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Abstract—The problem of filtering of finite–alphabet
stationary ergodic time series is considered. A method for
constructing a confidence set for the (unknown) signal is
proposed, such that the resulting set has the following
properties: First, it includes the unknown signal with
probability γ, whereγ is a parameter supplied to the filter.
Second, the size of the confidence sets grows exponentially
with the rate that is asymptotically equal to the conditional
entropy of the signal given the data. Moreover, it is shown
that this rate is optimal.

I. I NTRODUCTION

The problem of estimating a discrete signal
X1, . . . , Xt from a noisy version Z1, . . . , Zt has
attracted attention of many researchers due to its
great importance for statistics, computer science,
image processing, astronomy, biology, cryptography,
information theory and many other fields [11].

The main attention is usually focused on developing
methods of estimation (denoising, or filtering) of the
unknown signal, with the performance measured under a
given fidelity criterion; see [11] and references therein.
Such an approach is close in spirit to the problem of
point estimation in statistics.

An alternative approach, often considered in math-
ematical statistics, is that of constructing confidence
sets. That is, one tries to use the data to construct a
set that includes the unknown parameter (in our case,
the signal) with a prescribed probability, while trying
to keep the size of the set as small as possible (see,
for example, [4]). Such a set is usually constructed
as the set of most likely values of the parameter. The
reason why such an approach is of interest is as follows.
In the presence of noise, exact recovery of the signal
is typically impossible, and thus, in such cases, any
of its estimates is necessarily imperfect. The choice
of a particular estimated signal from many likely esti-
mates is largely arbitrary. Moreover, the optimal choice
may depend on the specific application involved. The
confidence–set approach effectively abstracts from the

problem of choosing the “best” estimate, proposing,
instead, a set of estimates. The performance of a method
is then characterized by the size of the confidence set
(depending on the confidence level). This is the approach
and the problems considered in this work.

We consider the model in which the underlying noise-
less signal and the resulting corrupted (noisy) signal (and
thus the channel) are assumed to be stationary ergodic
processes with finite alphabets. It is assumed that the
probability distributions of the noiseless signal and the
noisy channel are known. (Obviously, in such a case the
distribution of the corrupted signal is known, too.) The
results that we obtain establish the optimal rate of growth
(with respect to time, or to the length of the signal) of
the size of the confidence set, as well as a method for
constructing such a set.

Let us consider an example that illustrates our ap-
proach and exposes the notation. Let the signal be binary
(with the alphabet{0, 1}), and suppose that it is transmit-
ted through a memoryless binary erasure channel (e.g.
[1]). The binary erasure channel with erasure probability
π is defined as a channel with binary input, ternary
output (with the alphabet{0, 1, ∗}), and the probability
of erasureπ. The channel replaces each input symbol
0 or 1 with the (output) symbol∗ with probability
π (erasure), and places the input signal in the output
otherwise (that is, with probability1− π).

Suppose that the noiseless sequence is generated by
an i.i.d. sourceP andP{Xi = 0} = 0.9, and let the
erasure probability be anyπ ∈ (0, 1). Suppose that the
corrupted by noise sequence is as follows:

Z1...Z4 = 0 ∗ 1 ∗ .

Then we have the following probability distribution for
the lossless signal:

P ({X1...X4 = 0010}) = 0.81,

P ({X1...X4 = 0110}) = 0.09,
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P ({X1...X4 = 0011}) = 0.09,

P ({X1...X4 = 0111}) = 0.01.

If we take a confidence levelγ = 0.99, the con-
fidence set will contain three following sequences:
{0010, 0110, 0011}.

The goal of this paper is to describe a construction
of confidence sets and to give an estimate of their size,
for the case when the signal and noise are stationary
ergodic processes with finite alphabets. It is shown that
for any γ ∈ (0, 1) the size of the confidence set grows
exponentially with the rateh(X |Z), whereh(X |Z) is
the limit (conditional) Shannon entropy. Moreover, we
prove that this rate is minimal, which means that the
suggested method of constructing the confidence sets is
asymptotically optimal.

It is worth noting that the information theory is
deeply connected with mathematical statistics and signal
processing; see, for example, [1], [2], [6], [7], [8], [9],
[10] and [5], [11], correspondingly. In this paper a new
connection of this kind is established: it is shown that
the Shannon entropy determines the rate of growth of
the size of the confidence set for the signal, given its
version corrupted by stationary noise.

II. T HE CONFIDENCE SETS AND THEIR PROPERTIES

We consider the case where the signalX =
X1, X2, . . . and its noisy versionZ = Z1, Z2, . . . are
described by stationary and ergodic processes with finite
alphabetsX and Z respectively. It is supposed that
probability of both processes are known, and, hence,
the statistical structure of the noise corrupting the signal
X = X1, X2, . . . is known, too. Introduce the short-hand
notationX1..t for X1, . . . , Xt, and analogously forZ.

Informally, for any γ ∈ (0, 1) and any se-
quence Z1, . . . , Zt we define the confidence set
Ψt

γ(Z1, Z2, . . . , Zt) as follows: the set contains se-
quencesx1, x2, . . . , xt whose probabilitiesP (x1..t|Z1..t)
are maximal and sum toγ. This definition is not precise,
since it is possible that the sum can not be made equal
to γ exactly. That is why the formal definition of the
confidence set will use randomization.

For this purpose we order all sequencesX1..t ac-
cording their conditional probabilities, in the decreasing
order. That is, enumerate all sequencesx1..t ∈ X

n in
such a way that(a1..t) ∈ X

t has a smaller index than
(b21..t) ∈ X

t if either P (a1..t|Z1..t) > P (b1..t|Z1..t), or
P (a1..t|Z1..t) = P (b1..t|Z1..t) and(a1..t) is lexicograph-
ically less than(b1..t). Let j be an integer for which
∑j−1

i=1 P (xi
1..t|Z1..t) ≤ γ and

∑j

i=1 P (xi
1..t|Z1..t) > γ.

If
∑j−1

i=1 P (xi
1..t|Z1..t) = γ, then defineΨt

γ(Z1..t) as the

set{x1
1..t, . . . , x

j−1
1..t }. Otherwise,Ψt

γ(Z1..t) also contains
j−1 first elements, but also the elementxj

1..t with prob-
ability (γ −

∑j−1
i=1 P (xi

1..t|Z1..t))/P (xj
1..t|Z1..t). (Note

that this procedure is commonly used in mathematical
statistics for making the confidence level exactlyγ.)
When talking about the size of the confidence sets we re-
fer to their expected (with respect to the randomization)
size.

Next, we estimate the size of the described confi-
dence set.

Theorem 1. Let an (unknown) signalX = X1X2, . . .
and its noisy versionZ = Z1Z2, . . . be stationary
ergodic processes with finite alphabets. Then, for every
γ ∈ (0, 1), all t ∈ N and almost everyZ1, . . . , Zt

the confidence setΨt
γ(Z1, . . . , Zt) contains the unknown

(X1, . . . , Xt) with probability γ:

P{X1..t ∈ Ψt
γ(Z1..t)} = γ, (1)

while, with probability 1, the size of the set
Ψt

γ(Z1, . . . , Zt) grows exponentially with the exponent
rate that is equal to the conditional entropy:

lim
t→∞

1

t
logE|Ψt

γ(Z1, . . . , Zt)| = h(X |Z) a.s., (2)

where the expectation is with respect to the randomiza-
tion used in constructing the confidence sets.

Proof: The proof of (1) immediately follows from
the construction of the setΨt

γ(Z1Z2...Zt).
The proof of (2) will be based on the Shannon-

McMillan-Breiman theorem [1], [3], which for the con-
ditional entropy implies the following:

Lemma 1 (Shannon-McMillan-Breiman). ∀ε > 0, ∀δ >
0, for almost allZ1, Z2, . . . there existsn′ such that if
n > n′ then

P

{
∣

∣

∣

∣

−
1

n
logP (X1..n |Z1..n)− h(X/Z)

∣

∣

∣

∣

< ε

}

≥ 1− δ.

(3)

Take anyε > 0 and some constantδ > 0 to be
specified later,n > n′, and rewrite (3) as follows:

P
(

2−n(h(X|Z)+ε) ≤ P (X1..n|Z1..n)

≤ 2−n(h(X|Z)−ε)
)

≥ 1− δ. (4)

From this inequality it follows that there are at least
(1 − δ)2n(h(X|Z)−ε) strings x1, . . . , xn such that for
each of them we haveP (x1..n|Z1..n) ≥ 2−n(h(X|Z)+ε).
Therefore, if we fix anyδ that satisfies

(1 − δ)2−
h(X|Z)−ε

h(X|Z)+ε ≥ γ,
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then we have

|Ψt
γ(Z1..n)| ≤ γ2−n(h(X|Z)+ε),

so that
1

n
log |Ψt

γ(Z1..n)| ≤ h(X |Z) + ε+O(1/n) (5)

for n > n′. Having taken into account that (5) holds for
everyε > 0 we obtain (2).

III. T HE OPTIMALITY OF THE CONFIDENCE SET

Theorem 2. Let an (unknown) signalX = X1X2, . . .
and its noisy versionZ = Z1Z2, . . . be stationary
ergodic processes with finite alphabetsX and Z. Let
Φt

γ(Z1..t), be confidence sets, such that for someγ ∈
(0, 1) we haveP

(

X1..t ∈ Φt
γ(Z1..t)

)

≥ γ for all t ∈ N

and almost allZ1...t ∈ Z
t. Then, with probability 1,

lim inf
t→∞

1

t
log |Φt

γ(Z1, . . . , Zt)| ≥ h(X |Z). (6)

Proof: The proof will use the equation (4) of the
proof of Theorem 1 (that is, on the Shannon-McMillan-
Breiman theorem). As before, we take anyε > 0 and fix
δ := γ/2. Then from somen on we have (4). LetΥ be
a confidence set for thisn and a certainγ. Define

Φ =
{

x1..n : 2−n(h(X|Z)+ε) ≤

P (x1..n|Z1..n) ≤ 2−n(h(X|Z)−ε)
}

. (7)

By definition,
∑

x1..n∈Υ P (x1..n|Z1..n) ≥ γ. From this
and (4) we obtain

∑

x1..n∈Υ∩Φ

P (x1..n|Z1..n) ≥ γ − δ.

From this and (7) we get

|Υ| ≥ |Υ ∩ Φ| ≥ (γ − δ)2n(h(X|Z)−ε).

Hence,

lim inf
t→∞

1

n
log |Υ| ≥ h(X |Z)− ε.

Since this inequality is true for any confidence setΥ and
any ε > 0, we obtain (6).
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