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Abstract—The problem of filtering of finite—alphabet problem of choosing the “best” estimate, proposing,
stationary ergodic time series is considered. A method for instead, a set of estimates. The performance of a method
constructing a confidence set for the (unknown) signal is s then characterized by the size of the confidence set

roposed, such that the resulting set has the followin - - L
Brogerties: First, it includes thegunknown signal Withg (depending on the confidence level). This is the approach

probability ~, where v is a parameter supplied to the filter. and the problems considered in this work.
Second, the size of the confidence sets grows exponentially We consider the model in which the underlying noise-
with the rate that is asymptotically equal to the conditiond  |ess signal and the resulting corrupted (noisy) signal (and
entropy of the signal given the data. Moreover, it is shown 5 the channel) are assumed to be stationary ergodic
that this rate is optimal. . ! .
processes with finite alphabets. It is assumed that the

probability distributions of the noiseless signal and the
noisy channel are known. (Obviously, in such a case the

The problem of estimating a discrete signadiistribution of the corrupted signal is known, t00.) The
Xi,...,X; from a noisy versionZi,...,Z; has results that we obtain establish the optimal rate of growth
attracted attention of many researchers due to i&ith respect to time, or to the length of the signal) of
great importance for statistics, computer sciencehe size of the confidence set, as well as a method for
image processing, astronomy, biology, cryptographyonstructing such a set.
information theory and many other fields [11]. Let us consider an example that illustrates our ap-

The main attention is usually focused on developingroach and exposes the notation. Let the signal be binary
methods of estimation (denoising, or filtering) of thewith the alphabef0,1}), and suppose that it is transmit-
unknown signal, with the performance measured undeted through a memoryless binary erasure channel (e.g.
given fidelity criterion; seel[11] and references thereirl])). The binary erasure channel with erasure probability
Such an approach is close in spirit to the problem of is defined as a channel with binary input, ternary
point estimation in statistics. output (with the alphabef0, 1, «}), and the probability

An alternative approach, often considered in matlof erasurer. The channel replaces each input symbol
ematical statistics, is that of constructing confidend@® or 1 with the (output) symbok with probability
sets. That is, one tries to use the data to constructraerasure), and places the input signal in the output
set that includes the unknown parameter (in our casstherwise (that is, with probability — ).
the signal) with a prescribed probability, while trying Suppose that the noiseless sequence is generated by
to keep the size of the set as small as possible (se,i.i.d. sourceP and P{X; = 0} = 0.9, and let the
for example, [[4]). Such a set is usually constructegrasure probability be any € (0,1). Suppose that the
as the set of most likely values of the parameter. Th@rrupted by noise sequence is as follows:
reason why such an approach is of interest is as follows.
In the presence of noise, exact recovery of the signal Zy.Zg=0x1x.
'S t.yplcall.y |mpos_S|bIe, and t.hus., in such cases, a%hen we have the following probability distribution for
of its estimates is necessarily imperfect. The chou‘tﬁe lossless signal:
of a particular estimated signal from many likely esti- '
mates is largely arbitrary. Moreover, the optimal choice P({X,..X, = 0010}) = 0.81,
may depend on the specific application involved. The
confidence—set approach effectively abstracts from the P({X;...X4 = 0110}) = 0.09,
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P({X;..X4 = 0011}) = 0.09, set{z} ,,...,2] ' }. Otherwise ! (Z; ) also contains
j— 1 first elements, but also the elemerit , with prob-

P({X.. Xy = 0111}) = 0.01. ability (v — Y211 P(x},|21.))/P(e] 4] Z1.). (Note
If we take a confidence level = 0.99, the con- that this procedure is commonly used in mathematical
fidence set will contain three following sequencestatistics for making the confidence level exactly
{0010, 0110, 0011}. When talking about the size of the confidence sets we re-

The goal of this paper is to describe a constructid§" to their expected (with respect to the randomization)

of confidence sets and to give an estimate of their sizd%& _ _ _ _
for the case when the signal and noise are stationary\&Xt, we estimate the size of the described confi-

ergodic processes with finite alphabets. It is shown thdgnce set.

for anyy € (0,1) the size of the confidence set growsrheorem 1. Let an (unknown) signak = X; X, ...
exponentially with the raté:,(X|Z), whereh(X|Z) is and its noisy versionZ = Z;Z,,... be stationary
the limit (conditional) Shannon entropy. Moreover, wWergodic processes with finite alphabets. Then, for every

prove that this rate is minimal, which means that the < (0,1), all t € N and almost everyZi,...,Z,
suggested method of constructing the confidence sets{s confidence set! (Z1,...,Z;) contains the unknown
asymptotically optimal. (X1,...,X;) with probability ~:

It is worth noting that the information theory is
deeply connected with mathematical statistics and signal P{X, 1€V (Z1 1)} =", 1)

processing; see, for example) [11) 2]l [6]) [7]) [8L/ [9). jhije - with probability 1, the size of the set
[10] and [3], [11], correspondingly. In this paper a nevYI/t( '1 ..., Zt) grows expor;entially with the exponent
connection of this kind is established: it is shown thar%ﬁe th’at i57 equal to the conditional entropy:

the Shannon entropy determines the rate of growth o . '

the size of the confidence set for the signal, given its ;. 1 t _

version corrupted by stationary noise. A t log BI¥, (21, Z)| = h(X|2) a5, (2)

0T where the expectation is with respect to the randomiza-
- |'HE CONFIDENCE SETS AND THEIR PROPERTIES 5 yged in constructing the confidence sets.

XWE( cons;dn%r ittsh?\oicsasser\gig?ée—tr; ?gnﬁl ar:e Proof: The proof of [1) immediately follows from
L2, Y — b the construction of the selt’ (Z1Z,...Z;).

described by stationary and ergodic processes with fini S rhe proof of [2) will be based on the Shannon-

alphab_e'_[sX and Z respectively. It is supposed thatI\/IcMiIIan-Breiman theorem [1],[[3], which for the con-
probability of both processes are known, and, henc&tional entropy implies the following:

the statistical structure of the noise corrupting the digna

X = X5, X,, ... isknown, too. Introduce the short-hand_emma 1 (Shannon-McMillan-Breiman)ve > 0,V§ >

notation X, , for Xi,..., X;, and analogously foZ. 0, for almost all Z, Z,, . .. there exists:’ such that if
Informally, for any v € (0,1) and any se- n >n'then

quence 7i,...,7Z; we define the confidence set 1

V! (Z1,22,...,2;) as follows: the set contains se-P{ - log P(X1..,|Z1..m) — h(X/Z)‘ < E} >1—0.

quences, xo, . . ., x; Whose probabilitie® (x1 +|Z1.+) (3)

are maximal and sum tg. This definition is not precise,
since it is possible that the sum can not be made equal@ké anye > 0 and some constant > 0 to be
to ~ exactly. That is why the formal definition of theSPecified latern > n’, and rewrite[(B) as follows:
confidence set will use randomization.

For this purpose we order all sequenc¥s , ac- P(2_n(h(xlz)+8) < P(X1.n|Z1.m)
cording their conditional probabilities, in the decreasin < 2—n(h(X\Z)—a)) S1-5 (4)
order. That is, enumerate all sequenags; € X" in - = ’
such a way thatay ;) € X' has a smaller index than prom this inequality it follows that there are at least
(b ;) € X" if either Pay.4|Z1..¢) > P(b1..|Z1.4), OF (1 — §)20(h(XI2)~9) strings 21, ...z, such that for
P(ay. 4| Z1.+) = P(b1..4|Z1.+) and(ay. ;) is lexicograph- each of them we have® (1. | Z1..n) > 9—n(h(X|Z)+e)
ically less than(b, ;). Let j be an integer for which Therefore, if we fix any that satisfies
23;11 Pi(gcll..t_|zl..t) <vyandXi, P(af 4| Z1.4) > 7. h(X|Z)—<
If 72, Pz} ,|Z1.4) =7, then definel! (Z, ;) as the (1 —98)27 *X1DFe >y,



then we have
|‘I/tv(Zl..n)| <y MAXZ)+e)
so that

o W (21| < W(X|2) + £+ 00 /n) ()

(1]
(2]

(3]

for n > n’. Having taken into account thafl (5) holds for [4]

everye > 0 we obtain [2). [ |

IIl. THE OPTIMALITY OF THE CONFIDENCE SET

Theorem 2. Let an (unknown) signak = X; X5, ...

and its noisy versionZ = Z,Z,,... be stationary
ergodic processes with finite alphabeXs and Z. Let
<I>§(Z1__t), be confidence sets, such that for some

(0,1) we haveP (X, ; € ®!(Z.4)) >~ forall t e N

and almost allZ;. ; € Z¢. Then, with probability 1,

|
hgggf;log@fy(Zl, L Z)| > h(X|Z). (6)

(5]

(6]

(7]

(8]
El

Proof: The proof will use the equatiori](4) of they;q
proof of Theorenil (that is, on the Shannon-McMillan-

Breiman theorem). As before, we take any 0 and fix
§ := v/2. Then from some: on we have[(§). Lefl be
a confidence set for this and a certainy. Define

® = {xm L 9 n((X|2)+e) <

P(x1n|Zln) < 2—n(h(X\Z)—g)} . (7)

By definition, Zm]__ner P(x1.4|Z1..n) > . From this
and [4) we obtain

>

T1. ., EXND

From this and[{l7) we get
IT| > |TN®| > (v — §)2nnXIZ)=2),

Hence,
1
liminf — log|Y| > h(X|Z) —¢.
t—oo n

Since this inequality is true for any confidence ¥eand
anye > 0, we obtain [(6). [ |
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