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Abstract.  We present the underlying relations between colour-magdaitiagrams
(CMDs) and synthesis models through the use of stellar lasiiy distribution func-
tions. CMDs studies make a direct use of the stellar lumtgalistribution function
while, in general, synthesis models only use its mean vauen though high-order
moments can also be obtained. We show that the mean, hig-oraments and in-
tegrated luminosity distribution functions of stellar embles are related to the stellar
luminosity distribution function, within the formalism @irobabilistic synthesis mod-
els. More details have been yet presented in Cervino & liam@(2006) and references
therein. As a direct application of this formalism, we disstwo key issues. First, in-
ferences on the upper mass limit of the initial mass funcéiem function of the total
mass of clusters. Second, we apply extreme value theoryoww 8tat that the cluster
mass obtained from normalising the IMF betweaf.x andm,, does not provide the
cluster mass in the case where only one star in this mass rapgesent, as assumed
in the IGIMF theory. It provides instead the cluster mashwit60% probability to
have a star with mass larger tham.x, and we argue that in light of this result the basic
formulation ofthe IGIMF theory must be revised.

1. From starsto stellar ensembles and the mass-luminosity relation

Our basic knowledge of the Universe stems from the lightivecefrom observed
sources. In a first-order approximation (neglecting irdgoais with the interstellar
medium and non-stellar components), we can consider tvastgpsources: individual
stars and stellar ensembles. Since in this case the emifsiorstellar ensemble is just
the sum of its individual components, we can refer to thisssion adntegratedlight,
coming from an unresolved system such as a distant clusterpoxefslit/IFU in an
image of a galaxy. The problem of inferring physical projgsrfrom the observed data
can thus be reduced to the analysis of the observed lightofidtual stars in terms of
theoretical stellar models, or, in the case of integratgtt Jito decompose the integrated
light into its (stellar) components.

Obviously, the interpretation and physical inferenceg ti@an be obtained from
the integrated light depends on our physical knowledge ®finldividual sources that
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would be present in the ensemble. It implies to have thammethodels which cover
the emission of all possible stars in the ensemble or, at, l&abe able to model the
emission of the most luminous ones, which are also the mossiwein a first order
approximation. The reason being that they dominate thgrated emission of stellar
ensembles. However, the evolution and spectra of mahksivimous stars are far from
being solved problems in astronomy, and constitute a veiyeapesearch area. The
impact of mass loss, rotation, magnetic fields, binary atteons, etc, can change the
physical inferences obtained from the observed data (gedhtribution by Massey
2010, in these proceedings).

The fact that integrated light is dominated by the most lwuasstars could be an
advantage for some studies dealing with age inferences. Hoivever, a problem if we
are interested in inferring the total mass as the statisfistars present in the field (e.g.
Salpeter 1955) show that low-luminosity, low-mass staesthe most numerous ones
and dominate the total mass budget of any ensemble, whiterhagss stars are the less
numerous, with a small contribution to the total mass, bmidate the integrated light.

The problem we are addressing here, then, is the inferermat #ie total mass
of the ensemble given its total, integrated luminosity. gy relations in zero-age
main sequence stars allow to relate the current stellar mésand its bolometric
luminosity (which is extrapolated to the luminosity in angrid, wavelength or time
£,(t) in synthesis codes, see Cervifio & Luridiana 2005, andeaf®s therein for a
discussion) by a power law as

a(t) o« m(t)” 1)

wherey has typical value of around 3 for main-sequence stars.
In the case ofinresolvedstellar ensembles we are seeking a mass-luminosity re-
lation with an even simpler functional form:

L(t)/ M(t) « constant, 2

where£,(t) the integrated luminosity in a given baagvelength of an stellar ensemble
whose total mass in starsMd(t). We stress the flierence in the functional dependence
of the luminosity in Eq.[1l and Ed.] 2. To obtain these simplatiehs was actually
the problem that Beatrice Tinsley aimed to solve (e.g. €n41980), and it leads to the
development of stellar population synthesis models.

2. Stdlar evolution, CMDs and probabilistic synthesis models

Stellar evolution theory (in particular evolutionary tkag predicts the evolution of stars
with a given initial massn as a function of timé measured from the so-called zero-age
main sequence. We note this as, for example, the luminosiystar as a function of
time, givenits mass:fyack(tim). During the main sequence phase, the mass-luminosity
relation is more or less well described by Ef. 1, althouglh suelation does not apply
for evolved phases. Provided a large grid of tracks and @mgaotation algorithm we
can transform the luminosity of a set of stars with giveniahitnasses as a function of
time, Crack(tlm), into the evolution of stars atgiventime as a function of their initial
masses{iso(mit), that is, isochrones (such transformation is not alwaydvial task,

we refer to, e.gl, Cervifio & Luridiana 2005, for details).
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At first glance, Colour-Magnitude Diagrams (CMDs) are jugt@jection of such
isochrones in a particular plane given by the choice of iltemtil recently, the compar-
ison of theshapeof the observed sequences in these diagrams with a set oftsws
provided highly valuable information about physical pndjgs of the ensemble of stars,
such as ages, distances and metallicities. The comparfssitapes, however, results
in a number of degeneracies, such as the age-metallicitgndegcy in the sense that
isochrones of dferent ages selected afférent metallicities have the sarsleape One
has to keep in mind that, besides the observational ert@dotation of stars ina CMD
is a sequence ahass When a CMD is not just considered as the 2-D locus of stars
of a given age and metallicity, but as a density structureclvbédkes into accourtow
manystars are in each point of the diagram, the degeneracy cdftduk [The reason
is that the density of staralong an isochrone is a very sensitive probe of both age
and metallicity. So, taken into account the density, noy @aln the basic parameters of
these single stellar populations be inferred (see Herrra&délls-Gabaud 2008, for in
a classical Bayesian way), but also their star formationcsnical evolution histories
(see, for a review, Valls-Gabaud 2011).

A similar formalism for interpreting CMDs taking into acauithe density is the
representation of the stellar luminosity distribution dtian (the distribution of stars
that share a common, given luminosity). Taking the distiisuthat provides how
many stars are born with a given massat a given agd, that is, the stellar birth-
rate b(m, M), any stellar luminosity distribution function or CMD case Iproduced.
The aim of CMD analyses is just the inverse problem, thatasnter b(m,t) from
observations.

It is traditionally assumed (see, elg., Tinsley 1980) thatstellar birth rate can be
decomposed into tweeparablgfunctions: the stellar initial mass function (IMBjm),
and the total amount of gas transformed into stars at a given t.e., the star formation
rate historyy(M,t) = dM(t)/dt:

b(m, M) dmdt = ¢(m) dm x y(tM) dt . 3)

This decomposition of the stellar birth rate is the basis oknof the actual research
in the studies of stellar ensembles: the use of isochroné® ense only under the
assumption that the stellar masses produced in an startiormevent do not depend
on the amount of gas transformed into stars in the evenf igelin previous events.
Formally, this decomposition with small modifications rénsavalid if an initial cluster
mass function, ICMRp(M.ys) is included (Weidner et al. 2010):

b(m, Mcius, M) dmdMeus dt = #(m) dm x o(Meius) AMeius X Y (tiMes) dt . (4)

as far as an integrated galactic initial mass function, 16IMhich includes the IMF
and ICMF functions, can be separated from the star formditistory, and the star
formation history refers to the amount of gas transformeéd atusters Mg,s, instead

of the amount of gas transformed into sta¥$,

In the following we just consider the IMF instead the IGIMFdbtain the stellar
luminosity function. Given the IMF and the isochrone at aegitime we can obtain the
distribution function that gives us the probability of olbta star with a given luminos-
ity. The implicit assumption is that the IMF is a probabildistribution function which
provides the probability to have a star with a given mass,fogin exact number of
stars. The stellar luminosity functiasy d¢ is, trivially, (Cervifio & Luridiana 2006)
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The diferent inflection points in the mass-luminosity relationlwikld features
in the luminosity function which do not appear in the mas<fiom. Themeanof the
distribution (i.e. the mean luminosity of clusters whichntan just one stak,£i.)) is

Myp -1 Myp
= z(m)qs(m)(d“m)) LGV [T amoman,  ©

Miow dm dm Miow

wr = $(m) X(

which is the equation solved by synthesis codes.

Equatiorl 6 shows two important issues that must be consideite caution. The
first one is related with the derivative 6fvith the initial massn. Such derivative is not
always defined and isochrones have discontinuities in maét- sequence evolutionary
phases, the so callddst evolutionary phaseshere Eq.[1l does not apply. Actually
such phases are better described in terms of the lifetimeegihase for a given mass
(typically the turn-¢f mass) rather than with initial masses. This issue leadgferent
algorithms to compute synthesis models, either ugiiegjconsumption theoreor else
isochrone synthesis (see Buzzoni 1989; Marigo & Girardil20@r more details). The
important point here is that since it is the stellar lumitpdistribution function the one
that must be well sampled, size-of-sampfteets may be still present in the sampling
of fast evolutionary phasesyen with a well-sampled IMF

The second cautionary note refers to the IMF mass limits febres. The for-
mulation and the modelisation of stellar ensembles is \agifar asn,, (and formally
mow) have well-defined values. The mean value depends on bomgéers and the
functional form of the stellar luminosity distribution fation.

When dealing with an ensemble Nfstars the corresponding distribution which
describes the possible integrated luminosities of theehkeis N times the self-
convolution of the stellar luminosity function (under rama sampling of the stellar
luminosity distribution function assumption). Then theandotal luminosity is (see
Cervifio & Luridiana 2006, for details):

(Lns) = N x(L1) = Nx () . ()

We stress again that, as far asthe stellar luminosity distribution function must be
sampled andii) its high luminosity tail is related to the lifetime of pariar evolution-
ary phases, a random sampling hypothesis (for the stelainhsity function) is still
valid even under a sorted sampled IMF hypothesis.

This formalism can equally be applied to the total mass okteemble: the total
mass distribution of an ensemble Nf stars is described b self-convolutions of
the IMF itself (Selman & Melnick 2008) and the mean value & thtal mass of the
ensemble idN times the mean mass of the IMF:

(M) = N X (M1.) = Nx(m) . (8)
Remarquably, this implies that

<-£N*> — NX<~£1*> — <-£1*>
<MN*> N x <M1*> <M1*>

= constant 9)
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and hence validates the approach given by Bg. 2. Note thatetition provides a
valid (averaged) total mass as far as the observed lumynissa good proxy of the
mean luminosity of stellar ensembles withstars, and the age is known.

3. Size-of-sampleissues

We have shown that synthesis models results are related {0 @hMlyses through a
collapse of the underlying distribution that defines the CMDOts moments. Obvi-
ously, the mean value of the distribution is not the only fmesoutcome of synthesis
codes, and high-order moments or even the distributionmgblres can be obtained
(Cerviiio & Luridiana 2006). Working with distribution mamts has the advantage of
providing a first order approximation of the underling disttion. From the Central
Limit theorem, we know that an infinite self-convolution ofiatribution with finite
limits tends to the Gaussian form. High-order moments alowto define how many
stars (and average mass) are needed to obtain GaussianseGauessian integrated
luminosity distributions (see Cervifio & Lurididha 2006r fletails). This is the basic
requirement fop? fitting algorithmfl. In particular the second moment of the stellar
luminosity distribution function (the variance) also alt® one to evaluate the relative
error in the use of an observation as a proxy of the mean ofrilerling distribution.
However the situation becomes more complicated wremallnumber of stars defines
the integrated luminosify

In general three cases can be definad):Systemgbservations which contain a
large number of stars yielding gaussian distributions eftieoretical integrated lumi-
nosity. In this case the observations can be used as proxgan walues safely. These
situations typically correspond to galaxies and systentis masses larger than3®l,,
when all the light from the system is covered by the [§llt. (b) Systemgobservations
with a large number of stars to ensure gaussian-like digtabs, but not large enough
to provide a negligible variance. In these cases both thenmalae and the variance
of the underling distribution for each bamdvelengthmustbe considered. This situ-
ation corresponds to systems typically more massive tharMLDalthough the exact
value depends on the considered hamdelength. €) Extreme size-of-samplgfects
these are systerfubservations with a number of stars so small that the digtabs of
the integrated luminosities are not Gaussians. In thesescse analysis of observed
data in terms of the mean and high-order moments of the lalision of the integrated
luminosity isnotsuitable since they do not provide a proper information endistri-
bution (mean and modeftirs, variance can be not translated in confidence intervals
etc.). In this situation, it is more accurate to work dirgatlith integrated luminosity
distribution functions which can be obtained by self-cdation of the stellar luminos-
ity distribution function (which has several problems atnqutational level except for
a low number of stars) or by the analysis of Monte Carlo sitiuta (which are more
economic at the computational level but which lead to sonidlesyroblems, such as

1Although y? seems the simplest tool to make inferences from observeal (e inverse problem)

we emphasize that there are manyfetient methodologies (as well as interpretations) on howet d
with inverse problems. For a simple introduction $ee Taan{2006) as well as other articles at
http://www.ipgp.fr/~tarantola.

°Note thatsmallis not just an intrinsic property of the studied system, bt an observationalfgect: an
IFU observation intrinsically contains a smaller numbestairs than a large aperture observation.
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increasing the number of simulations when the number of ste¢he simulated clusters
decreases to provide a correct sampling of the underlingliitions).

4. Low Luminosity Limit (LLL), Mcus and myp

Unfortunately we have no estimation of the total mass of ylséesn before an analysis
is performed, and simple recipes are useful to know in whitheprevious régimes the
observational data lie. A simple method, called the Low Lnmsity Limit (LLL), was
proposed by Cervifio & Luridiana (2004). The method just pames the luminosity
of the observed ensemble with the luminosity of the most hams$ star assumed in
the model, that is, the extreme value of the stellar lumigadistribution function (the
LLL). It provides the lowest luminosity that an stellar emd#e should have without
been possibly confused with an single star.

An additional simple test is just the comparison of the olesa:tight from a stellar
ensemble with the locus of the mean values obtained by ssistheodels and the locus
of individual stars in color-color diagrams (see Barkerl£2@08, as an example): clus-
ters dfected by strong samplingfects (where the mean values are not representative)
cover the intermediate area between stars and the mears\@iteined by synthesis
models.

A similar situation is present while making inferences dhtanassesM\,s for
studies of the maximum mass,ax that a cluster with total mas¥l.,s would contain
with mmax — Meus diagrams|(Selman & Melnick 2008; Weidner etial. 2010, andrref
ences therein). The observed maximum stellar mass can dieetfrom observations.
However,Mg,s must be inferred under a situation where we know for suretkieatMF
is not well sampled. In these cases, one has to use all otiselaconstrains (such
as the number of stars withftkrent masses), run a large enough set of Monte Carlo
simulations which fulfills the observational constrained abtain the distribution of
possible total masses. Note that the usual method of cimgettte total mass in the
unobserved mass range with the mass obtained from a tranidakefrom my,, to the
minimum observed masn‘r)n?ﬁ implicitly assumes that the IMF is fully sampled in the

low mass interval (which is equivalent to say that the IMFoiged sampled up mﬁﬁﬁ :

Finally, we address the problem of the inferencemgf from observations. The
probability of an extreme value, say,y, is precisely the subject @&xtreme Value The-
ory (EVT). This branch of statistics deals with extreme dewviadi (maxima or minima)
from the median and it has important consequences in evgrlfddsuch as economic
crashes) and natural catastrophes produced by deviati@mnual flood flows, precip-
itation maxima or earthquakes (also with human-life ancheatic implications). The
classical reference in the subject is Gumbel (1958), atthause also suggest reading
Sornette [(2004) (especially pp. 18-23), where the tage= « is discussed in de-
tail, and where results obtained in astronomy (e.g. vanddbd968)| Oey & Clarke
(2005); Pflamm-Altenburg & Kroupa (2008)) can be also be tbuh detailed discus-
sion is presented in a forthcoming paper.

Within this EVT framework, we analyse the basic assumpti@denin the IGIMF
theory proposed by Weidner et al. (2010) and previous wdrsus consider a sample
of N stars. An event with probabilitp occurs typicallyN x p times, hence if wexpect
just 1 star in the mass ran@&nax— Myp in the cluster we have:
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Myp 1
p=f p(mdm; Np=1; P=x (10)
and we can obtain the total number of stars and make an estimwdithe total mass of
such a clustek Mqus) = N x {my, (provided that we are in a regime wherm) can be
safely used! but see Selman & Melnick 2008).

We also know from EVT the PDF of thextremevalues forN stars, so, we can
ask what IN really means. Following Sornette (2004) the estimatiomgfy from
1/N is in fact the stellar mass that is not exceeded with a préibalyi = 1/6 = 0.37
for a cluster withN stars. It means that (2 p)=63% of clusters withN stars (and
hence(Muus) = N x (m)) have a star with madarger than mnax. In other words,
the estimation of the relation betwesm,ax and Mcjys as assumed in the IGIMF theory
may not be correct in 63% of real cases.

5. Conclusions

In this contribution we have shown that the physical infeemnobtained from CMDs
studies are related with the results of evolutionary syitheodes by the stellar lu-
minosity distribution function. Since CMDs basically prde information about the
distribution itself and the synthesis models typicallytjpsovide the mean of such
distribution, a direct conclusion is that a CMD providd®aysa more complete infor-
mation about star formation than the use of mean valuesrautdiy synthesis models.

The mean of the stellar luminosity distribution functiordefined by its functional
form as well as its limits (the upper one is non-triviallyatdd tomp). This mean as
well as high-order moments are directly proportional torttean integrated luminosity
of ensembles oN stars. Such proportionality provides mass-luminositatiehs for
systemgbservations with a large number of stars (such that theageetotal masses
are larger than FOM,) where the observed luminosity can be safely used as a proxy
of the theoretical mean integrated luminosity. Howevee,uike of one observation as a
proxy of the mean of the theoretical distribution of inteagthluminosities must be used
with caution for less massive systems: it must be used tegetith the variance for
ensembles with mean mass values in the ranged 00 M, and simplynot usedor
ensembles with mean total masses smaller thanviQ For these small (by number)
systems ones has to use the distribution of integrated hsitias rather the parametric
descriptions of the distribution.

The reason of these limitations is the incomplete samplimgige-of-sample ef-
fects) of the stellar luminosity distribution function ineg ensemble. Since the stellar
luminosity distribution function contains a (low-luminty9 component related to the
IMF, and a (high luminosity) component related to the shietime of fast evolution-
ary phases, an intrinsic scatter due to random samplingvesyal present even in cases
of a perfect or sorted sampling of the IMF. More details alibase limitations can be
found in.Cervifio & Luridianal (2004, 2005, 2006) and refeestherein.

One of the dificulties related with size-of-sampldfects is that the mean values
of the distributions are not representative of the distiiims themselves. Or, in a prac-
tical way, observational data cannot be compared with thennvalues provided by
synthesis model to make physical inferences. This sitnasiespecially relevant in the
computation of total stellar masses of under-sampled arsidike the ones inferred to
relate the total mass of a cluster with the mass of its moresiwestar. In these cases,
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one has to use all observational constraints (such as thberuoh stars with dferent
masses), run a large enough set of Monte Carlo simulatiomshiiifills observational
constrains, and obtain the distribution of possible totasses. Any other methodology
(such as to complete the unobserved mass range up to a giwswith a mean value
of a truncated IMF) introduce biased results (just like difiaial sorted sampling).
Finally, we show that the basic assumption implicit in therfalism of the IGIMF,
that is, that when the integral of the IMF over some givenrirgle(m*(Mcius) to Myp)
is normalised to unity this provides the cluster madg,s that contains just one star in
that interval (and that this individual star has a mass efgual (Mgys)) iS not correct.
Extreme value theory shows that such an assumption jusid@®eaM,,s value which
has a 63% of probability to have a star with a misger than m*(Mcys). In this
situation some of the basis of the formulation of the IGIMEdhy must be revised.
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