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Abstract

We take a fresh look at high energy radioactive nuclei data reported in the 90’s and at the
positron data recently reported by PAMELA. Our aim is to study the model independent
implications of these data for the propagation time scales of cosmic rays in the Galaxy.
Considering radioactive nuclei, using decaying charge to decayed charge ratios – the only
directly relevant data available at relativistic energies – we show that a rigidity independent
residence time is consistent with observations. The data for all nuclei can be described by
fs,i = (ti/100Myr)0.7, where fs,i is the suppression of the flux due to decay and ti is the
observer frame lifetime for nucleus specie i. Considering positron measurements, we argue
that the positron flux is consistent with a secondary origin. Comparing the positron data
with radioactive nuclei at the same energy range, we derive an upper bound on the mean
electromagnetic energy density traversed by the positrons, ŪT < 1.25 eV/cm3 at a rigidity of
R = 40 GV. Charge ratio measurements within easy reach of the AMS-02 experiment, most
notably a determination of the Cl/Ar ratio extending up to R ∼ 100 GV, will constrain the
energy dependence of the positron cooling time. Such constraints can be used to distinguish
between different propagation scenarios, as well as to test the secondary origin hypothesis
for the positrons in detail.

1 Introduction

The sources of primary cosmic rays (CRs), the correct description of CR propagation and the
mechanisms of CR trapping in and escape from the Galaxy are all essentially unknown [1, 2, 3].
Given the list of open questions, it is remarkable that very few detailed model independent
analyses exist in the literature. In contrast, models of homogeneous diffusion have become a
standard, where the general approach is to fit the parameters of the model to B/C and low energy
10Be/9Be data. It is difficult to extract generally applicable information from such studies.

In this work we present a model independent analysis of the propagation time scales of CR
nuclei and positrons. These time scales are related to the CR residence time in the Galaxy, a
key unknown of CR propagation. Motivated by the prospects for improved measurements in
the near future [4, 5, 6, 7, 8], our analysis demonstrates that it is possible to extract significant
quantitative information from CR measurements under general assumptions, without committing
to any particular propagation model.

The main data we use are based on the decaying charge to decayed charge ratios Be/B,
Al/Mg and Cl/Ar [9], measured to relativistic energies [10] and studied more than a decade
ago by [11, 12]. Earlier analyses of CR propagation time scales in the context of diffusion and
leaky box models can be found e.g. in [13, 14, 15, 16, 17, 18] and references therein. Being
model dependent, the values deduced in these studies for the CR residence time differ by order
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of magnitude, as well as by their physical interpretation. In addition, these studies focused on
low energy isotopic data, where various theoretical complications arise and where the limited
dynamical range of the experiments precludes a direct inference of the energy dependence of the
residence time. Apart from the work of [11, 12], the high energy charge ratio measurements
we analyze here were recently considered in [19, 20] in the context of fits to the parameters of
diffusion models.

Before proceeding to describe the plan of this paper we first emphasize the key concepts and
approximations. A central tool in this work is the CR grammage, the mean traversed ISM column
density experienced by CRs [1]. At high energy, where propagation energy gains/losses can be
neglected, the local flux of any stable secondary nucleus can be calculated reliably as [21, 22]

JS =
c

4π
Xesc Q̃S , (1)

where Xesc is the CR grammage and Q̃S is the local net production (including spallation losses)
per unit column density of ISM. Eq. (1) is an empirical relation; any acceptable model of CR
propagation must reproduce it.

In our study we identify the effects due to decay in radioactive nuclei and due to radiative
losses in positrons, by using Eq. (1) to compute the flux that would be expected had there been
no decay and loss and relating it to the flux observed in practice. Doing so entails some approx-
imation. For Eq. (1) to apply, the CR rigidity should remain unchanged during propagation,
including fragmentation and decay events. In contrast, the decaying charge and decayed charge
samples, reported at a given kinetic energy per nucleon, exhibit a spread in rigidity. This spread
is more pronounced for lighter elements, the maximal change occurring in the decay 10

4 Be →10
5 B

in which the rigidity of the nucleus drops by 20%. Similar effects occur in certain spallation
reactions and in the production of positrons and antiprotons, which do not inherit the rigidity
of the primary CR. Due to these effects, typical calculations based on Eq. (1) are accurate only
at the ten percent level or so [23, 24].

In addition, various propagation effects cause energy change for CR rigidities R ∼< 10 GV.
Striking examples of such effects are the latitude dependent geomagnetic cutoff of the earth
and the time dependent (charge dependent and independent) solar modulation [2, 3]. Other
mechanisms likely operate in interstellar space. Since the theoretical understanding of these
effects is poor, we limit our analysis to CR rigidities R ∼> 10 GV.

The plan of this paper is as follows. In Section 2 we study the high energy radioactive
nuclei data analyzed by [11]. We present the data in a new way, which makes the existence of an
underlying time scale in the problem – the CR residence time – manifest. Our presentation of the
data demonstrates that the charge ratio analysis of [11] does not suffer from gross systematics.
We show how a combination of data from different nuclei species can be used to measure the
functional form of the suppression due to decay. We show that a CR residence time which is
mildly dependent or constant as a function of rigidity is consistent with the data.

In Section 3 we consider the PAMELA positron measurements [4, 25]. We argue that the
positron flux is consistent with a secondary origin [22]. Assuming secondary origin we compare
the effects of cooling in positrons to the effects of decay in nuclei, extracting bounds on the cooling
time of the positrons. These bounds can be used to test in detail the production mechanism of
the positrons, and have implications for CR propagation time scales in general.

In Section 4 we summarize and discuss our results. We point out that new measurements
expected in the near future from the AMS-02 experiment [8] can significantly improve our quanti-
tative understanding of CR propagation time scales in a model independent manner. Our simple
analysis can readily be repeated for the new AMS-02 data.
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In Appendix A we give two propagation model examples to illustrate some general arguments
made in the paper.

2 Lessons from radioactive nuclei data

The measured effect of radioactive decay in nuclei receives different interpretations, depending
on the adopted propagation model. At low energies E ∼< 400 MeV/nuc, measurements of the

isotopic ratios 10Be/9Be, 26Al/27Al, 36Cl/Cl and 54Mn/Mn yield, within a leaky box model
interpretation, a residence time tesc ∼ 15 Myr [15]. Using the same low energy data, diffusion
models yield a residence time tesc ∼ 100 Myr [18]. Since the isotopic ratios are only known at
sub-GeV energies, they give no direct information about the energy dependence of the residence
time and of the suppression of the flux due to decay.

In contrast, the decaying charge to decayed charge ratios Be/B, Al/Mg, Cl/Ar and Mn/Fe
have been measured up to energies E ∼ 16 GeV/nuc (rigidities R ∼ 40 GV [10]). Ref. [11]
interpreted these charge ratios using three different models: a leaky box model, a diffusion
model and a diffusion-based Monte-Carlo calculation. From the Monte-Carlo analysis, a CR
residence time tesc ∼20-30 Myr was deduced. Given that the usual leaky box and homogeneous
diffusion models assume tesc ∝ Xesc and that Xesc ∼ R−0.5, it is interesting to note that [11]
quotes a single value for the CR residence time. Since the data spans about a decade in rigidity,
the deduced value of tesc would have changed by a factor of three in this range had the naive
expectation been applicable.

The charge ratios Be/B, Al/Mg, Cl/Ar and Mn/Fe are predicted in a leaky box model to
vary by about 20%, 30%, 50% and 40%, respectively, between no decay and complete decay.
While this estimate may not apply in general, it makes clear that systematic uncertainties are
of major concern [15, 16]. Measurement errors were discussed in [11]. Here we emphasize three
types of systematic uncertainties which are most relevant for our analysis. First, uncertainties
in the fragmentation cross sections are of order ten percent [26]. Second, a potential source of
uncertainty is the existence of some primary component in the 26Al, 36Cl and 54Mn fluxes [27, 28].
Third, as noted in the introduction, the use of the CR grammage relation, Eq. (1), introduces
additional theoretical inaccuracy of order ten percent. All three types of bias are difficult to
quantify precisely. A dedicated analysis, beyond the scope of this paper, would be required to do
so. In the rest of this section we show that despite this caveat, the results of [11] contain clear
physical information, which can be used to constrain the CR residence time directly, in a model
independent manner.

Following [22], we define the suppression factor due to decay of a radioactive nucleus specie
i as

fs,i =
Ji

c
4π Q̃iXesc

. (2)

The suppression factor fs,i can be derived from the surviving fraction f̃i reported in [11], using
the formula

fs,i =
f̃i

1 + σi

mp
Xesc

(

1− f̃i

) , (3)

where σi is the total fragmentation cross section per ISM nucleon. Using the suppression factor
fs,i rather than the surviving fraction f̃i allows us to (i) isolate the effect of decay from that of
spallation losses and (ii) later on, compare directly the effect of decay of radioactive nuclei to
the effect of energy losses of positrons.

3



It is instructive to examine the suppression factor due to decay vs. observer frame lifetime.
This is done in Fig. 1 for 10Be, 26Al and 36Cl, using the fragmentation cross sections and rest
frame lifetimes from Table 1 and the CR grammage from [29]. We omit 54Mn, the lifetime
of which is uncertain [15], and adopt a 15% uncertainty estimate for the CR grammage and
the fragmentation cross sections. A number next to each data point denotes the rigidity at
that point in GV. We make the following observations: (i) The suppression factor for all three
nuclei species exhibits a clear correlation with lifetime. (ii) Where available at the same lifetime,
fs,10Be ≈ fs,36Cl and fs,26Al ≈ fs,36Cl to better than a factor of two.

Since the rest frame lifetimes of 10Be and 36Cl (26Al and 36Cl) are different by a factor of five
(three), data points of equal lifetime are separated by similar factors in rigidity. The approximate
continuity of fs,i across nuclei specie thus hints that the rigidity dependence of the residence time
is not strong. To assess this point quantitatively, we make some rather general assumptions.

reaction τ [Myr] σ [mb]

10
4 Be → 10

5 B 2.18 (0.09) 210
26
13Al → 26

12Mg 1.31 (0.06) 410
36
17Cl → 36

18Ar 0.443 (0.003) 520

Table 1: Decay lifetimes and fragmentation cross sections for unstable radioactive isotopes.
Decay lifetimes refer to pure β decay channels [15, 17]. Fragmentation cross sections refer to
spallation on H. We adopt a 15% uncertainty estimate for the cross sections and correct them
for an ISM composition of 90%H+10%He, using the prescription in [30].

It is natural to expect the residence time tesc to be a function of rigidity,

tesc = tesc(R), (4)

and fs,i to be a function of (ti/tesc) where ti is the observer frame lifetime. Limiting the discussion
to high energy CRs with R > 10 GV, the data spans about a decade in lifetime. In this range,
we assume an approximate power law form

fs,i ≈
(

ti
tesc

)α

. (5)

Two comments are in order: (i) In general, α depends on (ti/tesc).
1 In writing Eq. (5), we

assume that this dependence is mild. We will see that this assumption agrees with the data. In
the future, with data sampled more densely and extending to higher energy, the method we use
can be straightforwardly extended to account for varying α. (ii) The precise physical meaning of
tesc appearing in Eq. (5) is model dependent. What is relevant for our discussion is that Eq. (5)
is applicable to any nuclei specie (and later on, to positrons) with the same time scale tesc. In
Appendix A we demonstrate how Eq. (5) arises in specific models.

Under assumptions Eqs. (4-5), comparing the suppression factor for two relativistic nuclei i
and j at the same rigidity R′ we have

log

(

fs,i (R′)

fs,j (R′)

)

≈ α log

(

Aj Zi τi
Ai Zj τj

)

. (6)

1In the limit ti ≫ tesc we must have α → 0. Otherwise when ti < tesc we must have α > 0. Hence, α decreases
with increasing (ti/tesc).
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Figure 1: fs,i vs. observer frame lifetime. Numbers near data points denote the corresponding
rigidities in GV.

Thus we can extract α, regardless of the particular form of tesc. A determination of α from Eq. (6)
requires nuclei with significantly different rest frame lifetimes, since ∆α ∝ 1/ log (τi/τj). In the
left panel of Fig. 2 we plot values of α, obtained by applying Eq. (6) to pairs of f10Be, f36Cl and
f26Al, f36Cl measured at approximately the same rigidity. The result is consistent with constant
α. Assuming constant α we combine the ten data pairs at R > 10 GV, obtaining

α = 0.7± 0.2. (7)

The error estimate in Eq. (7) is twice that arising from the errors in fs,i and in the nuclei lifetimes.
The inferred value of α is shown as a gray band in the left panel of Fig. 2.

Using Eq. (7) and Fig. 1 we estimate tesc ∼ 100 Myr in the range R ∼ 10-40 GV. To
make contact with the correlation depicted in Fig. 1, comparing the suppression factors for two
relativistic nuclei i and j at the same observer frame lifetime t′ we have

fs,i (t
′)

fs,j (t′)
≈

(

tesc (Rj)

tesc (Ri)

)α

, (8)

where
eRi

mp c2
=

t′ Ai

τi Zi
, Rj =

(

Aj Zi τi
Ai Zj τj

)

Ri. (9)

Given that R36Cl ≈ 4R10Be ≈ 3R26Al and the preferred range α > 0.4, we verify that Fig. 1
constrains the rigidity dependence of the residence time. In particular, assuming a power law
form

tesc = tesc,0

(

R
10GV

)δ

, (10)
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Figure 2: Left: Values of α extracted from pairs of fs,10Be, fs,36Cl and fs,26Al, fs,36Cl measured at
approximately the same rigidity. Right: The residual rigidity dependence of fs,i normalized to
fs,i = (ti/tesc)

α, with tesc = 100Myr and α = 0.7.

we can extract αδ from

log

(

fs,i (t
′)

fs,j (t′)

)

≈ αδ log

(

Aj Zi τi
Ai Zj τj

)

. (11)

The two pairs of f10Be, f36Cl and f26Al, f36Cl data points at minimal rigidities ∼ 9 and 10 GV
give

αδ = 0± 0.6 (R ≈ 10GV), (12)

were the error estimate is twice that arising from the errors in fs,i and in the nuclei lifetimes.
In the right panel of Fig. 2 we plot the residual rigidity dependence of fs,i normalized to

fs,i = (ti/100Myr)0.7, inferred from Eq. (7) and Fig. 1. We find no significant residual bias.
Thus, Fig. 2 contains the main result of this section: the high energy charge ratio measurements
are adequately described by Eq. (5), implying nontrivial constraints on α and consistent with a
rigidity independent CR residence time. We make some final comments as follows:

• As seen from Eq. (6), α can be determined independently of the residence time from the
normalization of fs,i for different nuclei species. There are five Cl data points with R > 10
GV and about twice that number of Be and Al points with comparable rigidities. Therefore,
the current data gives a fair determination of α ∼ 0.7.

• In principle, once α is determined, the residence time would also be measured. In practice,

since for some data point tesc ∼ ti/f
1/α
s,i , the measurement of tesc is sensitive to the lower

range of α. Because of the limited range in rigidity, δ and tesc,0 are correlated. Thus large
values of tesc,0 and correspondingly large negative δ are still allowed in conjunction with
small values of α.

• Negative values of δ < −1 are in some tension with observations. This is relevant to the
interpretation of the PAMELA positron data, discussed in the next section. If δ < −1,
the positron suppression factor can rise with energy even under the simplest assumption
of constant radiative losses.
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• α is significantly larger than zero at least up to ti ∼ 30 Myr and R ∼ 30 GV. Thus, AMS-02
data [8] (in particular Cl data) should be useful for improving the measurement of δ and
tesc,0.

• Of course, assuming Eqs. (5) and (10) we could simply fit for α, δ and tesc,0. However,
before the role of systematic errors is clarified by a careful analysis, the precise statistical
significance of such a fit is unclear and we postpone it to a future study.

For illustration, in Appendix A we contrast the data with two specific propagation models,
a diffusion model and a uniform density model (the latter is a generalization of the usual leaky
box model). For R > 10 GV the results for these models in terms of α, δ and tesc,0 are

α ≈ 0.7, δ ≈ 0, tesc,0 ≈ 2.7× 35Myr (leaky box),

α ≈ 0.5, δ ≈ −0.3, tesc,0 ≈ 300Myr (diffusion). (13)

3 Lessons from the PAMELA positron data

Recently, the flux of cosmic ray antiprotons [31, 32] and positrons [4, 25] was measured by the
PAMELA satellite-borne experiment.2 While the antiproton measurements stand in accord with
common diffusion models, the positron measurements do not, revealing an excess with respect to
model predictions. The ‘positron excess’ triggered numerous attempts to explain the acclaimed
‘non-secondary’ origin of the positrons. However, a careful examination of the positron data
does not reveal any excess with respect to model independent estimates, assuming secondary
production [22]. Below we analyze the implications of the measured positron fraction under the
secondary production hypothesis. We also briefly reiterate the main points of [22].

A main point we wish to convey is that the PAMELA positron measurement is, first and
foremost, a measurement of the radiative cooling. To see this, note that it is possible to test
the secondary production spectrum of the positrons indirectly, by examining the flux of another
secondary CR which does not suffer propagation energy losses and which originates from the
same interactions. The first candidate for such a test is the antiproton flux.

In the left panel of Fig. 3 we show the results of applying Eq. (1) to the calculation of the
antiproton to proton flux ratio. The details of the calculation are given in [22]. We show a
40% error estimate, representative of relevant cross section uncertainties, as well as the latest
PAMELA results [32]. Having verified the applicability of Eq. (1) for antiprotons, we can now
find the cooling suppression for positrons by computing the positron flux from Eq. (1), neglecting
radiative losses, and comparing the result to the observed flux.

To put the positron and antiproton analyses on equal grounds we give the flux ratio of
positrons to their leading progenitors, protons. No published PAMELA results currently exist
for the individual e+, e−, e± or p fluxes. Extracting the positron to proton ratio from the re-
ported e+/e± fraction [25] requires combining measurements from different experiments. Here
we perform this combination aiming to illustrate a representation of the data which – unlike
the e+/e± fraction – naturally lends itself to theoretical interpretation. A sounder experimental
procedure will be preferable once complete data are published by the same experiment. We
interpolate the total electronic flux from FERMI [6], available down to R = 7 GV, using solar
modulation parameter Φ = 500 MeV. The proton flux we use is that of [34], for which we adopt
a 10% normalization error.

The result is shown in the right panel of Fig. 3. The error band around the theoretical
upper bound is explained below. As indicated by the arrows, PAMELA measured the cooling
suppression of the positrons.

2See [33, 25] for cautionary notes regarding systematic uncertainties in the positron measurement.
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Next, we quantify the effect of losses. The positron cooling suppression factor can be defined
in direct analogy to the suppression due to decay in radioactive nuclei. We find

fs,e+ =
Je+

c
4π Q̃e+ Xesc

≈ 0.6× 103
(

R
10GV

)0.5

× Je+(R)

Jp(R)
, (14)

for the cross section parameterization of [35]. Using the cross sections from [36] yields a factor
of ∼ 2 increase in the value of fs,e+ , compared to (14), for R ∼< 100 GV [37]. This factor of
two ambiguity is responsible for the main uncertainty in the derivation of the upper bound.
Considering this ambiguity we adopt a factor of two error estimate, shown in Fig. 3, for the
theoretical calculation of the positron to proton ratio. Other uncertainties of order 20% arise
e.g. from the effect of heavy nuclei in the primary CR flux and in the ISM [38].

The values of fs,e+ for positrons and fs,i for some radioactive nucleus should be comparable,
if examined at the particular rigidity, wherein the corresponding cooling time and observer frame
lifetime are similar. This observation applies if the cooling time can be approximated by a power
law,

tc ∝ R−δc , (15)

and is explained in [22] by noting that decay of radioactive nuclei and energy losses of positrons
are represented by formally similar terms in a general transport equation. Thus, we expect

fs,e+ ≈
(

tc
tesc

)α

, (16)

where α and tesc are the same as in Eq. (5). Eq. (16) is accurate up to corrections of order
(γ − 1 − δc)

−α, where γ ∼ 3 is the observed spectral index of the positrons. Using α ∼ 0.7, in
accordance with Sec. 2, these corrections are at the level of 10% for δc ∼ 1 (40% for δc ∼ 0).

The positron cooling time can be estimated by

tc ≈ 10Myr

(

R
30GV

)−1 (
ŪT

1 eV cm−3

)−1

, (17)

where ŪT is the total electromagnetic energy density in the propagation region, averaged over
CR histories. Comparing fs,i of some nucleus with fs,e+ of positrons at the same rigidity R′ we
expect

fs,i(R′)

fs,e+(R′)
≈

[

(

τi
1.5Myr

) (

R′

20GV

)2 (

ŪT

1 eV cm−3

)

]α

. (18)

If ŪT is rigidity independent, then the ratio Eq. (18) should rise as fs,i/fs,e+ ∼ R2α. Note that
a rigidity dependent ŪT is possible. In particular, if ŪT decreases with increasing CR rigidity,
then the ratio Eq. (18) could have a milder rise, fs,i/fs,e+ ∝ Rα(1+δc) with δc < 1.3

In the rest of this section, we use Eqs. (16-18) to analyze the implications of having radioactive
nuclei data in conjunction with positron data in the same range in rigidity. First, we show that the
measured positron flux is consistent quantitatively with secondary production. Then, we assume
a secondary origin for the positrons and derive constraints on the mean traversed electromagnetic
energy density, ŪT . Finally, we comment on the energy dependence of the cooling suppression
factor of the positrons.

3For ∼ 50 GV positrons, Klein-Nishina corrections imply that the starlight component in UT induces δc < 1.
Without extreme assumptions regarding the starlight intensity [39], these corrections are of the scale of current
uncertainties and we defer their discussion to a more refined treatment.
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Using Eq. (14) we plot fs,e+ vs. rigidity in Fig. 4, together with the suppression factors due
to decay for 10Be, 26Al and 36Cl nuclei. Nuclei lifetimes in Myr are specified next to each data
point. The shaded band denotes the theoretical uncertainty. Error bars show error estimates
from the experimental procedure.

Fig. 4 is in broad agreement with the observation made in [22], namely that the cooling
suppression factor measured by PAMELA for positrons is consistent quantitatively with that
found for radioactive nuclei. This observation makes stronger the case for a secondary origin for
the positrons. In particular, in [22] it was pointed out that fs,e+ ∼ fs,10Be at R ∼ 20 GV, in
agreement with Eq. (18) for plausible ŪT ∼ 1 eV/cm3. We comment that while the central data
do not show a clear rising pattern of fs,i/fs,e+ with rigidity, fs,i/fs,e+ ∼ R or so (with, e.g.,
α ≈ 0.5 and constant ŪT ) is perfectly possible within the calculation uncertainties and given the
visible scatter.

Assuming secondary positrons, we can use Eq. (18) together with Fig. 4 to infer the value of
ŪT . First, assuming that the PAMELA result is not grossly wrong, we can set fs,e+ = fs,36Cl to
derive an upper bound

ŪT < 5

(

R
20GV

)−2

eV cm−3 (e+ andCl), (19)

valid in the range R ∼ 10-40 GV. The bound Eq. (19) is nontrivial: for R = 40 GV it implies
ŪT < 1.25 eV/cm3. For reference, the local value of UT is determined from CMB, IR and optical
surveys [40] to be UT,disc = O(1) eV/cm3. Second, Be and Al data give potentially stronger,
though less robust, constraints

ŪT ∼ (0.5− 3)

(

R
20GV

)−2

eV cm−3 (e+, Be andAl), (20)

valid in the same range as Eq. (19).
Note that ŪT < UCMB ≈ 0.25 eV/cm3 cannot occur physically. If, using Eq. (18) with

upcoming experimental data, such value will be reliably deduced for ŪT it will falsify the as-
sumption of a secondary origin for the positrons. From Fig. 4 we see that Cl data at ∼ 50
GeV/nuc will be very useful for such a test.

Finally we comment on the implications of flat or mildly rising fs,e+ , as derived in Fig. 4
from the various data [25, 6, 34]. By Eq. (16), the positron suppression factor should rise if tesc
drops faster than tc with increasing rigidity [22]. The only information which directly constrains
tesc ∝ Rδ is the radioactive nuclei data analyzed in Section 2. This analysis shows that values of
δ < −1 are in some tension with observations. However, improved charge ratio measurements, in
particular Cl/Ar data extending to R ∼ 100 GV (and so to lifetime tCl ∼ 40 Myr, comparable to
the currently existing Be/B measurements), will be required to conclusively rule out (or measure)
δ < −1. Regarding the cooling time tc ∝ R−δc , effective δc < 1 arise if Klein-Nishina corrections
to Eq. (17) are important, or if ŪT decreases with increasing rigidity. A rigidity dependent ŪT

is observationally and theoretically conceivable. In fact, such behavior of ŪT will resemble the
decreasing traversed matter density inferred from stable secondary to primary nuclei flux ratios.
To conclude, at present we cannot yet rule out the possibility that δc + δ < 0, for which fs,e+
rising with rigidity occurs with secondary production. In the next section we summarize methods
by which the secondary origin hypothesis for the positrons can be challenged.

4 Summary and discussion

In this paper we presented a model independent analysis of the propagation time scales of cosmic
ray (CR) nuclei and positrons. Motivated by the prospects for improved measurements in the
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near future [4, 5, 6, 7, 8], our analysis demonstrated that it is possible to extract significant
quantitative information from CR measurements under general assumptions, without committing
to any particular propagation model.

In Sec. 2 we studied the radioactive nuclei charge ratio measurements, first analyzed in [11].
Examining the suppression of the flux due to decay vs. observer frame lifetime, the clear correla-
tion across nuclei specie, seen in Fig. 1, is indicative that the charge ratio analysis is not plagued
with large systematics. (See, in contrast, [15, 16].) In addition, the effects of a possible primary
component in the 26Al or 36Cl flux appear to be small on the scale of the measurement errors.
This makes a combined analysis of the charge ratios a useful model independent tool, first in
measuring the effect of decay and, second, in constraining the CR residence time. Using charge
ratio data at R ∼ 10-40 GV, we showed that a rigidity independent residence time is consis-
tent with observations, and that the suppression of the flux for all nuclei species is adequately
described by fs,i = (ti/tesc)

α, with tesc = 100Myr and α = 0.7.
In Sec. 3 we analyzed the PAMELA positron data [4, 25]. We argued that the positron flux

is consistent with a secondary origin [22]. Assuming secondary positrons, we derived an upper
bound on the mean electromagnetic energy density traversed by the positrons, ŪT < 1.25 eV/cm3

at a rigidity of R = 40 GV. This bound is close to the locally measured electromagnetic energy
density [40]. A stronger, though less robust bound can be inferred from Be and Al measurements,
and may indicate that the positrons spend significant fraction of their confinement time in regions
far from the Galactic disc, where the electromagnetic energy density is lower than the locally
observed value.

Methods by which the secondary origin hypothesis for the positrons can be challenged are
summarized as follows:

1. A simple first test for secondary positrons is the condition

fs,e+ < 1. (21)

This test is independent of radioactive nuclei data. As seen in Fig. 3, this condition is
satisfied by current data [22].

2. A second, and potentially stronger test for the origin of the positrons is the requirement

ŪT > UCMB. (22)

This test can challenge secondary production when fs,e+ < 1, and can be performed ro-
bustly with Cl measurements. At present, our evaluation shows that ŪT ∼ 1 eV/cm3 >
UCMB, and so the test is passed in the range where e+ and Cl data coexist.

3. Finally, improved radioactive nuclei data will yield a model independent measurement of
α, describing the functional form of the suppression of the flux due to decay or loss (see
Eqs. (5),(16)) and of the rigidity dependence of the residence time, tesc ∝ Rδ. Given such
a measurement, the detailed energy dependence of the ratio fs,i/fs,e+ ∝ Rα(1+δc), for any
radioactive nucleus i will further determine the energy dependence of the cooling time,
tc ∝ R−δc . If future measurements (and future PAMELA re-analyses [25]) will confirm a
rising positron fraction, then a violation of the condition

δ + δc < 0 (23)

will establish a non-secondary origin for the positrons.
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The effect of decay of radioactive nuclei, defined in Eq. (5) and specified by a measurement
of α, has a deep connection with propagation. In the general class of models in which CR
production occurs mainly in the thin Galactic disc, the quantity fs,i in the limit of strong losses
is given by [1]

fs,i ∼
ti Lesc

tesc Li
. (24)

Here ti is the observer frame lifetime, Li is the scale height above the disc occupied by the
decaying nuclei and tesc is the escape time from the propagation region of scale height Lesc.
tesc and Lesc are defined for stable CRs, and would apply to the specie i had its lifetime been
infinite [14]. The functional form of fs,i is determined by the nature of the CR motion in the

trapping volume. Diffusion models have L ∼
√
t and give fs,i ∼

√

ti/tesc or α ∼ 0.5. Leaky
box models impose Lesc = Li, giving fs,i ∼ ti/tesc or α ∼ 1.4 Models of compound diffusion [1]
predict L ∼ t0.25 and thus fs,i ∼ (ti/tesc)

0.75 or α ∼ 0.75. It is worth pointing out in this
context that the currently fashionable homogeneous diffusion models with large halo and thin
disc predict α = 0.5 to high accuracy, see Appendix A. This value of α is currently allowed by
data. Establishing α > 0.5 will rule out this class of models.

The AMS-02 experiment [8] has the capabilities to take the analysis to a new level of accuracy
in the near future.5 AMS-02 will resolve CR charge all the way to Z = 26 and up to TeV/nuc. In
addition, AMS-02 will measure isotopic ratios including 9Be/10Be up to 10 GeV/nuc [42]. This
measurement will be a valuable check of the interpretation of the charge ratios. Finally, AMS-02
will also measure the antiproton and positron fluxes up to ∼300 GeV [8], assessing the validity
of the PAMELA measurements [31, 32, 4, 25] and putting the combined analysis of positrons
and radioactive nuclei on firmer observational grounds.

Further progress which is potentially within immediate reach will follow a publication of the
individual spectra of e+, e−, p and nuclei by the PAMELA collaboration. These data can be
used to extract quantities such as e+/p and e+/p̄, which are theoretically clean probes of CR
propagation, in a direct manner.
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A Propagation model examples

Here we demonstrate the implications of the radioactive nuclei data for two specific models. First
we consider a version of the leaky box model, with spatially uniform CR distribution at a given
rigidity but with a rigidity dependent halo scale height L = L(R). Second we consider thin disc
diffusion models with a large halo. The models predict:

fs,i =
1

1 + tesc/ti
, leaky box,

fs,i =
√

ti/tesc tanh
(

√

tesc/ti

)

, diffusion. (25)

4As shown in Appendix A, for the leaky box model the strong loss result ceases to apply for ti/tesc > O(0.1),
leading to α ∼ 0.7 < 1. The strong loss result α ∼ 1 could in principle be tested using short-lived nuclei such as
14

6
C.
5We note that in [41] the implications of future AMS-02 measurements were analyzed in the context of a

diffusion model.
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We fit the suppression factor for 10Be, 26Al and 36Cl using Eqs. (25) and (10), so that our fit
parameters are tesc,0 and δ. In each case we arrange the parameters of the model (halo size and
escape time for the leaky box, and halo size and diffusion coefficient for the diffusion model)
such as to reproduce the measured CR grammage [29]. The results for both models are shown
in Fig. 5. We make the following comments:

• The suppression factor fs,i in Eq. (25) involves the nucleus specie label i only via the
lifetime ti. Any explicit dependence on the fragmentation cross sections and CR grammage
is canceled. This would not have been the case had we worked with the surviving fraction
f̃i (as easily verified from Eq. (3)). We expect this result to hold in general for disc+halo
models, in which the CR composition in the regions where the secondaries are produced is
similar to the CR composition near earth.

• For R > 10 GV, values of fs,10Be, fs,26Al and fs,36Cl obtained from Eq. (25) satisfy the
power law assumption Eq. (5) to better than 10%, with α =0.7 (0.5) for the leaky box
(diffusion) cases. For the leaky box model, the parameter tesc has the meaning of 2.7 times
the escape time of the CRs. For the diffusion model, tesc is the average time it takes a CR
produced on the disc to reach the halo boundary.

• Both the leaky box and diffusion models accommodate the data reasonably well. We find

tesc ≈ 2.7× (30− 45 )× (R/10GV)
0±0.2

Myr, leaky box,

tesc ≈ (200− 400 )× (R/10GV)
−0.3±0.3

Myr, diffusion.
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