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Abstract

The imbalance of phylogenetic trees exhibits
a systematic deviation from the expectation
of a purely random tree growth process as in
the Yule or ERM models. Here we introduce
an age dependent growth model based on the
hypothesis that speciation rate is a decreasing
function of the waiting time since the last spe-
ciation. We find that the imbalance in terms
of the mean distance of tips from root (Sackin
index) grows as (log n)2 in leading order with
tree size n. This result is in good agreement
with the trend observed by exhaustive anal-
ysis of the phylogenetic databases TreeBASE
and PANDIT. Exact likelihood computation
of the model on the trees up to 20 tips con-
tained in the databases is performed. Higher
likelihoods values are found when compared
with a previously suggested model [Blum and
François, 2006].
keywords: macroevolution, phylogenetic trees,

branching models, imbalance
Reconstruction of phylogenies is instrumental for

an understanding of the driving forces of evolution
that have led to the diversity of living organisms. Hy-
potheses about the dynamical rules of speciation and
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extinction governing all evolutionary processes may
come under scrutiny with large collections of phy-
logenetic trees available nowadays [Sanderson et al.,
1994, Whelan et al., 2006]. A suitable starting point
and null hypothesis is the Equal Rate Markov (ERM)
process suggesting that species undergo further speci-
ation at a constant homogeneous rate, independently
of previous events and other species present. The re-
sulting topology of the growing tree, which is equiv-
alent to the one produced by the Yule model [Yule,
1925], tends to generate compact and nearly balanced
tree shapes, where shape denotes the simple rooted
tree without branch lengths nor node labels [Mooers
and Heard, 1997]. When comparing with the shape
of observed trees above a certain moderate size, how-
ever, the ERM hypothesis can be rejected, as most
real phylogenetic trees are significantly less balanced
than those generated by the ERM and Yule models
[Herrada et al., 2008]. Imbalance refers to an uneven
distribution of the number of taxa (tips) between left
and right branches of a tree or subtree.

The so-called beta-splitting [Aldous, 1996] is a class
of models for stochastic tree generation with expected
imbalance tunable by a parameter β ∈ [−3/2; +∞[.
The ERM model is reproduced at β = 0. The
model of Proportional to Distinguishable Arrange-
ments (PDA, β = −3/2) assigns to all tree shapes
of a given size the same probability. The trees in
TreeBASE have been found to match best with the
intermediate parameter value β = −1.0 [Blum and
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François, 2006] a case called Aldous’ Branching (AB)
model [Aldous, 1996]. The AB model and others
[Ford, 2006] introduced to account for tree imbalance,
however, assign probabilities to tree shapes in a way
which is not based on any evolutionary principles.
While the model can statistically reproduce features
of the trees in the databases, it does not hint at any
biological explanation of these features, as Blum and
François [2006] remark.

Here we define a stochastic procedure to grow trees
by iterative attachment of tips, similarly to the ERM
model. At difference with the latter, the rate of
speciation of a given species is assumed to decrease
with the amount of time since last speciation of that
species. We show below that this age model yields
larger or equal likelihoods on small and medium-sized
trees in the databases (where likelihood computation
is feasible) when compared with the AB model. Fur-
thermore, we use the depth (Sackin index) to quantify
tree imbalance. For the age model, there is evidence
that the expected depth increases as (log n)2 with
the number of tips n. This growth law, identical to
the AB model, is in good agreement with the depth
values obtained from the databases.

Tree Balance

Several indices for balance measurement have been
proposed, used and compared in the literature (see
Mooers and Heard [1997], Matsen [2006], Agapow
and Purvis [2002] for detailed discussion). Here we
consider the depth [Sackin, 1972]

d = n−1
n∑
i=1

di (1)

as a measure of imbalance. In a tree with n tips, di
denotes the number of edges to be traversed to reach
the root from node i ∈ {1, . . . , n}. This measure
may be applied to non-binary trees (including poly-
tomies and monotomies) and favors analytical treat-
ment. Comparisons with other measures have been
made by Matsen [2006], Agapow and Purvis [2002].

For a complete binary tree, d = log2 n since all
n = 2k tips are at level k. As the other extreme, a

comb (or pectinate) tree has nd = 1 + 2 + · · ·+ (n−
2)+2(n−1) resulting in asymptotically linear scaling
d ∼ n (we use the notation f ∼ g to indicate similar
asymptotic behavior, i.e. to indicate that for large
values of n, the ratio f(n)/g(n) tends to a constant;
an alternative notation is f ∈ Θ(g)).

In the present work we calculated the depth d for
all trees (and subtrees) in the phylogenetic databases
TreeBASE (containing species phylogenies, Sander-
son et al. [1994]) and PANDIT (protein phylogenies,
Whelan et al. [2006]). The results in Figure 1 sug-
gest that the average depth of the trees grows with
the number of tips as

d ∼ (log n)2 (2)

in good approximation. Alternative analytic expres-
sions for the growth can be fitted, in particular a
power law d ∼ nα, with α ≈ 0.4 describes TreeBASE
data equally well [Herrada et al., 2008]. But for the
larger tree sizes contained in PANDIT, the (log n)2

form is more accurate.

Previous models

A simple mechanism to generate a binary rooted tree
is given by the ERM model. It departs from a root
node counting as a single tip (n = 1). Then in each
iteration, a node i is drawn from the flat distribution
on the set of tips, and two tips are attached to node
i, increasing the number of tips by 1.

The ERM model provides a mechanism of a grow-
ing tree. This mechanism may be interpreted as a
hypothesis for evolutionary dynamics. Here the hy-
pothesis is that all species are involved in further spe-
ciation at the equal rates, irrespective of evolutionary
history. The Yule model [Yule, 1925] is another im-
plementation of this idea leading to trees with the
same shape.

Abstracting from the dynamics behind tree genera-
tion, one may formulate a model directly in terms of a
probability distribution on a set of trees. More pre-
cisely, a probability distribution is given separately
for each set of all eligible trees of the same given tree
size n. Here eligible trees are oriented binary rooted
trees. Oriented is to say that left and right subtrees
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Figure 1: The square-root of the mean depth vs. size of phylogenetic trees contained in databases
for species (TreeBASE; empty circles) and proteins (PANDIT; filled circles). The mean depth is av-
eraged for all trees having the same number of tips. In this scale (log-linear), the behavior 〈d〉 ∼
(log n)2 is a straight line. Data from TreeBASE has been downloaded from http://www.treebase.org

on June, 2007 containing 5,212 phylogenetic trees; data from PANDIT has been downloaded from
http://www.ebi.ac.uk/goldman-srv/pandit on May 2008 and contains 7,738 protein families.
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are explicitly distinguishable (by a left-right label-
ing). By this choice we avoid the need to consider
isomorphy classes w.r.t. left-right symmetry.

In a particular class of models, the probability
L(T ) of a tree T is defined by a product over its
inner nodes I = {1, 2, . . . , n− 1} according to

L(T ) =
∏
i∈I

pmodel(li|ni) . (3)

The model-specific probability factor pmodel depends
on the total number ni of tips in the subtree with root
node i and the number li of tips in the left subtree of
i. Arguments naturally fulfill 1 < li < ni. Left-right
symmetry is ensured by

pmodel(i|n) = pmodel(n− i|n) (4)

such that L(T1) = L(T2) when T1 is isomorphic to
T2. The choice of the functional form of pmodel de-
termines the expected balance of the trees. By con-
centrating probability mass at values l close to 2 and
close to n− 1, imbalance is enforced.

The ERM model is recovered as the case where all
n − 1 possibilities of left-right splitting are equally
likely, so

pYule(l|n) =
1

n− 1
(5)

with equal probability for all n − 1 possibilities for
splitting n tips between left and right subtree. The
expected depth grows as the logarithm of the number
of tips,

〈d〉(n) ∼ log n . (6)

The ERM model is a particular case (β = 0)
of beta-splitting. This is a one-parametric class of
models with imbalance tunable by the parameter
β ∈ [−3/2,∞[.

pβ(l|n) =
1

aβ(n)

Γ(β + l + 1)Γ(β + n− l + 1)

Γ(l + 1)Γ(n− l + 1)
(7)

with suitably chosen normalization aβ(n). Taking
β → ∞ produces maximally balanced trees. As the
opposite extreme, the Proportional to Distinguishable
arrangements (PDA) model is obtained at β = −3/2.
Here the depth grows algebraically with n as

〈d〉(n) ∼
√
n . (8)

This square-root scaling is obtained also for a dif-
ferent model of tree growth, the activity model
[Hernández-Garćıa et al., 2010].

The parameter value β = −1 is of particular in-
terest because it has been demonstrated to maximize
the agreement of beta-splitting with observed phylo-
genetic trees [Blum and François, 2006] in terms of
imbalance. This choice β = −1 is also called Aldous’
branching (AB) model with probabilities

p−1(l|n) =
1

a−1(n)

n

l(n− l)
(9)

The expected mean depth increases as

〈d〉(n) ∼ (lnn)2 . (10)

The age model

Similar to the ERM model, the age model describes
the growth of a binary tree by iterative stochastic ad-
dition of tips. Each tip i is assigned an age τi(t) being
the time that passed from the birth of the tip, ti, to
present time t, i.e. τi(t) = t−ti. The growth proceeds
by iterating the following three steps. (i) A tip i is
chosen with probability pi(t) inversely proportional
to age

pi(t) =
τ−1i
c(t)

, (11)

where c(t) is chosen such that probabilities of all tips
sum up to 1; (ii) Two new tips j and k with creation
times tj = tk = t are attached to node i; (iii) time
t is increased by ∆t and the process resumes at (i).
Here we consider a constant time increment ∆t = 1
unless indicated otherwise. With this choice, time
t is equivalent to number of branching events, and
t = n − 1. A different choice is briefly considered
below.

Depth asymptotics

Now we analyze the n-dependence of the expected
depth of trees stochastically generated by the age
model with ∆t = 1. Numerical and heuristic ar-
guments strongly suggest that d ∼ (log n)2 is the
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Figure 2: The dependence of depth d on the number of tips n. Curves with symbols are the lower (squares)
and upper (circles) bounds obtained by the recursion Eqs. (18) and (21) inserted into Eq. (23). Stochastic
simulations yield an average depth plotted as the solid line with error bars indicating standard deviation
over the 30 independent realizations with ∆t = 1. Analogously, the dashed line is for stochastic simulations
but using a time increment ∆t = 1/n. Note that

√
d is plotted over a logarithmic n-axis, so the dependence

d ∼ (log n)2 results in a straight line. The inset shows the slopes of the curves in the main panel, which
display better the asymptotic approach to a constant slope, i.e. the approach to a (log n)2 growth.
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asymptotic growth law for this model, but we can
not provide a fully rigorous demonstration of that.
Instead we establish here upper and lower bounds for
the depth in the model, and provide convincing nu-
merical evidence for the (log n)2 scaling of them, from
which the same behaviour would hold for 〈d〉(n).

Let us first consider a single realization of the
stochastic process. For each integer time t > 0, let
δ(t) be the distance from root of the two new tips
added at time t. This means that δ(t)− 1 is the dis-
tance from root of the tip chosen to speciate. Let
τ(t) be the age of the tip chosen at time t. Then δ(t)
obeys the recursion

δ(t) = δ(t− τ(t)) + 1 . (12)

for t > 1 with δ(1) = 1 as initial condition.
Let us now consider the case that the process has

generated the sequence δ(1), δ(2), . . . , δ(t−1) and we
would like to know the expectation value η of δ(t).
In the calculation of η also the distribution f(τ, t) of
ages of the tips of the tree enters as

η = 1 +

∑t−1
τ=1 f(τ, t)τ−1τ−1δ(t− τ)∑t−1

σ=1 f(σ, t)σ−1
. (13)

Let us now establish an f -independent lower-bound
on η. To this end, we define a particular age distri-
bution as

f≤(τ, t) =

 2t−1, if τ = 1
t−1, if 2 ≤ τ < t

0, if t ≤ τ
(14)

Dynamically, this age distribution is obtained when
one of the youngest tips (τ = 1) is chosen in each step.
One can show that replacing the actual age distribu-
tion f by f≤, the expected level does not increase.
Therefore

η ≥ 1 +

∑t−1
τ=1 f≤(τ, t)τ−1τ−1δ(t− τ)∑t−1

σ=1 f≤(σ, t)σ−1
. (15)

The expectation value 〈δ〉(t) over the whole
stochastic process is obtained formally by an aver-
age over all histories as follows. Call Dt the set of all
eligible distance sequences of length t− 1 and Ft the

set of all eligible age distributions at time t. Then we
may write

〈δ〉(t) = 1+
∑
δ∈Dt

∑
f∈Ft

p(δ, f, t)

∑t−1
τ=1 f(τ, t)τ−1δ(t− τ)∑t−1

σ=1 f(σ, t)σ−1

(16)
with p being the joint distribution of distance se-
quence and age distribution at a given time. An exact
solution for 〈δ〉(t) would thus involve a recursion for
p, which is difficult to treat. The lower bound on η
in Eq. (15), however, is valid for each possible real-
ization of the process. Therefore

〈δ〉(t) ≥ 1 +

∑t−1
τ=1 f≤(τ, t)τ−1

∑
δ∈Dt

δ(t− τ)p′(δ, t)∑t−1
σ=1 f≤(σ, t)σ−1

(17)
where p′ is the marginal of p after summation over
Ft. Performing the sum over Dt yields

〈δ〉(t) ≥ 1 +

∑t−1
τ=1 f≤(τ, t)τ−1〈δ(t− τ)〉∑t−1

σ=1 f≤(σ, t)σ−1
(18)

Thus we have established a recursion for a lower
bound on 〈δ〉.

Likewise, the age distribution

f≥(τ, t) =

 2t−1, if τ ≤ bt/2c
t−1, if τ = (t+ 1)/2

0, otherwise
(19)

can be used to establish an upper-bound recursion.
Dynamically, this age distribution is obtained when
an oldest tip is chosen in each step. One can show
that

η ≤ 1 +

∑t−1
τ=1 f≤(τ, t)τ−1τ−1δ(t− τ)∑t−1

σ=1 f≤(σ, t)σ−1
. (20)

By arguments analogous to the above, we arrive at
the upper-bound recursion

〈δ〉(t) ≤ 1 +

∑t−1
τ=1 f≤(τ, t)τ−1〈δ(t− τ)〉∑t−1

σ=1 f≤(σ, t)σ−1
. (21)

For transforming 〈δ〉 into expected depth d, con-
sider the sum of distances of tips from root, D(t) =

6



td(t). Addition of two tips at distance x from root
increases D by 2x− (x− 1) = x+ 1. Thus

D(t) =

t∑
s=2

(δ(s) + 1) (22)

for a realization of the stochastic process with level
sequence δ. By linearity of expectation values the
expected depth is

〈d(t)〉 =

t∑
s=2

[〈δ(s)〉+ 1]/t . (23)

Figure 2 shows upper and lower bounds on the ex-
pected depth 〈d〉 obtained as numerical solutions of
the recursion equations (18) and (21). In the same
diagram we plot the results of direct simulations of
the model. In one set of simulations we use the usual
time increment ∆t = 1, so that t ∼ n. Another set of
simulations is performed with ∆t = 1/n to check for
robustness under different evolution of overall specia-
tion rates. Upper and lower bounds as well as the two
sets of simulations strongly suggest that the asymp-
totic growth behavior for the depth is (log n)2.

Likelihood Analysis

Abstracting from the algorithmic formulation of tree
generation, a branching model A can be character-
ized by the probability LA(T ) of obtaining a given
tree T . The quantity LA(T ) is also called the likeli-
hood of model A under the data (tree) T . When aim-
ing at modeling empirical data, we would say that
one model A is better than a different model B, if
LA(T ) > LB(T ) for an observed tree T .

For the ERM model and the AB models defined in
the previous section, the calculation of likelihoods is
straight-forward:

LA(T ) =
∑

x∈I(T )

pA(s(left(x))|s(x)) (24)

where A is the model under consideration, I(T ) is
the set of inner nodes of tree T , s(x) is the number
of tips in the subtree with the root x and left(x) is
the left child node of node x. For the age model

it is not clear if a simple method of exact likelihood
computation exists. Here we calculate the exact value
of Lage(T ) by adding up probabilities of all branching
orders leading to the observed tree T . Details are
described in the Appendix.

Figure 3 shows that the likelihoods of the age
model and AB model are clearly correlated under
the trees in the databases. The variation of likeli-
hoods across trees of the same size n is smaller in the
age model compared to that in the AB model. No-
tably, the age model has larger likelihood than the
AB model under more than half of the trees under
consideration, so that it can be considered a better
description of the evolutionary process.

Concluding remarks

The proposed age model compares with observed
phylogenetic trees better than previous models. In
addition, it describes the tree generation process in
a way which is easy to interpret biologically: it as-
sumes that lineages which have not speciated for a
long time would display in the future a still more
reduced speciation rate.

Future work should provide a more detailed analy-
sis of the model itself and further comparison to real
phylogenetic trees. For the former, an analytic solu-
tion for the expected depth of for its bounds is lack-
ing. It would be also desirable to obtain expressions
or at least numerical results for the second and per-
haps higher moments. For the likelihood expressions,
a factorization or other kind of decomposition would
allow for faster exact computation. Instead of exact
computation, estimation by a Monte-Carlo sampling
method may circumvent the present size limitation of
trees in the likelihood analysis.

An additional interesting point of analysis and
comparison of phylogenetic trees is the distribution of
branch length. Branch length data, however, are not
as reliable as the topological structure of phylogenetic
trees [Barraclough and Nee, 2001]. This argument is
supported by Pigolotti et al. [2005], summarizing the
variety of behaviors of distributions found in the lit-
erature. We believe that future studies in the line of
Venditti et al. [2010] will accumulate sufficiently re-
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Figure 3: Comparison between age and AB models by likelihoods under tree shapes from databases. (a)
log(Lage(T )) versus log(LAB(T )) for each of the 541 tree shapes T with n = 20 tips in the database PANDIT.
The dashed line is the identity. (b) Same as (a) for the 85 tree shapes with n = 20 tips in the database
TreeBASE. (c) Fraction of trees T with Lage(T ) > LAB(T ), separately for each n ∈ {5, . . . , 20}. The overall
fraction is 0.554 = 14088/25441 for PANDIT and 0.562 = 842/1499 for TreeBASE. The number of available
tree instances is one order of magnitude smaller in TreeBASE than in PANDIT leading to larger fluctuations
in the TreeBASE results.
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liable branch-length data to allow for comparison to
models such as the present one.

Finally, timing in the model is worth further clarifi-
cation. The model describes tree growth as a Markov
chain where exactly one speciation event occurs at
each time step. A more realistic version would formu-
late a Markov process that assigns a speciation rate
to each species at any moment in continuous time.
The choice ∆t = 1/n in the results of Fig. 2 is a first
step in that direction.
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APPENDIX: Likelihood compu-
tation

The probability Lage(T ) of the age model generating
a given rooted binary tree shape T is calculated as
follows. The nodes of the tree are assigned unique
labels in {1, . . . , 2n− 1} := A, where the inner nodes
have the labels {1, . . . , n − 1} := I. The root has
label 1. For a non-root node i > 1, we denote the
unique parent node by m(i). We call S the set of all
permutations of I, so each element of S is a bijection
s : I → I. Such a permutation is to encode a branch-
ing order of a tree: s(i) is the time step at which
node i branches. In a valid branching order, children
cannot branch earlier than the parent. Thus we say
that s ∈ S is compatible with T , if s(i) > s(m(i)) for
each i ∈ I \ {1}. We call Sc(T ) ⊆ S the set of com-
patible permutations. When branching according to
s ∈ Sc(T ), the set of tips at time t > 1 is

B(s, t) = {j ∈ I \ {1} | s(m(j)) < t < s(j)}(25)

∪ {j ∈ A \ I | s(m(j)) < t} .

The age of a tip j at time t > 1 is t−m(j). Thus the
age model generates the tree T with the branching
order given by s ∈ Sc with probability

p(s, T ) =

n−1∏
i=2

(s(i)− s(m(i))−1∑
j∈B(s,s(i))(s(i)− s(m(j))−1

(26)

The overall probability of generating T with the age
model is obtained by summing over all branching or-
ders generating T ,

Lage(T ) =
∑

s∈Sc(t)

p(s, T ) . (27)
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