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ABSTRACT

We combine the physics of the ellipsoidal collapse model with the excursion set the-
ory to study the shapes of dark matter halos. In particular, we develop an analytic
approximation to the nonlinear evolution that is more accurate than the Zeldovich
approximation; we introduce a planar representation of halo axis ratios, which allows
a concise and intuitive description of the dynamics of collapsing regions and allows
one to relate the final shape of a halo to its initial shape; we provide simple physi-
cal explanations for some empirical fitting formulae obtained from numerical studies.
Comparison with simulations is challenging, as there is no agreement about how to de-
fine a non-spherical gravitationally bound object. Nevertheless, we find that our model
matches the conditional minor-to-intermediate axis ratio distribution rather well, al-
though it disagrees with the numerical results in reproducing the minor-to-major axis
ratio distribution. In particular, the mass dependence of the minor-to-major axis dis-
tribution appears to be the opposite to what is found in many previous numerical
studies, where low-mass halos are preferentially more spherical than high-mass halos.
In our model, the high-mass halos are predicted to be more spherical, consistent with
results based on a more recent and elaborate halo finding algorithm, and with obser-
vations of the mass dependence of the shapes of early-type galaxies. We suggest that
some of the disagreement with some previous numerical studies may be alleviated if
we consider only isolated halos.

Key words: galaxies: clustering — cosmology: theory — ellipsoidal collapse, dark
matter.

1 INTRODUCTION

A snapshot of a dark matter high-resolution numerical sim-
ulation, at relatively low redshift, reveals that halos are
neither spherically symmetric nor smooth. This is because,
without even considering all the small scale complications
arising from baryonic physics (i.e. pressure effects, merg-
ing, cooling, heating), the statistics of a Gaussian random
field implies that spherically symmetric initial configurations
should be a set of measure zero (Doroshkevich 1970). While
it has long been recognized that spherical collapse is too
idealized to be realistic, and that the true gravitational pro-
cess must, at the very least, be ellipsoidal (Icke 1973; White
& Silk 1979; Barrow & Silk 1981; Kuhlman et al. 1996),
most analytic models of structure formation make the sim-
plifying assumption that gravitationally bound objects are
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spherical, and formed from a spherical collapse (i.e. Gunn &
Gott 1972; Lahav et al. 1991; Lacey & Cole 1993; Lokas &
Hoffman 2001).

It has also become common practice to identify halos in
simulations using a spherical overdensity algorithm, which
finds the mass around isolated peaks in the density field such
that the mean interior density is ∆ times the background
density, where the value of ∆ is motivated by the spherical
top-hat model (Lacey & Cole 1994). This is despite the fact
that dark matter halos that form in simulations are rather
elongated, and, in general, strongly triaxial: close to prolate
(minor and intermediate axes are comparable in size to each
other, and much smaller than the biggest axis) in the central
parts, and rounder in the outskirts (Barnes & Efstathiou
1987; Frenk et al. 1988; Dubinski & Carlberg 1991; Katz
1991; Warren et al. 1992; Jing et al. 1995; Thomas et al.
1998; Jing & Suto 2002; Allgood et al. 2006; Bett et al.
2007; Diemand, Kuhlen & Madau 2007; Hayashi et al. 2007;
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Kuhlen et al. 2007; Muñoz-Cuartas et al. 2010; Wang et al.
2010). This shape variation leads to a significant variance in
local properties, compared to the spherically averaged value
at a given radius, that are now becoming of interest.

Studying and quantifying the degree of halo triaxiality
is of broader importance. In fact, in the current paradigm
of hierarchical clustering, dark matter halos are the hosts
within which gas cools and collapses to form galaxies (White
& Rees 1978; White & Frenk 1991), thus making them the
building blocks of the large scale structure (LSS) of the
Universe (Cooray & Sheth 2002). Hence, understanding the
assembly histories, kinematics, clustering, and fundamental
structural properties of halos – such as their intrinsic shapes
– is the first necessary step in understanding the properties
of galaxies (Mo, Mao & White 1998; Dutton et al. 2007;
Diemand et al. 2008). In turn, the formation of dark mat-
ter halos affects the properties of the galaxies hosted by the
halos; therefore, inspection of the galaxy distribution in red-
shift surveys such as the SDSS (York et al. 2000) allows one
to relate the properties of galaxies to those of their host ha-
los. Moreover, the characteristic density of a halo appears
to track the mean density of the Universe at the time of
its formation (e.g. Zhao et al. 2009), leading to a quasi-
universal profile (Navarro, Frenk & White 1996; Kormendy
& Freeman 2004), although self-similarity is not preserved:
different halos cannot be rescaled to look alike (Navarro et
al. 2004, 2010; Merritt et al. 2006; Gao et al. 2008; Reed et
al. 2010).

Triaxiality also has a number of observationally rele-
vant implications. For example, modeling of dark matter
halos beyond the spherical approximation is crucial in un-
derstanding the nonlinear clustering of halos and dark mat-
ter (Sheth, Mo & Tormen 2001), the formation and evolution
of galaxies (Cole & Lacey 1996), and their relation to the
cosmic web (Shen et al. 2006; Hahn et al. 2007; Lee, Hahn
& Porciani 2009a,b; Forero-Romero et al. 2009; Pogosyan et
al. 2009; Sousbie et al. 2009; Park, Kim & Park 2010). In
particular, the higher order statistics of the nonlinear den-
sity field is sensitive to halo triaxiality (Smith &Watts 2005;
Smith, Watts & Sheth 2006).

Triaxiality represents a useful framework for the non-
spherical modelling of the intracluster gas, which recent ob-
servations suggest will be key in deriving more accurate tem-
perature profiles of X-ray clusters, and in general for cosmo-
logical parameter determinations via the Sunyaev-Zeldovich
effect (Lee et al. 2005). For example, Kawahara (2010) has
derived the axis ratio distribution of X-ray clusters in the
XMM-Newton catalog of Snowden et al. (2008) and con-
firmed that the typical X-ray halo is well approximated
by a triaxial ellipsoid. And recently, Morandi, Pedersen &
Limousin (2010) have presented the first determination of
the intrinsic triaxial shapes and three-dimensional physi-
cal parameters of both dark matter and the intra-cluster
medium for the galaxy cluster Abell 1689.

Triaxiality is also useful in predicting – and hence can be
constrained by – a variety of gravitational lensing observa-
tions, including weak and strong lens statistics (Bartelmann
1995; Van Waerbeke et al. 2000; Schulz et al. 2005; Bradač
et al. 2006; Carbone et al. 2006; Bernstein 2007; Riquelme &
Spergel 2007; Broadhurst et al. 2008; Limousin et al. 2008;
Schneider & Er 2008; Mandelbaum et al. 2008, 2009; Zitrin
et al. 2009; Bernstein & Nakajima 2009; Jönsson et al. 2010),

and gravitational flexion (e.g., Hawken & Bridle 2009). By
measuring the shapes of dark matter halos, galaxy-galaxy
lensing can provide constraints on galaxy formation models
and the nature of dark matter (Hoekstra et al. 2004; Man-
delbaum et al. 2006; Parker et al. 2007).

Surveys like ESA’s Euclid mission
(http://sci.esa.int/euclid) will in fact provide accurate
data for shape estimates through “cosmic shear”, a direct
measure of the metric fluctuations in the Universe (Hoekstra
& Jain 2008; Bernstein 2010; Rhodes et al. 2010), which in
turn constrain dark energy properties (Albrecht et al. 2006).
A primary source of noise in such measurements is due
to the difficulty in distinguishing between intrinsic galaxy
shapes and shape distortion due to lensing (Bartelmann
& Schneider 2001; Refregier 2003; Hoekstra et al. 2005;
Mandelbaum et al 2006; Bridle et al. 2009). Hence accurate
modelling of the correlated shapes and orientations dark
matter halos can be extremely useful. The higher order
statistics of the nonlinear density field in such surveys is
also sensitive to halo triaxiality (Smith et al. 2006).

On galaxy mass scales, an understanding of halo tri-
axiality provides useful input to studies of galactic disks in
triaxial halos. E.g., Jeon, Kim & Ann (2009) considered the
fundamental dynamics between the disk and the axisym-
metric or triaxial halo, and Valluri et al. (2010) analyzed
the orbital structure of dark matter particles in N-body
simulations in an effort to understand what is the phys-
ical mechanism driving shape changes caused by growing
central masses (also see Debattista et al. 2008). This shape
change reconciles the strongly prolate-triaxial shapes found
in collisionless N-body simulations with observations, which
generally find much rounder halos (see for example Banerjee
& Jog 2008). Finally, resolving the fine grained structure of
galaxy mass halos enables one to make more realistic pre-
dictions for direct and indirect dark matter detection exper-
iments (e.g. Giocoli, Pieri & Tormen 2008).

The shapes of dark matter halos can be quantified using
high-resolution N-body simulations of hierarchical gravita-
tional clustering. This is currently the best way to address
many of the tasks above. Simulations are becoming increas-
ingly accurate in mass and spatial resolution: e.g., the Mil-
lennium Run (Springel et al. 2005), the Horizon Run (Kim
et al. 2009), the Millennium II (Boylan-Kolchin et al. 2009)
and the Bolshoi Simulation (Klypin et al. 2010).

In these numerical studies, many different aspects have
been considered over a wide range of physical scales and cos-
mic histories. Common findings suggest that the total mass
is the key in determining the final shapes of halos, although
other environmental parameters may play a role in the pro-
cess. In general, halos do exhibit a rich variety of shapes with
a preference for prolateness over oblateness. More massive
halos tend to be less spherical and more prolate, and are
preferentially aligned with primordial filaments, while less
massive halos are in general rounder (e.g., Jing & Suto 2002;
Allgood et al. 2006). On the other hand, perturbation theory
suggests that the most massive objects should be spherical
(Bernardeau 1994; Pogosyan et al. 1998), and Lemson (1995)
showed that the spherical model does indeed provide a good
description of the evolution of the spherically averaged pro-
file. More recently, Dalal et al. (2008) reported that massive
halos are indeed very well described by the spherical collapse
model. This was recently confirmed by Park et al. (2010),
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who provided a clear explanation for the discrepancy with
previous measurements.

The shapes of subhalos are similar to those of host ha-
los, but subhalos tend to be a bit rounder, especially the
ones near the host halo center. Tidal interactions make in-
dividual subhalos rounder over time and they tend to align
their major axis towards the center of the host halo. Forma-
tion of halos is also affected by the large-scale environment,
which may have an impact on their shapes, and those shapes
can be modified by galaxy formation as well. Subhalos are
not the subject of our study.

There are many more numerical studies of halo shapes
than analytic models. This is because the formation, evo-
lution and virialization of dark matter halos is complex; no
rigorous analytic techniques are available for use in both the
linear and the nonlinear regimes. In addition, choosing the
appropriate definition of halo shapes is subtle. For exam-
ple, Eisenstein & Loeb (1995) describe an analysis of halo
shapes which uses the ellipsoidal collapse model of Bond &
Myers (1996). However, as we discuss below, their definition
of a halo differs from the more commonly accepted defi-
nition. Moreover, they present results for collapsed objects
that had the same initial density. Since the time it takes for
to collapse is a complicated function of density and shape
(Bond & Myers 1996), this means that they compare objects
of one shape at one time with those of another shape at a
different time. This is rarely measured in simulations: the
shape distribution of most interest is, of course, that for a
fixed time (e.g., halos at z = 0).

The main purpose of the present work is to provide
a simple model for the distribution of halo shapes at any
given time as seen in the simulations, starting from first
principles. Following Rossi (2008), our analytic prescription
has two independent parts: the first is a scheme for how an
initially spherical patch evolves and virializes; the second is
the correct assignment of initial shapes to halos of different
masses.

In this respect, our model is similar in philosophy to
that of Lee, Jing & Suto (2005). However, there are impor-
tant differences. (1) They assume the Zeldovich approxima-
tion remains valid even during the nonlinear regime, where
it is known to fail; (2) They assume a spherical collapse
threshold for the formation of halos, or an empirical recipe
based on Lee & Shandarin (1998). In contrast, because we
are modelling triaxial objects, we self-consistently use ellip-
soidal, rather than spherical collapse dynamics to generate
our predictions.

To describe the evolution of non-spherical structures we
adopt the ellipsoidal collapse model of Bond & Myers (1996),
which was used by Sheth, Mo & Tormen (2001) to estimate
of how the abundance of dark matter halos depends on halo
mass. In this model, dark matter halos are identified with
ellipsoids which have collapsed completely along all three
axes (we show below that, in effect, the Eisenstein & Loeb
1995 definition corresponds to collapse along just two axes).
In this framework, the time required to collapse depends on
the overdensity δi and size Ri of the initial patch, and on
the surrounding shear field, parametrized by its ellipticity
e and prolateness p. Requiring the collapse to happen at a
given time makes δi a function of e and p (Sheth et al. 2001):
δec(e, p). The combination of δi = δec, e and p determines
the axis ratios of the object at all times, and, in particular,

at the final time. Thus (e, p) establishes the time of collapse
(it was this fact which was exploited by Sheth et al. 2001),
as well as the axis ratios at collapse (a fact we exploit here).

The second part is the correct assignment of (e, p) values
to halos of different masses. We do this following Sheth &
Tormen (2002) (also see Chiueh & Lee 2001; Sandvik et al.
2007). In essence, the correct (e, p) distribution is specified
by the statistics of Gaussian random fields. In a Gaussian
random field, the distribution of (e, p) values depends on the
size and overdensity of the patch: g(e, p|δ,R). Massive halos
form from larger patches in the initial conditions than do less
massive halos, so we expect the distribution of initial (e, p)
values, and hence the distribution of final axis ratios, to also
depend on halo mass. Thus, although the generic evolution is
initially towards an oblate, pancake-like structure, followed
by a shift towards a more prolate shape, as the other axes
also begin to shrink, quantifying this evolution, and merging
it with the correct (mass dependent) initial distribution of
shapes is the main focus of this work.

The outline of this paper is as follows. In Section 2 we
present the ellipsoidal model for the gravitational collapse of
an initially spherical patch; we discuss a reasonably accurate
analytic approximation to the evolution, more rigorous than
the Zeldovich approximation; we introduce the axis ratio
plane, which provides a concise description of the dynamics
of collapsing regions and allows one to relate the final shape
of a halo with its original, pre-collapsed, shape. In Section
3 we present the full model for halo shapes, we explain how
the initial conditions are obtained via the excursion set al-
gorithm, and we expand on the prolateness distribution –
crucial in understanding our main results. In Section 4 the
model is contrasted with high resolution N-body simula-
tions. A simple explanation of an empirical relation found
by Jing & Suto (2002) is given, and a number of caveats in
the comparison model/simulations are highlighted. Finally,
Section 5 discusses in detail limitations in the modelling and
difficulties arising from numerical studies, and suggests fu-
ture improvements.

In our calculations we assume a spatially flat cosmolog-
ical model with (ΩM,ΩΛ, h) = (0.3, 0.7, 0.7), where ΩM and
ΩΛ are the present day densities of matter and cosmological
constant scaled to the critical density. We write the Hub-
ble constant as H0 = 100h km s−1 Mpc−1. Regarding the
overall notation, we always use the subscript i to denote ini-
tial quantities, and the subscript f for final quantities. The
expansion factor of the Universe, with mean density ρ̄, is
represented by the small case letter a – not to be confused
with the capital letter A, which denotes the axis ratios of an
ellipsoidal patch.

2 NONLINEAR DYNAMICS

The nonlinear gravitational evolution of a medium is com-
plex, even without complications arising from gas dynamics.
It involves smooth accretion, tidal interactions with the en-
vironment as well as violent episodes of collisions with other
halos, merging and fragmentation. In what follows, we first
briefly summarize the key aspects of the ellipsoidal collapse.
We then discuss an analytic approximation for the evolu-
tion, and introduce a planar representation of halo axis ra-
tios; this allows for a concise description of the dynamics
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of collapsing regions, and provides a mapping between the
initial and final shape of a halo.

2.1 A model for the gravitational collapse

The simplest description of the gravitational evolution and
virialization of a cosmic structure is the spherical collapse
model (Gunn & Gott 1972; Gott 1975; Gunn 1977; Fill-
more & Goldreich 1984; Bertschinger 1985; Mo & White
1996). In this framework, an isolated overdensity in an oth-
erwise unperturbed universe first expands with the Hubble
flow, then turns around and collapses. However, the initial
shear field, rather than the density, has been shown to play
a crucial role in the formation of nonlinear structures (Zel-
dovich 1970; Hoffman 1986, 1988; Peebles 1990; Dubinski
1992; van de Weygaert & Babul 1994; Audit & Alimi 1996;
Audit, Teyssier & Alimi 1997). Therefore, refinements to the
spherical approximation which include local shear effects can
be obtained by introducing an ellipsoidal collapse scheme
(Bond & Myers 1996; Eisensein & Loeb 1995; Monaco 1995,
1997, 1998; Lee & Shandarin 1998; Chiueh & Lee 2001;
Sheth, Mo & Tormen 2001; Sheth & Tormen 2002; Ohta
et al. 2004; Shen et al. 2006; Sandvik et al. 2007; Desjacques
2008; Desjacques & Smith 2008; Rossi 2008).

In this study we adopt the homogeneous ellipsoidal
model in the form of Bond & Myers (1996), although the
ellipsoidal collapse has a long history (Lin, Mestel & Shu
1965; Icke 1973; White & Silk 1979; Barrow & Silk 1981). To
lowest order, their algorithm reduces to Zeldovich’s (1970)
approximation, and so linear theory is reproduced. In this
framework, an initially spherical patch of initial size Ri with
overdensity δi is distorted by the shear field into a collaps-
ing homogeneous ellipsoid. The exterior tidal force arising
from the matter outside of the ellipsoid is completely deter-
mined by the volume-averaged strain of the ellipsoid. The
details of the substructure in the interior are ignored, and
the strongly nonlinear internal dynamics of the collapsing
patch are assumed to be largely decoupled from the weakly
nonlinear dynamics describing the motion of the patch it-
self; in this respect, the homogeneous ellipsoid picture may
be thought of as a tensor virial theorem approach to the
average interior dynamics. In fact, in the nonlinear regime
the one-to-one correspondence between the external tidal
field and the local strain tensor is no longer true on small
scales where the rms density fluctuation σ ≫ 1; therefore,
one would not expect the simple ellipsoidal model to apply
in this regime.

There is another sense in which this approach is only a
simple approximation. It assumes that the inertia tensor of
the final bound object is perfectly correlated with the local
tidal tensor in the initial Lagrangian space. Measurements
in simulations show that the two tensors are not perfectly
correlated (e.g. Lee & Pen 2000). On the other hand, the cor-
relation is stronger than naive tidal torque theories predict
(e.g., Porciani, Dekel & Hoffman 2002), so the assumption
of perfect correlation is a useful idealization.

It is usual to characterize the initial shear field by the
ellipticity e and prolateness p associated with the potential
rather than with the density field (i.e. Bardeen et al. 1986).
This is because the components of the 3 × 3 strain tensor
are the second derivatives of the potential. The eigenvalues

p=0, e=0.1 p=0, e=0.2

p=e/2, e=0.1 p=e/2, e=0.2

p=-e/2, e=0.1 p=-e/2, e=0.2

Figure 1. Evolution of axis lengths in our model, in physical
units. The times at which different axes freeze out are determined
by the initial (e, p, δ) values, as specified in the panels.

of the initial strain tensor are related to the initial density
contrast and to the shear ellipticity and prolateness by:

λ1(ti) =
δ(ti)

3
(1 + 3e+ p), (1)

λ2(ti) =
δ(ti)

3
(1− 2p), (2)

λ3(ti) =
δ(ti)

3
(1− 3e+ p). (3)

Note that
∑

j
λj = δi. If δ > 0, then e > 0 and −e 6 p 6 e,

so λ1 > λ2 > λ3.
If we denote with Ak the scale factors for the three prin-

cipal axes of the ellipsoid, then the initial conditions are set
by the Zeldovich approximation, both for the displacement
and the velocity fields:

Ak(ti) = a(ti)[1− λk(ti)], (4)

dAk(ti)

dt
= H(ti)

[

Ak(ti)− a(ti)λk(ti)
d lnD

d lna

∣

∣

∣

t≡ti

]

. (5)

Notice that A3 > A2 > A1. The subsequent evolution is
given by

d2Ak

dt2
= ΩΛH

2
0Ak − 4πGρ̄Ak

[

1 + δ

3
+

b′kδ

2
+ λ′

ext,k

]

, (6)
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where ρ̄ is the mean density of the Universe, δ the relative
overdensity, and b′k = bk − 2/3 and λ′

ext,k account for the
interior and exterior tidal forces. In particular,

bk(t) =
[

3
∏

m=1

Am(t)
]

∫

∞

0

dτ

[A2
k(t) + τ ]

∏3

j=1
[A2

j (t) + τ ]1/2
(7)

and

λ′

ext,k(t) =
D(t)

D(ti)

[

λk(ti)− δ(ti)/3
]

, (8)

with D the linear theory growing mode. Other possibilities
for λ′

ext,k include the ‘nonlinear’ (Bond & Myers 1996), or
the ‘hybrid’ (Angrick & Bartelmann 2010) approximations.
However, in our case we are concerned with later times,
where a different choice for the external shear field does not
significantly affect our conclusions.

If e = p = 0, then all three eigenvalues equal δi/3, hence
all three axes have the same length initially. In this case, the
exterior anisotropic tidal force is zero and b′k = 0, so one gets
the usual cycloid solution for a closed universe. Hence, all
three axes evolve similarly, so the object remains spherical,
and the time to collapse is determined by one number: δi.
But for more general initial values of δ(ti), e and p, and an
initial redshift, equation (6) must be solved numerically for
each axis Ak. Generically, a triaxial object has three critical
times, corresponding to the collapse along each of the three
axes. In this case, the shortest axis, A1, collapses first and
A3 collapses last.

Figure 1 shows how the lengths of the three axes evolve
in the model, in physical units. In all cases we set δ(ti) =
[D(ti)/D(t0)]δ(t0), with δ(t0) = 1.6753 being the usual crit-
ical value associated with spherical collapse in the adopted
cosmology at z = 0. Our numerical calculations start at a
time ti, which corresponds to a redshift zi = 39. Each panel
show results for a different pair of (e, p). For a given e, p > 0
implies a pancake-like structure (i.e. one short axis and two
long), while p < 0 results in filament-like structures. The
main point of the figure is to illustrate that, in this model,
a given pair (e, p) determines the axis ratios of the object at
all times, and, in particular, at the final time.

Halos are identified with objects that have collapsed
along all three axes. Bond & Myers (1996) stop collapse
along axis k by simply freezing Ak once a critical radius
Aeq,k = a fr is reached during the infall phase, where a is
the expansion factor of the Universe and typically the radial
freeze-out factor fr = 0.177 is chosen in order to reproduce
the ‘virial’ density contrast of ∆ = a3/(A1A2A3) = 179
familiar from spherical top-hat calculations in an Einstein-
de Sitter model; fr must be computed for more complicated
cosmologies.

In our study, we slightly modify the stop criterion pro-
posed by Bond & Myers (1996) as follows: we still freeze
the value of axis i once a critical radius is reached during
the infall phase (the radial freeze-out factor being chosen in
order to reproduce the correct spherical virial density con-
trast in the assumed cosmological model), but we progress
the evolution in time till we reach the point in which each
axis has collapsed completely, in order to consider fully re-
laxed halos. Bond & Myers (1996) found that the time at
which the longest axis of the ellipsoid freezes out is relatively
insensitive to the exact value of fr, within a given cosmo-
logical model. In this respect, a more sophisticated collapse

Figure 2. Comoving evolution of axis lengths in our ellipsoidal
model. Solid lines are obtained by solving equation (6) numeri-
cally; dashed-dotted lines show equation (10).

criterion such as the one recently proposed by Angrik &
Bartelmann (2010), and based on the tensor-virial theorem,
does not affect our analysis.

However, this stop criterion is rather different from that
used by Eisenstein & Loeb (1995), and this difference does
matter. In their prescription, the collapse is stopped at the
time when a sphere, whose overdensity was that of the initial
ellipsoid, would have shrunk to zero radius. This happens to
be very close to the time when the intermediate axis col-
lapses (Shen et al. 2006, and see discussion below), so it can
be substantially before the time that the third axis collapses.

Before moving on, we note that the critical density re-
quired for collapse by the present time is well-approximated
by

δec(e, p) ≃ δsc

1− β
√

5(e2 ± p2)
(9)

with β = 0.365. This will be useful in what follows.

2.2 An analytic approximation

To characterize the dynamics of a collapsing object, one
must solve numerically the coupled partial differential equa-
tions for the ellipsoidal collapse, as shown in Figure 1. How-
ever, there is a useful analytic approximation to the exact
solution which provides considerable insight. By extending
results in White & Silk (1979), Shen et al. (2006) show that

Ak(t)

Ak(ti)

a(ti)

a(t)
≃ 1− D(t)

D(ti)
λk(ti)

−Ah(ti)

Ak(ti)

[

1− D(t)

D(ti)

δ(ti)

3
− ae(t)

a(t)

]

, (10)

where Ah(ti) = 3/
∑

j
A−1

j (ti) and ae(t) is the expansion

factor of a universe with initial density contrast δ(ti) ≡
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e
p e

p

e 

p

Figure 3. The ‘axis ratio plane’ for dark matter halos. Left, central and right panels show p = 0 and p = ± e/2, respectively, when
e = 0.15. The initial redshift is zi = 39, for an initially spherical patch with overdensity δ(ti) = [D(ti)/D(t0)]δ(t0), where δ(t0) = 1.6753.
See the main text for more details.

∑

j
λj(ti). This approximation to the full ellipsoidal collapse

model can be thought of as correcting the Zeldovich (1970)
approximation by the factor by which it is wrong for a sphere
(Lam & Sheth 2008).

To first order in δ(ti),

A1,3(t)

A1,3(ti)

a(ti)

a(t)
≃ ae(t)

a(t)
− δ(ti)

3
(p±3e)

[

1+
D(t)

D(ti)
− ae(t)

a(t)

]

(11)

A2(t)

A2(ti)

a(ti)

a(t)
≃ ae(t)

a(t)
+

δ(ti)

3
2p

[

1 +
D(t)

D(ti)
− ae(t)

a(t)

]

. (12)

Notice that when p = 0, then

A2(t)

A2(ti)
≃ ae(t)

a(ti)
; (13)

in this case, the second axis evolves exactly as in the spher-
ical model, since for the spherical case e ≡ p = 0, λk(ti) ≡
λ(ti) ≡ δ(ti)/3 and so Ak(t) ≡ A(t) → A(ti)[ae(t)/a(ti)].
In general, the second axis evolves very similarly to that
for a spherical model with the same initial overdensity δ(ti).
In this respect, a spherical collapse can be roughly seen as
an ‘imperfect’ ellipsoidal model, where the virialization is
identified with the collapse of the second axis.

Figure 2 shows how well the approximation works in the
LCDM model assumed in this study. Solid lines show nu-
merical solutions of equation (6) in comoving units; dashed-
dotted lines show the analytic approximation (equation 10).
As evident from the figure, the approximation is rather good
until the collapse of the third axis, as expected.

2.3 The axis ratio plane: dark halo evolution

The evolution of triaxial objects can be conveniently de-
scribed by a two-dimensional ‘axis ratio plane’, showing the
shortest-to-longest (A1/A3) versus intermediate-to-longest
(A2/A3) axis ratios. Figure 3 shows what our ellipsoidal
collapse model predicts for a few different combinations
of prolateness and ellipticity, as indicated in the panels,
when δ(ti) = [D(ti)/D(t0)]δ(t0) and zi = 39. Note that

δ(t0) = 1.6753 is again the usual spherical collapse linear
value in the concordance cosmology, at the present time.

The axis ratio plane provides useful insights into the
evolution of dark matter halos. The trajectory of a collapsing
object in the plane is as follows: down and to the left, as the
shortest axis shrinks more rapidly than the other two (first
line); then further to the left and slightly upwards, after the
shortest axis has frozen out, while the second axis continues
to shrink faster than the longest axis (second line); finally
upwards and to the right, after the second axis has also
frozen out, so only the longest is shrinking (third line), until
the third axis also freezes out, at which point the object is
defined as being virialized.

The slope of the first line is steeper when p = e/2,
shallower when p = −e/2. The evolution proceeds further
down the plane as e increases, at fixed p, and is confined
in the region between the bisector of the plane and the line
characterized by p = e/2. Hence, when p = e/2 and e > 0,
the object is more likely to form a pancake (i.e. lower right
region of the plane), while when p = −e/2 a filament is more
likely to occur (i.e. lower left region). Also, for small values
of ellipticity, the final shape does not depart significantly
from the spherical case (upper right region of the plane).

The fact that p determines the slope of the initial mo-
tion in the plane, whereas e controls how far the initial col-
lapse progresses, can be understood as follows. Initially, i.e.,
when λ1 ≪ 1,

A1

A3
=

1− λ1

1− λ3
≃ 1− 2δ(ti)e, (14)

A2

A3
=

1− λ2

1− λ3
≃ A1

A3
+ δ(ti)(e+ p). (15)

Therefore, for a given δ(ti), the ratio A1/A3 is a function of e
only: if e increases then A1/A3 decreases, and at fixed A1/A3

(or, equivalently, for a given e) the prolateness p increases
as A2/A3 increases. This effect is indicated in Figure 3 by
the circular arrows.
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To next order in δ(ti)

A1(t)

A3(t)
≃ A2(t)

A3(t)

1− δ(ti)(1 + 3e+ p)/3

1− δ(ti)(1− 2p)/3
×

{

1− δ(ti)
3

a(t)
ae(t)

(3e+ p)
[

1 + D(t)
D(ti)

− ae(t)
a(t)

]}

{

1 + 2δ(ti)
3

a(t)
ae(t)

p
[

1 + D(t)
D(ti)

− ae(t)
a(t)

]}

.
(16)

In particular, when p = 0:

A1(t)

A3(t)
≃ (1+3e)

{

1+δ(ti)e
[

1−
(

1+
D(t)

D(ti)

)

a(t)

ae(t)

]}

A2(t)

A3(t)
.(17)

Motivated by this, we have parametrized the evolution
in this plane as follows. If f(e) denotes the distance along
the first line, then, for a given p,

f(e) =
√

(1−A2/A3)2 + (1− A1/A3)2, (18)

and

A1

A3
− k(p)

A2

A3
= b. (19)

The constraint that A1/A3 = 1 when A2/A3 = 1 implies
that b = 1− k(p), and therefore:

f(e) =
(

1− A2

A3

)

√

1 + k2(p). (20)

We found k(p) = 1.858 when p = 0, k(p) = 3.803 when
p = e/2, and k(p) = 1.253 when p = −e/2 for the collapse
of the shortest axis. For the turnaround of the second line,
parametrized in the same fashion, k(p) = 1.084 when p = 0,
k(p) = 1.253 when p = e/2 and k(p) = 1.034 at p = −e/2.
The slope of the final part of the evolution (third line), when
A2 and A1 are both frozen, is simply given by A1(tf)/A2(tf).
Hence, it approaches unity (i.e. parallel to the bisector of the
plane) when A1/A3 ≃ A2/A3, and it is always lesser than
unity otherwise, since A1(tf) 6 A2(tf).

3 INITIAL AND EVOLVED HALO SHAPES

The discussion above shows how the initial values of δ, e, p
determine the future evolution of the object, including its
shape. Our next task is to determine how the initial distri-
bution of e and p values depends on halo mass. We use the
algorithm of Sheth & Tormen (2002) to do this. Briefly, this
requires the generation of the joint distribution of δ, e, p as
a function of smoothing scale Ri, finding the largest scale at
which δ > δec(e, p), and then associating the values (δec, e, p)
to the patch from which a halo of mass M = ρ̄ 4πR3

i /3
formed. Since this algorithm has been used by other au-
thors since (Sandvik et al. 2007), we do not provide details
here, but refer the reader to Appendix B in Sheth & Tormen
(2002), and to Bond et al. (1991), Bower (1991) and Lacey
& Cole 1993) for further details.

3.1 Mass-dependent shapes from scale-dependent

initial conditions

Figure 4 illustrates how our model for halo shapes works.
The top left panel shows the distribution of initial axis ratios
for small patches (M = 1013h−1M⊙) which the ellipsoidal
collapse model predicts are destined to become low mass
halos at the present time. The bottom left panel shows the

Figure 4. Distribution of initial (top panels) and final (bot-
tom panels) axis ratios in our model, for halos of mass M =
1013h−1M⊙ (left) and 1014h−1M⊙ (right). Initial conditions are
specified by combining the statistics of Gaussian random fields
with the ellipsoidal collapse model, following Sheth & Tormen
(2002).

distribution of final axis ratios at virialization (see Section
2). The panels on the right show the analogous quantities
for more massive halos (M = 1014h−1M⊙).

The plot shows that halos are, in general, predicted to
be triaxial, with a slight tendency to be more prolate than
oblate. In addition, massive halos are predicted to be more
spherical than less massive halos, both initially and finally.
This is primarily a consequence of the fact that the larger
patches from which massive halos form have, on average,
smaller values of (e, p). The trend is consistent with the find-
ings of Bernardeau (1994), who argued that in perturbation
theory larger halos are expected to be rounder.

3.2 The conditional prolateness distribution

The joint distribution of λ1 > λ2 > λ3 was derived by
Doroshkevich (1970) for Gaussian random fields (see Lam,
Sheth & Desjacques 2009 for an extension to non-Gaussian
fields that are of the ‘local’ type). The equivalent expression,
in terms of e, p and δ, is:

g(e, p, δ|σ) = p(δ|σ) g(e, p|δ, σ)

=
e
−

δ
2

2σ2

σ
√
2π

1125√
10π

e(e2 − p2)
(

δ

σ

)5

e
− 5

2

δ
2

σ2
(3e2+p2)

. (21)

Doroshkevich’s formula is the product of two independent
distributions, a Gaussian for δ/σ, and one which is a com-
bination of the other five independent elements of the de-
formation tensor of which the λj are the eigenvalues (Sheth
& Tormen 2002). Integration of equation (21) over δ yields
the joint distribution of ellipticity and prolateness, g(e, p|σ).
A further integration over p gives the distribution of ellip-
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Figure 5. Distribution of prolateness at fixed halo mass and ellipticity, gc(p|e, σ), in our model (dotted histograms). Theoretical curves
(solid lines) are from equation (22) with different values of e, as specified in each panel.

ticities as a function of halo mass (σ), f(e|σ). This integral
can be computed analytically (c.f. equation 24 of Lam et al.
2009).

For a given ellipticity, we can predict the distribution of
p’s that will produce collapsed objects at any given redshift
(say, z = 0). In detail, for δec(e, p) as in equation (9), we
define Θ(δ, e, p) = 1 if δ > δec(e, p) and Θ(δ, e, p) = 0 other-
wise. Then we impose the requirement that the perturbation
had collapsed (at z = 0) by computing

gc(p|e, σ) = gc(e, p|σ)/fc(e|σ)

=

∫

∞

0
dδ g(e, p|δ, σ) p(δ|σ) Θ[δ > δec(e, p)]

∫ e

−e
dp

∫

∞

0
dδ g(e, p|δ, σ) p(δ|σ)Θ[δ > δec(e, p)]

. (22)

Plots of equation (22) are shown in Figure 5.

3.3 Universal conditional axis ratio distributions

at late times

In equation (22), the mass and epoch dependencies actually
cancel out, i.e. gc(p|e, σ) ≡ gc(p|e). This suggests that non-
linear evolution will not change the conditional distribution
gc(p|e, σ) from that which is set by the initial conditions.
To see why, recall that the axis ratio A1/A3 is specified once
δ(ti) and the ellipticity are fixed (c.f. equation 14). Moreover,
if δ(ti) and e are fixed, then A1/A2 = (A1/A3)/(A2/A3) is
only a function of the prolateness (c.f. equation 15). Hence,
for a fixed mass, equation (22) can be equally expressed in
terms of (e, p), or as a function of (A1/A2, A1/A3). I.e., if
we define A12 ≡ A1/A2 and A13 ≡ A1/A3, then

p(A12|A13, δ, σ) =
g(A12, A13|δ, σ)

p(A13|δ, σ)

=
3

2(1− A13)

[

1− (2A12 − 1− A13)
2

(1− A13)2

]

× exp
{

− 5

8σ2
(2A12 − 1− A13)

2
}

, (23)

where the final expression follows from setting

g(A12, A13|δ, σ) dA12 dA13 = g(e, p|δ, σ) de dp. (24)

At small masses, the exponential term → 1, making this
distribution almost universal, i.e. independent of mass and

epoch. This remarkable feature will guide the interpretation
of our results on halo shapes in the next section.

4 COMPARISON WITH HIGH RESOLUTION

SIMULATIONS

The previous section showed how we combine the nonlinear
ellipsoidal model for halo collapse and virialization (Section
2) with the excursion set theory (Section 3), to model the
initial and evolved shape distributions of dark matter ha-
los. Here, we investigate to what extent our simple analytic
prescription is able to reproduce results from N-body sim-
ulations of Jing & Suto (2002).

For their statistical analysis of halo shapes, Jing & Suto
(2002) identified halos at z = 0, 0.5, 1 in simulations of a
cosmology with (ΩM = 0.3,ΩΛ = 0.7, h = 0.7). The sim-
ulations used N = 5123 particles in a 100 h−1Mpc box.
Halos were identified using a friends-of-friends (FOF) algo-
rithm with link-length b = 0.1d, where d is the interparti-
cle separation. Each of their FOF halos contains more than
104 particles. The lower mass limit of their halo catalog is
6.2 × 1012h−1M⊙. They provided a set of fitting formulae
which allow simple tests of our triaxial model: in particular
the mass and redshift dependence of the axis ratios, and the
probability distribution functions of the axis ratios.

4.1 Joint distribution of axis ratios

By averaging over the correct, mass dependent, distribu-
tion of initial shape parameters, each evolved through the
ellipsoidal collapse model, we are also able to make predic-
tions for how the distribution of final shapes depends on halo
mass. The solid contours in Figure 6 show the joint distri-
bution of (A2/A3, A1/A3) we predict; contours show levels
where the probability has fallen to 1/2, 1/4, 1/8, 1/16 of the
maximum value. The dotted lines represent the joint distri-
bution which Jing & Suto (2002) report describe the halos
in their simulations. Note, for the moment, that our model
appears to be in reasonable agreement with the simulations
only around M ≃ 1013h−1M⊙ ≃ M∗ . While this agreement
is gratifying, the fact that the mismatch is mass-dependent
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Figure 6. Distribution of final axis ratios in our model for halos
of different masses (solid contours), as specified in the panels.
Each halo has been evolved using the ellipsoidal collapse model.
The generic evolution is initially towards an oblate, pancake-like
structure, followed by a shift towards a more prolate shape, as
the other axes also begin to shrink. Dotted lines are the joint
distribution which Jing & Suto (2002) report describe the halos in
their simulations, in the concordance cosmology (ΩM = 0.3,ΩΛ =
0.7, h = 0.7).

is potentially troubling. Jing & Suto find that the low mass
halos are actually slightly more spherical than massive halos.
Although the effect is weak, it has since been confirmed by a
long list of authors (see Section 1). In contrast, in our model,
it is the massive halos which are expected to be more spher-
ical (Figure 4). The trend we find is consistent with pertur-
bation theory (Bernardeau 1994; Pogosyan et al. 1998; see
Park et al. 2007, Dalal et al. 2008 and Park, Kim & Park
2010 for more recent discussion of this point).

To show this more clearly, Figure 7 compares the final
distribution of A1/A3 in our model (dotted) with the distri-
bution in Jing & Suto’s simulations (solid) at z = 0. Again,
note that the agreement is reasonable around M∗, but that
the predicted distribution is broader than the simulations at
low and high masses. Note also that the left panels in the fig-
ure show our results without any arbitrary rescaling, while
in the right panels we apply the empirical rescaling they
suggest, which effectively removes the trend with mass.

Park, Kim & Park (2010) have argued that the main
reason for this discrepancy may be due to the halo definition
itself, and to the halo environment. They used a more so-
phisticated halo finding algorithm (from Kim & Park 2006)
which identifies gravitationally self-bound and tidally stable
halos. They showed that the dependence of A1/A3 on local
density is stronger for more massive isolated halos. They ar-
gued that tidal interactions between neighboring halos make
them more spherical on average.

4.2 Conditional axis-ratio distributions

Figure 8 compares the conditional minor-to-intermediate
axis distribution of A1/A2 for a given range of A1/A3 in our
model (histograms), with Jing & Suto’s simulations (solid
lines) at z = 0. In this case, instead, we find remarkably
good agreement with the numerical measurements.

Recall that we had argued that the conditional prolate-
ness distribution g(p|e, δ, σ) in the initial conditions (equa-
tion 23 and Figure 5), depends only weakly on δ/σ, so we
expect the conditional minor-to-intermediate axis ratio dis-
tribution of the evolved object, p(A12|A13, δ, σ), to be simi-
larly universal – independent of mass and time; whether this
equivalence is due to statistics, rather than physics, is sub-
ject of ongoing work. The agreement with Jing & Suto’s sim-
ulations suggests that p(A12|A13, δ, σ) is indeed preserved
from the initial conditions. In fact, except for the exponen-
tial factor in our equation (23), our theoretically motivated
expression for this distribution is exactly the same as that
of Jing & Suto’s empirical fitting formula.

More recently, Wang et al. (2010) have also found that,
in their simulations, p(A12|A13) is independent of mass and
epoch. They also noted that the final redshift dependence
of the short-to-intermediate axial ratio is much weaker than
the other two ratios, indicating that new material tends to
be accreted along the major axes of halos. Our formula (23)
provides the theoretical/physical explanation for their find-
ings.

In this context, we note that Lee, Jing & Suto (2005)
also presented an analytic expression for the axis ratio
distribution of triaxial objects, and claimed that it suc-
cessfully reproduces the conditional intermediate-to-major
axis ratio distribution. However, in their Figure 5 which
is supposed to support this claim, it is the minor-to-

intermediate distribution from the numerical simulations,
p(A1/A2|A1/A3), which is compared with their theory
curve for the intermediate-to-major axis ratio distribution,
p(A2/A3|A1/A3). While this invalidates their claim, it does
raise the question of why the formula for one distribution
happened to describe another?

Our model shows why. When λ1 ≪ 1, then A1/A2 ≃
1 − δ(ti)(e + p), while A2/A3 ≃ 1 − δ(ti)(e − p). How-
ever, the sign difference in the prolateness does not al-
ter the Jacobian of the two different transformations:
(e, p → A2/A3, A1/A3) and (e, p → A1/A2, A1/A3). Hence,
p(A2/A3|A1/A3) d(A2/A3) ≡ p(A1/A2|A1/A3) d(A1/A2).
Thus, at fixed A1/A3, the minor-to-intermediate or the
intermediate-to-major axis ratios distributions are both
equivalent, and so ‘universal’.

4.3 Caveats

In general, a direct comparison between our theoretical
model and N-body simulations is both challenging and sub-
tle. This is primarily because there is still no unanimous
agreement about how to define a gravitationally bound ob-
ject; i.e the very definition of what a non-spherical dark
matter halo is, both in simulations and observationally, is
a non-trivial problem. Determining which material belongs
to a halo and what lies beyond is an open problem (Prada
et al. 2006; Bett et al. 2007; Diemand, Kuhlen & Madau
2007; Cuesta et al. 2008). Common methods for defining
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Figure 7. Distribution of the minor-to-major axis ratio, A1/A3, in our model (dotted) and in Jing & Suto’s (2002) numerical simulations
(solid). Raw data are plotted in the left panels, while in the right panels data are rescaled according to their prescription.

virialized halos in simulations include: spherical overdensity,
tree algorithms based on the branches of the halo merger
trees, two-step procedures with post-processing, maximum
circular velocity, etc., (see Klypin et al. 2010, and references
therein for more discussion). Clearly, the distribution of halo
shapes measured from simulations depends critically on the
halo definition. For instance, Bett et al. (2007) found that
spherical overdensity halos are more spherical than FOF or
TREE halos, and that FOF halos show a much broader dis-
tribution of shapes and a strong preference for prolateness.
This fact complicates the comparison and interpretation of
theory against any numerical study.

Since we are most interested in halo shapes, measure-
ments which do not perform spherical averages are more
closely related to our models. Jing & Suto (2002) used one
such method: a friend-of-friend algorithm (Davis et al. 1985;
Lacey & Cole 1994). This is a percolation scheme that links
together all particles that are closer than b = 0.2d, where d
is the mean interparticle separation. This value of b returns
objects which are approximately 200 times the background
density: it makes no assumptions about the shape of the re-

sulting object. However, it may group distinct halos together
into the same object, confusing the comparison with theory
(White 2001; Tinker et al. 2008; Lukic et al. 2009). This
problem is more serious for halos in higher density regions;
since high density regions have top-heavy mass functions
(Sheth & Tormen 2002), massive halos identified by this al-
gorithm may be erroneously considered to be elongated.

Jing & Suto (2002) used b = 0.1d, so their FOF clumps
are smaller and denser than those defined using the more
conventional 0.2d. As a result, they are less likely to suf-
fer from spuriously linked halos. However, in effect, their
procedure identifies only the central parts of the more con-
ventional halo.

As a further complication, having settled on a halo def-
inition, some authors only study shapes of a subset of the
halo population. E.g., Jing & Suto (2002), only analyzed ha-
los which looked ‘relaxed’: at fixed mass, this is almost cer-
tainly a more homogeneous subset of the entire population.
Our model does not account for this additional selection.

Despite such difficulties in the model/simulation com-
parison, we believe such an exercise is still useful, because
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Figure 8. Conditional distributions (A1/A2|A1/A3) in our model
(histograms), and in the numerical simulations of Jing & Suto
(2002) (solid lines). Results are shown for two different mass
ranges (both at z = 0) and for different values of A1/A3, as
labeled.

there are other reasons why we anticipate disagreement be-
tween model and simulations. E.g., the ellipsoidal collapse
itself is a significant oversimplification of the more complex
nonlinear gravitational evolution – it cannot be expected to
fully capture the dynamics of N-body simulations. Despite
all these caveats, we believe the remarkably good agreement
between the measured conditional axis ratio distributions
and our equation (23) (Figure 8) is non-trivial.

5 DISCUSSION

We presented a model to describe the shape distribution of
bound objects based on Rossi (2008), which is a simple ex-
tension of that introduced by Bond & Myers (1996) and used
by Sheth, Mo & Tormen (2001) to estimate the abundance
by mass of these objects. Our analytic prescription is made
of two independent parts: one is a scheme for how an initially
spherical patch evolves and virializes, for which we adopted
the ellipsoidal collapse dynamics (Section 2, Figure 1); the
other is the correct assignment of initial shapes to halos of
different masses, achieved through the excursion set formal-
ism (Section 3, Figure 4). Along the way, we discussed an

analytic approximation to the evolution, considerably more
rigorous than the Zeldovich approximation (Section 2.2, Fig-
ure 2). And we introduced a useful planar representation of
halo axis ratios, which gives a simple intuitive framework for
discussing the dynamics of collapsing regions (Section 2.3,
Figure 3).

We showed that the model is able to provide a rea-
sonable description of the minor-to-major axis ratio dis-
tribution seen by Jing & Suto (2002) in their numerical
simulations only within a limited mass range (i.e. around
M ≃ 1013h−1M⊙ ≃ M∗). Outside this range, Jing & Suto
found that low-mass halos are preferentially more spheri-
cal than high-mass halos, whereas in our model, the high-
mass halos are more spherical (Figures 6 and 7). We argued
that some the disagreement may originate from differences
in halo types and mass range, and may be alleviated if we
consider only isolated halos. This is because Park, Kim &
Park (2010) find that, on average, high-mass isolated ha-
los are indeed more spherical than low-mass ones, and the
difference is larger in high density/shear regions.

This has an interesting connection to recent observa-
tional work on mass scales where the hypothesis that a halo
hosts only one galaxy may be appropriate. For early-type
galaxies in the SDSS, although the observed projected axis
ratio b/a increases with increasing stellar mass or luminos-
ity, it decreases at the highest masses (Bernardi et al. 2008,
2010). This reversal is thought to arise because the most
massive galaxies tend to be in regions (e.g., at cluster cen-
ters) where recent radial mergers may have made them pro-
late. Fasano et al. (2010) come to a similar conclusion based
on an analysis of the intrinsic shape distribution of BCGs
from the WINGS survey (Fasano et al. 2006; Varela et al.
2009). They propose that the prolateness of the BCGs (in
particular the cDs) could reflect the shape of the associated
dark matter halos (also see Smith et al. 2010). Hence, while
it is tempting to conclude that the discrepancy between mass
dependent trends in simulations and theory will be allevi-
ated if we only consider isolated halos, we note that Jing &
Suto (2002) eliminated halos in their simulations which were
not relaxed. If these had suffered recent mergers, then they
may already have removed the most prolate halos from their
sample. Further investigation of this point is the subject of
ongoing work.

Despite this disagreement about the distribution of
minor-to-major axis ratio, we found very good agreement be-
tween our model and the conditional minor-to-intermediate
axis ratio distribution measured from simulations (Figure
8). In particular, we showed that our model provides phys-
ical motivation for the empirical fitting formula obtained
in Jing & Suto (2002) from numerical studies (our equa-
tion 23). In our model, this distribution is closely related to
the conditional prolateness distribution in the initial condi-
tions (Section 3.2, Figure 5). Unfortunately, results in Lam
et al. (2009) suggest that this distribution is unlikely to be
able to discriminate between Gaussian initial conditions and
ones where the primordial non-Gaussianity is of the ‘local’
type (i.e. Rossi, Chingangbam & Park 2010).

We also discussed the agreement/disagreement between
theory and numerical predictions, in the context of known
problems and limitations in the modelling to difficulties in
making shape measurements from simulations.
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We are currently studying the following improvements
and extensions to our model:

(i) Our model makes the extremely simple assumption
that axis lengths freeze-out once they have shrunk to a suf-
ficiently small size. Subsequent violent relaxation effects as-
sociated with particles which collapse along other axes may
change this size – something our current model does not
consider. For instance, massive halos are expected to have
assembled their mass more recently than low mass halos.
Therefore, relaxation effects may have had more time to
change the axis ratios of low mass halos than of higher mass
halos. If the net effect of this relaxation is to make the halos
more spherical than they would otherwise have been, then
accounting for it may help resolve the discrepancy between
our model and simulations. Note that halos having smaller
amounts of substructures tend to be closer to virial equilib-
rium (e.g. Giocoli et al. 2010), but there has been no study of
whether or not haloes with abnormally small sub-structure
(for their mass) are rounder.

(ii) Testing different collapse criteria, and other prescrip-
tions for the external tidal field (e.g., Angrick & Bartelmann
2010).

(iii) Accounting for correlations between the properties
of halos and their environment (assembly bias), as seen in
N-body simulations (Sheth & Tormen 2004). Environmen-
tal effects can have a significant impact on the properties of
virialized halos because, in the ellipsoidal model, the crit-
ical density threshold δec depends strongly on the initial
values of e and p, and these distributions depend on envi-
ronment (Keselman & Nusser 2007; Wang, Mo & Jing 2007;
Desjacques 2008). In our current implementation, only the
initial density of the surrounding environment matters.

(iv) Modifying the algorithm of Sheth & Tormen (2002)
to account for correlated steps, following Maggiore & Riotto
(2010) and De Simone et al. (2010), when deriving our initial
conditions.

(v) Including the effects of baryonic physics. The con-
densation of baryons to the centers of dark matter halos
is known to change their shape (Dubinski 1994; Holley-
Bockelmann et al. 2002; Kazantzidis et al. 2004; Debattista
et al. 2008).

(vi) Estimating correlations between halo shapes. This is
possible because, in our model, the final shape is determined
by the initial conditions, and correlations in the initial con-
ditions can be quantified. Thus, in our model, correlations
at the present time are obtained by taking the appropri-
ate average over the initial correlations – this average being
determined by the mapping from (e, p) → (A2/A3, A1/A3).
Most published estimates of the correlation between shapes
do not account for this mapping.

(vii) Describing the shapes of subhalos as well as voids
(e.g., Shandarin et al. 2006; D’Aloisio & Furlanetto 2007).

We conclude with the observation that while numeri-
cal studies are indispensable for quantifying the shapes and
structures of dark matter halos, we hope that our simple
procedure may provide a complementary theoretical frame-
work for understanding halo shapes, and how these shapes
are correlated with larger-scale structures.
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