transformations. Among the

limited results of the latter type, some general properties of odd moments of (2) have been

presented by Umbach (2006, 2008). There are however many other questions, which arise

quite naturally in connection with Lemma 1; the following is a non-exhaustive list.

� In the case d = 1, which assumptions on G(x) ensure that the median of f is larger

than 0? More generally, when can we say the the p-th quantile of f is larger than the

p-th quantile of f0? Obviously, ‘larger’ here can be replaced by ‘smaller’.

� The even moments of f and those of f0 coincide, because of (3). What can be said

about the odd moments? For instance, is there an ordering of moments associated to

some form of ordering of G(x)?

� If f0 is unimodal, which are the additional assumptions on G0 and w which ensure that

f is still unimodal?

� When d > 1, a related but distinct question is whether high density regions of the type

Cu = {x : f(x) > u}, for an arbitrary positive u, are convex regions.

The aim of the present paper is partly to tackle the above questions, but at the same time

we take a broader view, attempting to make a step forward in understanding the general

properties of the set of distributions (2). The latter target is the motivation for the prelim-

inary results of Section 2, which lead to a characterization result in Section 2.2 and provide

the basis for the subsequent sections which deal with more specific results. In Section 3

we deal with the case d = 1 and tackle some of the questions listed above. Specifically,

we obtain quite general results on stochastic ordering of skew-symmetric distributions with

3



common base f0, and these imply orderings of quantiles and of expected values of suitable

transformations of the original variate. The final part of Section 3 concerns uniqueness of

the mode of the density f . Section 4 deals with the case of general d, where various results

are obtained. One of these is to establish convexity of the sets Cu for the more important

subclass of the skew-elliptical family, provided the parent elliptical family enjoys the same

property. We also examine the connection between the formulation of skew-elliptical dens-

ities of type (2) and those of Branco and Dey (2001), and prove the conjecture of Azzalini

and Capitanio (2003) that the first formulation strictly includes the second one. Finally we

gives conditions for the log-concavity of skew-elliptical distributions not generated by the

conditioning mechanism of Branco and Dey (2001).

2 Skew-symmetric densities with a common base

2.1 Preliminary facts

Clearly, f in (2) depends on G0 only via the perturbation function G(x) = G0{w(x)}. The

assumptions on G0 and w in Lemma 1 ensure that

G(x) ≥ 0 , G(x) +G(−x) = 1 , (x ∈ Rd), (4)

and it is conversely true that a function G satisfying these conditions ensures that

f(x) = 2 f0(x)G(x) (5)

is a density function. In fact (4)–(5) represent the formulation adopted by Wang et al. (2004)

for their result essentially equivalent to Lemma 1.

Each of the two formulations has its own advantages. As remarked by Wang et al. (2004),

the representation of G(x) in the form G(x) = G0{w(x)} is not unique. In fact, given one

such representation,

G(x) = G∗{w∗(x)}, w∗(x) = G−1∗ [G0{w(x)}]

is another one, for any strictly increasing distribution function G∗ with even density function

on R.

On the other hand, finding a function G fulfilling conditions (4) is immediate if one

builds it via the expression G(x) = G0{w(x)}; in fact, this is the usual way adopted in the

literature to select suitable G functions. Furthermore, Wang et al. (2004) have shown that

the converse fact holds: any function G satisfying (4) can be written in the form G0{w(x)},
and this can be done in infinitely many ways. A choice of this representation which we find

‘of minimal modification’ is

G0(t) =
(
t+ 1

2

)
I(−1,1)(2t) + I[1,+∞)(2t) , (t ∈ R) ,

w(x) = G(x)− 1
2 , (x ∈ Rd) ,

(6)

where IA(x) denotes the indicator function of the set A. In plain words, this G0 is the

distribution function of a U(−1
2 ,

1
2) variate.

Another important finding of Wang et al. (2004, Proposition 3) is that any positive density

function f on Rd admits a representation of type (5), as indicated in their result which we
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reproduce next with a little modification concerning the arbitrariness of G(x) outside the

support of f0. Here and in the following, we denote by −A the set formed by reversing the

sign of all elements of A, if A denotes a subset of a Euclidean space. If A = −A, we say that

A is a symmetric set.

Proposition 3 Let f be a density function with support S ⊆ Rd. Then a representation of

type (5) holds, with

f0(x) =

{
1
2{f(x) + f(−x)} if x ∈ S0,

0 otherwise,

G(x) =

 f(x)

2f0(x)
if x ∈ S0,

arbitrary otherwise,

(7)

where S0 = (−S) ∪ S, and the arbitrary branch of G satisfies (4). Moreover f0 is unique,

and G is uniquely defined over S0.

Consider now a density function with representation of type (5). We first introduce a

property of the cumulative distribution function F which is also of independent interest.

Rewrite the first relation in (7) as

f(−x) = 2 f0(x)− f(x). (8)

for any x = (x1, . . . , xd). If we denote by F0 the cumulative distribution function of f0, then

integration of (8) on ∩dj=1(−∞, xj ] gives

F (−x) = 2F0(x)− F (x) (9)

where F denotes the survival function, that is F (x) = P{X1 ≥ x1, . . . , Xd ≥ xd}; (9) can be

written as

F (−x) + F (x) = F0(x) + F0(−x)

and this is in turn equivalent to Proposition 2, as stated in Proposition 4 below.

2.2 A characterization

The five single statements composing the next proposition are known for the case d = 1,

some of them also for general d. The more important novel fact is their equivalence, which

therefore represents a characterization type of result.

Proposition 4 Consider a random variable X = (X1, ...Xd)
> with density function f and

cumulative distribution function F , and a continuous random variable Y = (Y1, ...Yd)
> with

density function h and distribution function H. Then the following conditions are equivalent:

(a) the densities f(x) and h(x) admit a representation of type (5) with the same symmetric

base density f0(x),

(b) t(X)
d
= t(Y ), for any even q-dimensional function t on Rd,

(c) P (X ∈ A) = P (Y ∈ A), for any symmetric set A ⊂ Rd,
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(d) F (x) + F (−x) = H(x) +H(−x),

(e) f(x) + f(−x) = h(x) + h(−x), (a.e.).

Proof

(a)⇒(b) This follows from the perturbation invariance property of Proposition 2.

(b)⇒(c) Simply notice that the indicator function of a symmetric set A is an even function.

(c)⇒(d) On setting

A+ = {s = (s1, . . . , sd) ∈ Rd : sj ≤ xj , ∀j},
A− = {s = (s1, . . . , sd) ∈ Rd : −sj ≤ xj , ∀j} = −A+,

A∪ = A+ ∪A− ,
A∩ = A+ ∩A− ,

both A∪, A∩ are symmetric sets; hence we get

F (x) + F (−x) = P (X ∈ A+) + P (X ∈ A−) ,

= P (X ∈ A∪) + P (X ∈ A∩) .

(d)⇒(e) Taking the d-th mixed derivative of (d), relationship (e) follows.

(e)⇒(a) It follows from the representation given in Proposition 3.

In the special case d = 1, the above statements can be re-written in more directly

interpretable expressions. Specifically, (9) leads to

1− F (−x) = 2F0(x)− F (x) , (10)

which will turn out to be useful later, and

F (x)− F (−x) = F0(x)− F0(−x).

Moreover, when d = 1, conditions (c) and (d) in Proposition 4 can be replaced by the

following more directly interpretable forms:

(c′) |X| d= |Y |,

(d′) F (x)− F (−x) = H(x)−H(−x) ,

the first of which has appeared in Azzalini (1986), and the second one is an immediate

consequence.
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3 Some results when d = 1

3.1 Stochastic ordering the univariate case

In this section, we focus on the case with d = 1. We first introduce an ordering on the set

of functions which satisfy (4). When this concept is restricted to symmetric distribution

functions, it reduces to the peakedness order introduced by Birnbaum (1948), to compare

the variability of distributions about 0.

Definition 5 If G1 and G2 satisfy (4), we say that G2 is greater than G1 on the right,

denoted G2 ≥GR G1, if G2(x) ≥ G1(x) for all x > 0 and strict inequality holds for some x.

Of course it is equivalent to require that G2(x) ≤ G1(x) for all x < 0 and the inequality

holds at some x. Another equivalent condition is that

G2(s)−G2(r) ≥ G1(s)−G1(r), (r < 0 < s) .

If we now consider a fixed symmetric ‘base’ density f0 and the perturbed distribution

functions associated to G1 and G2, that is

Fk(x) =

∫ x

−∞
2 f0(u)Gk(u) du, (k = 1, 2), (11)

the ordering G2 ≥GR G1 implies immediately the stochastic ordering of F1 and F2 in the

usual sense that F2 is stochastically larger than F1 if F1(s) ≥ F2(s) for all s. To see this,

consider first s ≤ 0; then G1(x) ≥ G2(x) for all x ≤ s, and this clearly implies F1(s) ≥ F2(s).

If s > 0, the same conclusion holds by using (10) with x = −s. We have then reached the

following conclusion.

Proposition 6 If G1 and G2 satisfy condition (4), and G2 ≥GR G1, then the distribution

functions (11) satisfy

F1(x) ≥ F2(x) , (x ∈ R). (12)

Since G0 is a monotonically increasing function, then it can be easier to check the ordering

of G1 and G2 via the ordering of the corresponding w(x)’s.

Proposition 7 If G1 = G0(w1(x)) and G2 = G0(w2(x)) where G0 is as in Lemma 1, and

w1 and w2 are odd functions such that w2(x) ≥ w1(x) for all x > 0, then G2 ≥GR G1 and

(12) holds.

Figure 1 illustrates the order G2 ≥GR G1 and the stochastic order between the correspond-

ing distributions functions F1(x) ≥ F2(x), as stated by Proposition 6. Here f0 is the Cauchy

density, G0 is the Cauchy distribution functions, and two forms of w(x) are considered,

namely w1(x) = x3 − x, w2(x) = x3. The two perturbation functions G1(x) = G0(w1(x))

and G2(x) = G0(w2(x)) are plotted in the left panel; the right panel displays the corres-

ponding distribution functions F1(x) and F2(x).

The stochastic ordering of the Fk’s translates immediately into a set of implications about

ordering of moments and quantiles of the Fk’s. Specifically, if Xk is a random variable with

distribution function Fk, for k = 1, 2, then the following statements hold.
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Figure 1: Cauchy density function f0(x) perturbed by G0 equal to the Cauchy distribution,

choosing w1(x) = x3 − x, and w2(x) = x3; on the left panel G1 (continuous line) and G2

(dashed line), on the right F1 (continuous) and F2 (dashed)

� If Qk(p) denotes p-th quantile of Xk for any 0 < p < 1, then

Q1(p) ≤ Q2(p) ,

and there exists at least one p for which the inequality is strict.

� For any non-decreasing function t such that the expectations exist,

E{t(X1)} ≤ E{t(X2)} (13)

and the inequality is strict if t is increasing.

A further specialized case occurs when t(x) = x2n−1 in (13), for n = 1, 2, . . ., which

corresponds to the set of odd moments. In this case, (13) improves a result of Umbach

(2006) stating that

E
{
X2n−1

0

}
≤ E

{
X2n−1

1

}
≤ E

{
X2n−1
∗

}
where X0 has density f0 and X∗ has density 2f0 on the positive axis, which corresponds to

G(x) = I[0,∞)(x) in (5) and the density of X1 corresponds to a G1 which is a distribution

function.

It can be noticed that, if G2 ≥GR G1 ≥GR G+ ≡ 1
2 , then the variances of the corresponding

variables Xk decrease with respect to ≥GR, that is var{X2} ≤ var{X1} ≤ var{X0}, while

the reverse holds if G+ ≥GR G1 ≥GR G2.

A simple but popular setting where Proposition 6 applies is when w(x) = αx, for some

real α, leading to the following immediate implication.

Proposition 8 If f0 and G0 are as in Lemma 1, then the set of densities

f(x;α) = 2 f0(x)G0(αx) (14)
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indexed by the real parameter α are associated to distribution functions which are stochastic-

ally ordered with α.

Notice that, when α in (14) is positive, it has a direct interpretation as an inverse scale

parameter for G0, while it acts as a shape parameter for f(x). Another case of interest is

given by

w(x) = αx

√
ν + 1

ν + x2
,

which occurs in connection with the skew Student’s t distribution with ν degrees of freedom,

studied by Azzalini and Capitanio (2003) and others, where f0 and G0 are of Student’s t type

with ν and ν+ 1 degrees of freedom, respectively. Because of Proposition 7, the distribution

functions associated to (2) with this choice of w(x) are stochastically ordered with respect

to α, whether or not f0 and G0 correspond to a Student’s t distribution.

3.2 On the uniqueness of the mode

To examine the problem of the uniqueness of the mode of f when d = 1, it is equivalent and

more convenient to study log f . If f ′0(x) and g(x) = G′(x) exist, then

h(x) =
d

dx
log f(x)

=
f ′0(x)

f0(x)
+
g(x)

G(x)

= −h0(x) + hg(x) ,

say. The modes of f are a subset of the solutions of the equation

h0(x) = hg(x) , (15)

or they are on the extremes of the support, if it is bounded. Since at least one mode always

exists, we look for conditions to rule out the existence of additional modes.

For the rest of this subsection, we assume that G(x) is a monotone function satisfying

(4). Without loss of generality, we deal with the case that G is monotonically increasing; for

decreasing functions, dual conclusions hold.

In most common cases, f0 is unimodal at 0, hence non-decreasing for x ≤ 0. Therefore

the product f0(x)G(x) is increasing, and no negative mode can exist. The same conclusion

holds if f0 is increasing and G(x) is non-decreasing for x ≤ 0.

To ensure that there is at most one positive mode, some additional conditions are required.

For simplicity of argument, we assume that f0 and G have continuous derivative everywhere

on the support S0 of f0; this means that we are concerned with uniqueness of the solution

of (15). A sufficient set of conditions for this uniqueness is that h0(x) is increasing and

g(x) is decreasing. These requirements imply that hg(0) > 0 and hg is decreasing, so that

0 = h0(0) < hg(0) and the two functions can cross at most once for x > 0. When S0 is

unbounded, a solution of (15) always exists, since g → 0 and hg → 0 as x → ∞. If S0
is bounded, (15) may happen to have no solution; in this case, f(x) is increasing for all x

and its mode occurs at the supremum of S0. We summarize this discussion in the following

statement.
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Table 1: Some commonly used densities f0 and associated components

distribution f0(x) h0(x) h′0(x)

standard normal φ(x) x 1

logistic
ex

(1 + ex)2
ex − 1

ex + 1

2 ex

(ex + 1)2

Subbotin cν exp

(
−|x|

ν

ν

)
sgn(x) |x|ν−1 sgn(x) (ν − 1)|x|ν−2

Student’s tν cν

(
1 +

x2

ν

)− ν+1
2 ν + 1

ν

x

1 + x2/ν

(ν + 1)(ν − x2)
(ν + x2)2

Proposition 9 If G(x) in (5) is a increasing function and f0(x) is unimodal at 0, then no

negative mode exists. If we assume that f0 and G have continuous derivative everywhere

on the support f0, G(x) is concave for x > 0, and f0(x) is log-concave, where at least one

of these properties holds in a strict sense, then there is a unique positive mode of f(x). If

G(x) is decreasing, similar statements hold with reversed sign of the mode; uniqueness of the

negative mode requires that G(x) is convex for x < 0.

Recall that the property of log-concavity of a univariate density function is equivalent to

strong unimodality; see for instance Section 1.4 of Dharmadhikari and Joag-dev (1988).

To check the above conditions in specific instances, it is convenient to work with the

functions h0 and g′, if the latter exists. In the case of increasing w(x), uniqueness of the

mode is ensured if g′(x) < 0 for x > 0 and h0(x) is an increasing positive function. In the

linear case w(x) = αx, log-concavity of f0(x) and unimodality of g0(x) at 0 suffice to ensure

unimodality of f(x).

Table 1 recalls some of the more commonly employed density functions f0 and their

associated functions h0 and h′0. For the first two distributions of Table 1, and for the

Subbotin’s distribution when ν > 1, h0 is increasing. If one combines one of these three

choices of f0 with the distribution function of a symmetric density having unique mode at 0,

then uniqueness of the mode of f(x) follows. Clearly, the condition of unimodality of g(x)

holds if g0 is unimodal at 0 and w(x) = αx. The criterion of Proposition 9 does not apply for

the Student’s distribution, since h0(x) is increasing only in the interval (−
√
ν,
√
ν). Hence

a second intersection with hg cannot be ruled out even if g(x) is decreasing for all x > 0.

However, for the skew-t distribution, unimodality has been established in the multivariate

case by Capitanio (2008) and Jamalizadeh and Balakrishnan (2010), and furthermore it

follows as a corollary of a stronger result to be presented in Section 4.

The requirement of differentiability of f0 and G in Proposition 9 rules out a limited

number of practically relevant cases. For this reason, we did not dwell on a specific discussion

of less regular cases. One of the very few relevant distributions which are excluded occurs

when f0 is the Laplace density function. This case is however included in the discussion of

the multivariate Subbotin distribution, developed in Section 4.3, when ν = 1 and d = 1.

Although Proposition 9 only gives a set of sufficient conditions for unimodality, the

condition that g(x) is decreasing for x > 0 cannot be avoided completely. In other words,

when f is represented in the form (2), the sole condition of increasing w(x) is not sufficient for
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Figure 2: Case with f0 = φ, G0 = Φ , w(x) = x3. The left-side panel displays the functions

h0 (continuous), g (dashed), hg (dot-dashed); the right-side panel displays f(x)

unimodality. This fact is demonstrated by the simple case with f0 = φ, G0 = Φ, w(x) = x3,

whose key features are illustrated in Figure 2. Since w′(0) = 0, then g(0) = 0; hence (15) has

a solution in 0, but the left panel of Figure 2 shows that there are two more intersections of

h0 and hg for x > 0, one corresponding to an anti-mode and one to a second mode of f(x),

as visible from the right panel of the figure.

This case falls under the setting examined by Ma and Genton (2004) who have shown

that for f0 = φ, G0 = Φ, w(x) = αx + β x3 there are at most two modes. Some additional

conditions may ensure unimodality: one such set of conditions is α, β > 0 and α3 > 6β. To

prove that they imply unimodality of f , consider

d2 log Φ(w(x))

dx2
= − φ(w(x))

Φ(w(x))2

×
{

Φ(w(x))[(βx3 + αx)(3βx2 + α)2 − 6β x] + φ(w(x))(3βx2 + α)2
}
.

whose terms inside curly brackets, except −6β x, are all positive for x ≥ 0. Since α3 > 6β,

then (α3 − 6β)x is positive, so that this derivative is negative and G0(w(x)) is log-concave

for x ≥ 0. For x < 0, we use this other argument: since G0 is increasing and log-concave and

w(x) is concave in the subset x < 0, then the composition G0(w(x)) is log-concave in the

subset x < 0; see Proposition 10 (iii) below. Since the above second derivative is continuous

everywhere, then G0(w(x)) is log-concave everywhere.

4 Quasi-concave and unimodal densities in d dimensions

A real-valued function f defined on a subset S of Rd is said to be quasi-concave if the sets

of the form Cu = {x : f(x) ≥ u} are convex for all positive u. If d = 1, the notion of

quasi-concavity coincides with uniqueness of the maximum, provided a pole is regarded as

a maximum point, but for d > 1 the two concepts separate. This motivates the following
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digression about concavity and related concepts, to develop some tools which will be used

later on for our main target.

4.1 Concavity, quasi-concavity and unimodality

We first recall some standard notions available for instance in Chapter 16 of Marshall and

Olkin (1979). A real function f defined on a convex subset S of Rd is said to be concave if,

for every x and y ∈ S and θ ∈ (0, 1), we have

f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y);

in this case −f is a convex function. A function f is said to be log-concave if log f is concave,

that is for every x and y ∈ S and θ ∈ (0, 1) we have

f(θx+ (1− θ)y) ≥ f(x)θf(y)1−θ.

The terms strictly concave and strictly log-concave apply if the above inequalities hold in a

strict sense for all x 6= y and all θ.

Concave and log-concave functions defined on an open set are continuous. Moreover a

twice differentiable function is concave (strictly concave) if and only if its Hessian matrix is

negative semi-definite (negative definite) everywhere on S.

The next proposition provides the concave and log-concave extension of classical compos-

ition properties for convex functions such as statement (i) which can be found for example in

Marshall and Olkin (1979, p. 451) together with its proof; the proofs of the other statements

are completely analogous.

Proposition 10 Let h be a real function defined on a convex set S, a subset of Rd, and H

a monotone real function defined on a convex subset of R, such that the composition H(h)

is defined on S. Then the following properties hold.

(i) If h is convex and H non-decreasing and convex, then H(h) is convex. Moreover H(h)

is strictly convex if H is strictly convex, or if h is strictly convex and H is strictly

monotone.

(ii) If h is convex and H non-increasing and log-concave, then H(h) is log-concave. Moreover

H(h) is strictly log-concave if H is strictly log-concave, or if h is strictly convex and

H is strictly monotone. The same statements hold replacing the term log-concave by

concave throughout.

(iii) If h is concave and H non-decreasing and log-concave, then H(h) is log-concave.

Moreover H(h) is strictly log-concave if H is strictly log-concave, or if h is strictly

concave and H is strictly monotone. The same statements hold replacing the term

log-concave by concave throughout.

We have defined quasi-concavity by requiring convexity of all sets Cu. An equivalent

condition is that, for every x and y ∈ S ⊆ Rd and θ ∈ (0, 1), we have

f(θx+ (1− θ)y) ≥ min{f(x), f(y)}.

12



Obviously a function which is concave or log-concave is also quasi-concave. Similarly, both

strict concavity and strict log-concavity imply strict quasi-concavity.

We now apply the above notions to the case where f represents a probability density

function on a set S ⊆ Rd. The concept of unimodality has a friendly formal definition in

the univariate case, see for instance Dharmadhikari and Joag-dev (1988, p .2), but this has

has no direct equivalent in the multivariate case. Informally, we say that the term mode

of a density refers to a point where the density takes a maximum value, either globally or

locally. While a boring formal definition which allows for the non-uniqueness of the density

function could be given, such a definition is not really necessary for the main aims of the

present paper, since the density functions which we are concerned with are so regular that

their modes are either points of (local) maxima or poles.

The set of the modes of a quasi-concave density is a convex set. Moreover, if f is strictly

quasi-concave, then the mode is unique. When the mode is unique we say that density f is

unimodal, and we say that f is c-unimodal if the set of its modes is a convex set. If X is a

random variable with density function f which is unimodal, we shall say that X is unimodal,

with slight abuse of terminology. The same convention is adopted for log-concavity, quasi-

concavity and other properties.

Another important notion is s-concavity, which helps to make the concept of quasi-

concavity more tractable. A systematic discussion of s-concavity has been given by Dhar-

madhikari and Joag-dev (1988); see specifically their Section 3.3, of which we now recall the

main ingredients. Given a real number s 6= 0, a density is said to be s-concave on S if

f(θx+ (1− θ)y) ≥ {θf(x)s + (1− θ)f(y)s}1/s.

for all x, y ∈ S and all θ ∈ (0, 1).

Clearly, concavity corresponds to s = 1. A density f is s-concave with s < 0 if and only

if fs is convex; similarly, a density f is s-concave with s > 0 if and only if fs is concave. If

we call (−∞)-concave a function which is quasi-concave and 0-concave a function which is

log-concave, then the class of sets of s-concave functions is increasing when s decreases; in

other words, if f is s-concave, then it is r-concave for any r < s. Finally, notice that is easy

to adapt Proposition 10 to s-concave functions.

The closure with respect to marginalization of s-concave densities depends on the value of

s and on the dimensions of the spaces, as indicated by the next proposition, which essentially

is Theorem 3.21 of Dharmadhikari and Joag-dev (1988).

Proposition 11 Let f be an s-concave density on a convex set S in Rd+m, and fd be the

marginal density of f on an d-dimensional subspace. If s ≥ −1/m, then fd is sm-concave

on the projection of the support of f , where sm = s/(1 + ms), with the convention that, if

s = −1/m, then sm = −∞.

Notice that this result includes the fact that the class of log-concave densities is closed with

respect to marginalization. In addition, from a perusal of the proof of the above-quoted

Theorem 3.21, we obtain that the marginal densities are strictly sm-concave provided f is

strictly s-concave or the set S is strictly convex.

13



4.2 Skew-elliptical distributions generated by conditioning

A d-dimensional random variable U is said to have an elliptical density, with density generator

function f̃ , if its density fU is of the form

fU (y) = k f̃(y>Ω−1y), (16)

where Ω is a d-dimensional positive definite matrix, the function f̃ : (0,+∞) → R+ is such

that xd/2−1f̃(x) has finite integral on (0,+∞) and k is a suitable constant which depends

on d and det(Ω). In this case, we shall use the notation U ∼ Ed(0,Ω, f̃).

Note that an elliptical density f is c-unimodal if and only if its density generator is non-

increasing, and it is unimodal if and only if its density generator is decreasing. Then it turn

out that f is c-unimodal if and only if it is quasi-concave, and it is unimodal if and only if

it is strictly quasi-concave.

An initial formulation of skew-elliptical distribution has been considered by Azzalini and

Capitanio (1999), which was of type (2) with f0 of elliptical class and w(x) linear. Another

formulation of skew-elliptical distribution has been put forward by Branco and Dey (2001),

whose key ingredients are now recalled. Consider a (d+ 1)-dimensional random variable

U =

(
U0

U1

)
∼ Ed+1(0,Ω+, f̃) , where Ω+ =

(
1 δ>

δ Ω

)
> 0, (17)

and U0 and U1 have dimension 1 and d, respectively; for our aims, there is no loss of

generality in assuming that the diagonal elements of Ω+ are all 1’s. Then a random variable

Z = (U1|U0 > 0) is said to have a skew-elliptical distribution, and its density function at

u1 ∈ Rd is

fZ(u1) = 2

∫ +∞

0
k1f̃(u>Ω−1+ u) du0 (18)

where u> = (u0, u
>
1 ). This construction arises as an extension of one of the mechanisms for

generating the skew-normal distribution to the case of elliptical densities, but the study of

the connections with other densities of type (2) was not an aim of Branco and Dey (2001).

Consequently, one question investigated by Azzalini and Capitanio (2003) was whether

all distributions of type (18) are of type (2), with the requirement that f0 is the density of an

elliptical d-dimensional distribution. The conjecture has been proved for a set of important

cases, notably the multivariate skew-normal and the skew-t distributions, among others, but

a general statement could not be obtained. This general conclusion is however quite simple

to reach using representation (5), and recalling that Branco and Dey (2001) have proved

that (18) can be written as

fZ(y) = 2 f0(y)Fy(α
> y), (y ∈ Rd), (19)

where f0 is the density of an elliptical d-dimensional distribution, and Fy is a cumulative

distribution function of a symmetric univariate distribution, which depends on y only through

y>Ω−1y. Since Fy = F−y, then it is immediate that G(y) = Fy(α
> y) satisfies (4). Hence

(19) allows a representation of type (5), and via (6) also of type (2).

Proposition 12 Assume that the random variable U in (17) is c-unimodal. If f̃ is log-

concave, then the elliptical densities of U and U1 and the skew-elliptical density of Z are

log-concave. Moreover they are strictly log-concave if U is unimodal or f̃ is strictly log-

concave or the support of f̃ is bounded.
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Proof. Function h(u) = u>Ω−1+ u is strictly convex. Since U is c-unimodal, then f̃ is

non-increasing, moreover it is log-concave; therefore f̃(u>Ω−1+ u) is log-concave by Proposi-

tion 10 (ii). Then both U and (U |U0 > 0) have log-concave densities. Since the marginals of

a log-concave density are log-concave, then log-concavity of U1 and Z holds by (18). Now, if

U is unimodal, f̃ is decreasing, and f̃(u>Ω−1+ u) is strictly log-concave, by Proposition 10 (i).

If f̃ is strictly log-concave, then f̃(u>Ω−1+ u) is strictly log-concave. Finally, if the support

of f̃ is bounded, then the support of U is strictly convex and, by Proposition 10 (i), also in

this case f̃(u>Ω−1+ u) is strictly log-concave. Then, in all three cases, strict log-concavity of

U1 and Z holds by recalling the remark following Proposition 11.

This proposition is a special case of the more general result which follows, but we keep

Proposition 12 separate both because of the special role of log-concavity and because this

arrangement allows a more compact exposition of the combined discussion.

Proposition 13 Assume that the random variable U in (17) is c-unimodal. If f̃ is s-

concave, with s ≥ −1, then U has s-concave density, whereas the elliptical density of U1 and

the skew-elliptical density of Z are s1-concave, with s1 = s/(1 + s). Moreover all conclusions

hold strictly if U is unimodal or f̃ is strictly s-concave or the support of f̃ is bounded.

Proof. The function h(u) = u>Ω−1+ u is strictly convex. Since U is c-unimodal, then f̃

is non-increasing and moreover it is s-concave. We now examine properties of concavity

separating the case s < 0 and s > 0; the case s = 0, which corresponds to log-concavity, has

already been handled in Proposition 12. If s < 0 then f̃s is non-decreasing and convex. Then

f̃s(u>Ω−1+ u) = {f̃(u>Ω−1+ u)}s is convex by Proposition 10 (i) and f̃(u>Ω−1+ u) is s-concave.

On the other hand, if s > 0 then f̃s is non-increasing and concave. Then f̃s(u>Ω−1+ u) =

{f̃(u>Ω−1+ u)}s is concave by Proposition 10 (ii) and f̃(u>Ω−1+ u) is s-concave. Then both U

and (U |U0 > 0) have s-concave densities. Now, the claim about the densities of U1 and Z

follows from Proposition 11 by taking into account (18). The final statement follows by the

same type of argument used in the proof of Proposition 12.

Note that, in the special case of a concave density generator, the support is bounded, and

both the marginal density on Rd and the skew-symmetric density of Z are not necessarily

concave. However, using Proposition 13 with s = 1, strict 1/2-concavity of their densities

follows, and this fact implies strictly log-concavity.

The results of Proposition 12 and Proposition 13 allow to handle several classes of dis-

tributions, of which we now sketch the more noteworthy cases.

A important specific instance is the multivariate skew-normal density which can be rep-

resented by a conditioning method. For an expression of the multivariate skew-normal den-

sity, see for instance (16) of Azzalini (2005). Since the density generator of the normal

family, f̃(x) = exp(−x/2), is decreasing and log-concave, then from Proposition 12 we ob-

tain log-concavity of the skew-normal family. This conclusion is however a special case of a

more general result on log-concavity of the SUN distribution obtained by Jamalizadeh and

Balakrishnan (2010); see their Theorem 1.

The (d + 1)-dimensional Pearson type II distributions for which f̃(x) = (1 − x)ν , where

x ∈ (0, 1) and ν ≥ 0, satisfies the conditions of Proposition 13. In fact it is non-increasing

and ν−1-concave on a bounded support. Then the skew-elliptical d-dimensional density is

strictly (ν + 1)−1-concave and therefore strictly log-concave. The density function of the

skew-type II density function is given by (22) of Azzalini and Capitanio (2003).
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In addition, Proposition 13 holds for the Pearson type VII distributions, and in particular

for the Student’s distribution. In this case the density generator is given by

f̃(x) = (1 + x/ν)−M (ν < 0, (d+ 1)/2 < M). (20)

and M = (d+ν+ 1)/2 for the Student’s density. Such generator is decreasing and s-concave

with s = −1/M ; in fact f̃(x)−1/M is convex. Since s ≥ −1, then Proposition 13 applies and

the skew-t is s1-concave with s1 = −1/(M − 1), and s1 = −2/(d + ν − 1) in the Student’s

case. These densities are not log-concave, but they are still strictly quasi-concave. Hence

unimodality follows. For expressions of the multivariate skew-type VII and skew-t density,

see (21) and (26) of Azzalini and Capitanio (2003), respectively.

The above results establish not only unimodality of the more appealing subset of the

skew-elliptical family of distributions, namely those of type (18), but also the much stronger

conclusion of quasi-concavity of these densities. It is intrinsic to the nature of skew-elliptical

densities that they do not have highest density regions of elliptical shape, but it is reassuring

that they maintain a qualitatively similar behaviour, in the sense that convexity of these

regions, Cu in our notation, holds as long as the parent (d+ 1)-dimensional elliptical density

enjoys a qualitatively similar property but in a somewhat stronger variant, specifically s-

concavity with s ≥ −1.

Note that there is no hope to extend Proposition 12 to quasi-concave densities, in the sense

that a skew-symmetric generated by conditioning a quasi-concave density is not necessarily

quasi-concave as demonstrated by the following construction.

Example Consider U = (U0, U1)
> ∼ E2(0,Ω+, f̃), where

f̃ = I(0,1) + I(0,42) and Ω+ =

(
1 1/2

1/2 1

)
,

whose density function is

fU (x, y) = k{IS1(x, y) + IS4(x, y)}

where Sj = {(x, y) ∈ R2 : x2 + y2 − xy ≤ 3j2/4}, j = 1, 4, and k is the normalizing constant

given by k = 1/(A1 + A4) ≈ 0.0216 where Aj = π
√

3j2/2 . Then both U0, and U1 have

common support [−4, 4] and density function

fU0(x) = fU1(x) = k
(√

3(1− x2) I(−1,1)(x) +
√

3(16− y2)
)
.

Because of (16) and (18), the density of Z = (U1|U0 > 0) is given by

fZ(y) = k{f1(y) + f4(y)}

where

fj(y) = 2

∫ +∞

0
ISj (x, y) dx =

 y +
√

3(j2 − y2) if −
√

3j/2 ≤ y ≤
√

3j/2,

2
√

3(j2 − y2) if
√

3j/2 ≤ y ≤ j,
0 otherwise,

for j = 1, 4, and it is displayed in Figure 3. The global maximum of fZ is where k(2y +√
3(16− y2) +

√
3(1− x2)) takes its maximum value, that is at y ≈ 0.699. When y > 1,

fZ = kf4 and there is another local maximum at y = 2. Therefore, fZ is not unimodal.

To conclude with, while the density of U is quasi-concave, the skew-elliptical variable Z

generated by conditioning is not quasi-concave.
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Figure 3: Density function fZ(x), exhibiting lack of quasi-concavity, obtained by conditioning

of a bivariate elliptical quasi-concave distribution

4.3 Log-concavity of other families of distributions

There are several other families of distributions which belong to the area of interest of the

stream of literature described at the beginning of this paper but are not included in the

conditioning mechanism of an elliptical distribution considered in § 4.2. This section deals

with log-concavity of some of these other families, making use of the following immediate

implication of Proposition 10.

Corollary 14 If q0 is a log-concave function defined on a convex set S ⊆ Rd, and H and h

are as in Proposition 10, either (ii) or (iii), then

q(x) = q0(x)H{h(x)}, (x ∈ S), (21)

is log-concave on S.

Example The density function on the real line introduced by Subbotin (1923) has been

variously denoted by subsequent authors as exponential power distribution, generalized error

distribution and normal distribution of order ν. Its multivariate version is

fν(x) = cν det(C)1/2 exp

(
−(x>Cx)ν/2

ν

)
, (x ∈ Rd),

where C is a symmetric positive definite matrix, ν is a positive parameter and cν a normaliz-

ation constant. For ν = 2 and ν = 1, fν lends the multivariate normal and the multivariate

Laplace density, respectively.

We first want to show that fν is log-concave if ν ≥ 1. Consider h(x) = (x>Cx)1/2 whose

Hessian matrix is

∂2 h(x)

∂x ∂x>
= h(x)−3

(
x>CxC − Cxx>C

)
= h(x)−3M,
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say. To show that this Hessian is positive semi-definite, it is sufficient to prove this fact for

matrix M , since h(x) ≥ 0. For any u ∈ Rd, write

u>Mu = (x>Cx)(u>Cu)− (u>Cx)(x>Cu) = ‖ũ‖2 ‖x̃‖2 − (ũ>x̃)2

where ũ = C1/2u and x̃ = C1/2x for any square root C1/2 of C, and from the Cauchy-Schwarz

inequality we conclude that u>Mu ≥ 0. Then h is convex. Next, write

− log fν(x) = constant + h(x)ν/ν

and observe that, since tν is a strictly convex for t ≥ 0, then − log fν is convex for ν ≥ 1

and strictly convex for ν > 1 by Proposition 10 (i). Hence fν is log-concave for ν ≥ 1 and

strictly log-concave for ν > 1.

Now we introduce a skewed version of fν of type (2). If we aim at obtaining a density

which fulfils the requirements of both Lemma 1 and Corollary 14, then H = G0 is non-

decreasing, while function h = w must be odd and concave, hence it has to be linear. We

then focus on the density function

f(x) = 2 fν(x)G0(α
>x), (x ∈ Rd), (22)

where G0 is a distribution function on R, symmetric about 0.

Among the many options for G0, a quite natural choice is to take G0 equal to the

distribution function of fν in the scalar case, that is

G0(t) =
1

2

(
1 + sgn(t)

γ(|t|ν/ν, 1/ν)

Γ(1/ν)

)
, t ∈ R,

where γ denotes the lower incomplete gamma function. This choice of G0 has been examined

by Azzalini (1986) in the case d = 1 of (22). He has shown that G0 is strictly log-concave

if ν > 1, leading to log-concavity of (22) when d = 1. The case ν = 1 which corresponds

to the Laplace distribution function is easily handled by direct computation of the second

derivative to show strict log-concavity of G0. Now, combining strict log-concavity of G0 with

log-concavity of fν proved above, an application of Corollary 14 shows that (22) is strictly

log-concave on Rd if ν ≥ 1.

Although (22) is of skew-elliptical type, it is not of the type generated by the conditioning

mechanism of a (d+ 1)-dimensional elliptical variate considered in Section 4.2. In fact, the

results of Kano (1994) show that the set of densities fν is not closed under marginalization,

and this fact affects the conditioning mechanism (18) as well.

As an example of non-elliptical distribution, we can consider a d-fold product of univariate

Subbotin’s densities, that is

f∗ν (x) =
d∏
j=1

cν exp(−|xj |ν/ν) , x = (x1, . . . , xd) ∈ Rd ,

and this density can be used as a replacement of fν in (22). Since each factor of this product

is log-concave, if ν ≥ 1, the same property holds for f∗ν . Strict log-concavity holds for

2f∗ν (x)G0(α
>x) as well, using again strict log-concavity of G0.
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Example To illustrate the applicability of Corollary 14 to distributions outside the set of

type (2), consider the so-called extended skew-normal density which in the d-dimensional

case takes the form

f(x) = φd(x; Ω)
Φ(α0 + α> x)

Φ(τ)
, (x ∈ Rd), (23)

where τ ∈ R and α0 = τ(α>Ωα)1/2. Although this distribution does not quite fall under the

umbrella of Lemma 1 unless τ = 0, its constructive argument is closely related.

To show log-concavity of (23), first recall the well-known fact that φd(x; Ω) is strictly

log-concave. Moreover Φ is log-concave, as if follows by direct calculation of the second

derivative of log Φ, taking into account the well-known fact −yΦ(y) < φ(y) for every y ≤ 0.

In addition, since Φ is strictly increasing and α0 + α> x is concave in a non-strict sense,

Corollary 14 applies to conclude that (23) is strictly log-concave.

Although this conclusion is a special case of the result of Jamalizadeh and Balakrishnan

(2010) concerning log-concavity of the SUN distribution, it has however been presented

because the above argument is different.
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