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Abstract: Assuming Yb(10890) as a P-wave bq-scalar-diquark b̄q̄-scalar-antidiquark

tetraquark state, the mass of Yb(10890) is computed in the framework of QCD sum rule

method. Technically, contributions of operators up to dimension six are included in the

operator product expansion (OPE). The numerical result 10.88 ± 0.13 GeV for Yb(10890)

agrees well with the experimental value, which favors the P-wave [bq][b̄q̄] tetraquark con-

figuration for Yb(10890). In the same picture, the mass of Y (4360) is calculated and the

result 4.32±0.20 GeV is compatible with the experimental data, which supports Y (4360)’s

P-wave [cq][c̄q̄] structure.
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1. Introduction

The observations of Υ(1S)π+π− and Υ(2S)π+π− states near the Υ(5S) resonance [1, 2]

have attracted great theoretical attention [3]. However, there are still some puzzles on

the anomalously large rates and the way to describe distribution shapes and the helicity

angle. Recently, Ali et al. [4] identify Yb(10890) with the state Y[bq](10900) [5] and interpret

Yb(10890) as a P-wave [bq][b̄q̄] tetraquark state. In this way, a dynamical model for decays

Yb → Υ(1S)π+π−, Υ(2S)π+π− is presented, which provides excellent fits for the decay

distributions. Therefore, it is interesting to investigate whether Yb(10890) could be a

tetraquark state. Undoubtedly, the quantitative description of Yb(10890)’s properties like

mass is helpful for understanding its structure, but it is difficult to extract the hadronic

spectrum information from the simple QCD Lagrangian. That is because low energy QCD

involves a regime where it is futile to attempt perturbative calculations and one has to treat

a genuinely strong field in nonperturbative methods. However, one can apply QCD sum

rules [6] (for reviews see [7, 8, 9, 10] and references therein), which are a nonperturbative

formulation firmly rooted in QCD. From the above reasons, we devote to study Yb(10890)

with QCD sum rules in this work.

Additionally, BABAR Collaboration observed a broad structure Y (4325) in the process

e+e− → γISRπ
+π−ψ(2s) at 4324 ± 24 MeV with a width 172 ± 33 MeV [11]. Latterly,

Belle Collaboration reported the charmoniumlike state Y (4360) in e+e− → π+π−ψ(2s) at

4361±9±9 MeV with a width of 74±15±10 MeV [12]. The mass of Y (4325) is close to that

of Y (4360), and the main difference between them is their widths. It seems very difficult to

observe these two structures simultaneously because of the large width of Y (4325). They

could be the same structure and the width difference may be due to the experimental error.

In Ref. [13], Liu et al. have tried to perform a combined fit to e+e− → π+π−ψ(2s) cross

sections measured by the BABAR and Belle experiments. In this work, we assume Y (4325)

and Y (4360) are exactly the same resonance for simplicity. On Y (4360), there have already

been some theoretical works [14, 15, 16]. From QCD sum rules, Albuquerque et al. arrive

at M = 4.49± 0.11 GeV, adopting the current [cq]S=0[c̄q̄]S=1 + [cq]S=1[c̄q̄]S=0 [17] (for the
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concise review on multiquark QCD sum rules, one can see [18]). At present, we would like

to study whether Y (4360) could be a P-wave [cq][c̄q̄] tetraquark state.

The paper is organized as follows. In Sec. 2, the QCD sum rule for the tetraquark state

is introduced, and both the phenomenological representation and QCD side are derived,

followed by the numerical analysis to extract the hadronic masses in Sec. 3. Section 4 is a

brief summary.

2. The tetraquark state QCD sum rule

In the tetraquark interpretation, Y[Qq] is a JPC = 1−− diquark-antidiquark state, having

the flavor content [Qq][Q̄q̄]. Its spin and orbital momentum numbers are: S[Qq] = 0,

S[Q̄q̄] = 0, S[Qq][Q̄q̄] = 0, and L[Qq][Q̄q̄] = 1 [19]. For the interpolating current, a derivative

could be included to generate L[Qq][Q̄q̄] = 1. Presently, one constructs the tetraquark state

current from diquark-antidiquark configuration of fields, while constructs the molecular

state current from meson-meson type of fields. Although these two types of currents can

be related to each other by Fiertz rearrangements, the relations are suppressed by color

and Dirac factors [18]. It will have a maximum overlap for the tetraqurk state using the

diquark-antidiquark current and the sum rule can reproduce the physical mass well. Thus,

the following form of current could be constructed for the P-wave [Qq][Q̄q̄],

jµ = ǫabcǫdec(q
T
a Cγ5Qb)D

µ(q̄dγ5CQ̄
T
e ). (2.1)

Here the index T means matrix transposition, C is the charge conjugation matrix, Dµ

denotes the covariant derivative, and a, b, c, d, and e are color indices.

The mass sum rule starts from the two-point correlator

Πµν(q2) = i

∫

d4xeiq.x〈0|T [jµ(x)jν†(0)]|0〉. (2.2)

Lorentz covariance implies that the correlator (2.2) can be generally parameterized as

Πµν(q2) =

(

qµqν

q2
− gµν

)

Π(1)(q2) +
qµqν

q2
Π(0)(q2). (2.3)

The part proportional to gµν is chosen to extract the sum rule here. In phenomenology,

Π(1)(q2) can be expressed as a dispersion integral

Π(1)(q2) =
[λ(1)]2

M2
H − q2

+
1

π

∫ ∞

s0

ds
ImΠ(1)phen(s)

s− q2
+ subtractions, (2.4)

where MH denotes the mass of the hadronic resonance. In the OPE side, Π(1)(q2) can be

written in terms of a dispersion relation as

Π(1)(q2) =

∫ ∞

4m2

Q

ds
ρOPE(s)

s− q2
, (2.5)

where the spectral density is given by

ρOPE(s) =
1

π
ImΠ(1)(s). (2.6)
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After equating the two sides, assuming quark-hadron duality, and making a Borel trans-

form, the sum rule can be written as

[λ(1)]2e−M2

H/M2

=

∫ s0

4m2

Q

dsρOPE(s)e−s/M2

. (2.7)

To eliminate the hadronic coupling constant λ(1), one reckons the ratio of derivative of the

sum rule and itself, and then yields

M2
H =

∫ s0

4m2

Q

dsρOPEse−s/M2

/
∫ s0

4m2

Q

dsρOPEe−s/M2

. (2.8)

To calculate the OPE side, we work at leading order in αs and consider condensates

up to dimension six with the same techniques in Refs. [20, 21]. To keep the heavy-quark

mass finite, one uses the momentum-space expression for the heavy-quark propagator,

including two and three gluons attached expressions given in Ref. [22]. The light-quark

part of the correlator is calculated in the coordinate space and then Fourier-transformed

to the momentum space in D dimension. The resulting light-quark part is combined

with the heavy-quark part and dimensionally regularized. It is defined as r(mQ, s) =

(α + β)m2
Q − αβs and K(α, β) = 1 + α − 2α2 + β + 2αβ − 2β2. The spectral density is

written as

ρOPE(s) = ρpert(s) + ρ〈q̄q〉(s) + ρ〈q̄q〉
2

(s) + ρ〈gq̄σ·Gq〉(s) + ρ〈g
2G2〉(s) + ρ〈g

3G3〉(s),

ρpert(s) = − 1

3 · 5 · 211π6
∫ αmax

αmin

dα

α4

∫ 1−α

βmin

dβ

β4
(1− α− β)K(α, β)r(mQ, s)

5,

ρ〈q̄q〉(s) =
mQ〈q̄q〉
3 · 26π4

∫ αmax

αmin

dα

α2

∫ 1−α

βmin

dβ

β2
(2− α− β)r(mQ, s)

3,

ρ〈q̄q〉
2

(s) = −
m2

Q〈q̄q〉2

3 · 23π2
∫ αmax

αmin

dα
[

m2
Q − α(1− α)s

]

,

ρ〈gq̄σ·Gq〉(s) = −mQ〈gq̄σ ·Gq〉
28π4

∫ αmax

αmin

dα

α2

∫ 1−α

βmin

dβ

β2
(α+ β − 4αβ)r(mQ, s)

2

+
mQ〈gq̄σ ·Gq〉

28π4

∫ αmax

αmin

dα

α(1− α)

[

m2
Q − α(1 − α)s

]2
,

ρ〈g
2G2〉(s) = −

m2
Q〈g2G2〉

32 · 212π6
∫ αmax

αmin

dα

α4

∫ 1−α

βmin

dβ

β4
(1− α− β)(α3 + β3)K(α, β)r(mQ, s)

2, and

ρ〈g
3G3〉(s) = − 〈g3G3〉

32 · 214π6
∫ αmax

αmin

dα

α4

∫ 1−α

βmin

dβ

β4
(1− α− β)K(α, β)

[

(α3 + β3)r(mQ, s)

+ 4(α4 + β4)m2
Q

]

r(mQ, s).

The integration limits are given by αmin = (1−
√

1− 4m2
Q/s)/2, αmax = (1+

√

1− 4m2
Q/s)/2,

and βmin = αm2
Q/(sα −m2

Q). Note that the next-to-leading order corrections are not in-

cluded here, for which one needs to consider the renormalization of the current [23]. This

procedure is undoubtedly complicated and tedious, since the renormalization of the cur-

rent will raise the operator-mixing problems. Especially for the multiquark system, many
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operators will mix under renormalization. Actually, a lot of hard calculations already need

to be done even if one works at leading order for the difficulties of tackling with the massive

propagator diagrams. Under such a circumstance, it is expected that one could obtain a

trusty sum rule working at leading order in αs, and it has been tested to be feasible for

many multiquark states [18]. To improve on the accuracy of the QCD sum rule analysis,

it is certainly meaningful to consider the next-to-leading order corrections, which may be

included in some further work after fulfilling a burdensome task.

3. Numerical analysis

In this Section, the sum rule (2.8) will be numerically analyzed. The input values are taken

as mc = (1.23 ± 0.05) GeV, mb = (4.20 ± 0.07) GeV, [24] 〈q̄q〉 = −(0.23 ± 0.03)3 GeV3,

〈gq̄σ · Gq〉 = m2
0 〈q̄q〉, m2

0 = 0.8 GeV2, 〈g2G2〉 = 0.88 GeV4, and 〈g3G3〉 = 0.045 GeV6

[9, 17, 18]. Complying with the standard criterion of sum rule analysis, the threshold s0
and Borel parameter M2 are varied to find the optimal stability window. In the QCD sum

rule approach, there is approximation in the OPE of the correlation function, and there is a

very complicated and largely unknown structure of the hadronic dispersion integral in the

phenomenological side. Therefore, the match of the two sides is not independent of M2.

One expects that there exists a range ofM2, in which the two sides have a good overlap and

the sum rule can work well. In practice, one can analyse the convergence in the OPE side

and the pole contribution dominance in the phenomenological side to determine the allowed

Borel window: on one hand, the lower constraint for M2 is obtained by the consideration

that the perturbative contribution should be larger than the condensate contributions, to

keep the convergence of the OPE under control and insure that one does not introduce a

large error neglecting higher dimension terms; on the other hand, the upper limit for M2

is obtained by the restriction that the pole contribution should be larger than the QCD

continuum contribution, to guarantee that the contributions from high resonance states

and continuum states remains a small part in the phenomenological side. Meanwhile, the

threshold parameter
√
s0 is not completely arbitrary but characterizes the beginning of the

continuum state. On all accounts, it is expected that the two sides have a good overlap in

the determined work window and information on the resonance can be safely extracted.

Concretely, the comparison between the pole and continuum contributions from sum

rule (2.7) for Yb(10890) for
√
s0 = 11.5 GeV is shown in FIG. 1, and its OPE convergence

by comparing different contributions is shown in FIG. 2. In detail, the perturbative con-

tribution versus the total OPE contribution at M2 = 9.5 GeV2 is nearly 63%, and the

ratio increases with M2 to insure that the perturbative contribution can dominate in the

total OPE contribution when M2 ≥ 9.5 GeV2. On the other side, at M2 = 10.5 GeV2 the

relative pole contribution is approximately 51%, which descends along with M2 to guar-

antee the pole contribution can dominate in the total contribution while M2 ≤ 10.5 GeV2.

Thus, the regions of s0 and M2 for Yb(10890) are taken as
√
s0 = 11.4 ∼ 11.6 GeV and

M2 = 9.5 ∼ 10.5 GeV2. For Y (4360), the comparison between the pole and continuum

contributions from sum rule (2.7) is shown in FIG. 3, and its OPE convergence by com-

paring different contributions is shown in FIG. 4. From the similar analyzing processes,
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the regions of s0 and M2 are taken as
√
s0 = 4.8 ∼ 5.0 GeV and M2 = 2.6 ∼ 3.6 GeV2 for

Y (4360). The corresponding Borel curves to determine masses of Yb(10890) and Y (4360)

from sum rule (2.8) are shown in FIG. 5 and in FIG. 6, respectively. Finally, we obtain

10.88± 0.13 GeV for Yb(10890) and 4.32± 0.20 GeV for Y (4360). For Y (4360), our central

value is closer to the experimental data comparing with the prediction 4.49± 0.11 GeV in

Ref. [17], however, the uncertainty of our result is larger.
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Figure 1: The solid line shows the relative

pole contribution (the pole contribution di-

vided by the total, pole plus continuum con-

tribution) and the dashed line shows the rel-

ative continuum contribution for Yb(10890).

Figure 2: The OPE convergence is

shown by comparing the perturbative,

quark condensate, four-quark condensate,

mixed condensate, two-gluon condensate,

and three-gluon condensate contributions for

Yb(10890).
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Figure 3: The solid line shows the relative

pole contribution (the pole contribution di-
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ative continuum contribution for Y (4360).

Figure 4: The OPE convergence is shown

by comparing the perturbative, quark con-

densate, four-quark condensate, mixed con-

densate, two-gluon condensate, and three-

gluon condensate contributions for Y (4360).
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Figure 5: The dependence on M2 for the

mass of Yb(10890) is shown.

Figure 6: The dependence on M2 for the

mass of Y (4360) is shown.

4. Summary

In the tentative P-wave [bq][b̄q̄] configuration, the QCD sum rule method has been employed

to compute the mass of Yb(10890), including the contributions of operators up to dimension

six in the OPE. The numerical result 10.88±0.13 GeV for Yb(10890) is well compatible with

the experimental data, which favors the P-wave tetraquark configuration for Yb(10890). In

the same picture, the mass of Y (4360) has been calculated to be 4.32 ± 0.20 GeV, and

the result is in agreement with the experimental value, which supports its P-wave [cq][c̄q̄]

configuration. We expect the results could be helpful to understand the structures of these

states. For further work, one needs to take into account other dynamical analysis to identify

the structures of hadrons.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China

under Contract No.10975184.

References

[1] Belle Collaboration, K. F. Chen et al., Observation of anomalous Υ(1S)π+π− and

Υ(2S)π+π− production near the Υ(5S) resonance, Phys. Rev. Lett. 100 (2008) 112001; Belle

Collaboration, I. Adachi et al., Observation of an enhancement in e+e− → Υ(1S)π+π−,

Upsilon(2S)π+π−, and Upsilon(3S)π+π− production at Belle, hep-ex/0808.2445.

[2] S. L. Olsen, Hadronic spectrum–multiquark states, Nucl. Phys. A 827 (2009) 53c;

A. Zupanc, Hadron spectroscopy results from Belle, hep-ex/0910.3404.

[3] W. S. Hou, Searching for the bottom counterparts of X(3872) and Y (4260) via π+π−Υ,

Phys. Rev. D 74 (2006) 017504; Y. A. Simonov, Di-Pion emission in heavy quarkonia

decays, JETP Lett. 87 (2008) 121; C. Meng and K. T. Chao, Scalar resonance contributions

to the dipion transition rates of Υ(4S, 5S) in the rescattering model, Phys. Rev. D 77 (2008)

– 6 –



J
H
E
P
0
0
(
2
0
1
0
)
0
0
0

074003; C. Meng and K. T. Chao, Peak shifts due to B∗ − B̄∗ rescattering in Υ(5S) dipion

transitions, Phys. Rev. D 78 (2008) 034022; M. Karliner and H. J. Lipkin, Possibility of

exotic states in the Upsilon system, hep-ph/0802.0649.

[4] A. Ali, C. Hambrock, and M. J. Aslam, A tetraquark interpretation of the Belle data on the

anomalous Υ(1S)π+π− and Υ(2S)π+π− production near the Υ(5S) resonance, Phys. Rev.

Lett. 104 (2010) 262001; A. Ali, C. Hambrock, I. Ahmed, and M. J. Aslam, A case for

hidden bb̄ tetraquarks based on e+e− → bb̄ cross section between
√
s = 10.54 and 11.20 GeV,

Phys. Lett. B 684 (2010) 28.

[5] BaBar Collaboration, B. Aubert et al., Measurement of the e+e− → bb̄ cross section between√
s = 10.54 and 11.20 GeV, Phys. Rev. Lett. 102 (2009) 012001.

[6] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, QCD and resonance physics.

Theoretical foundations, Nucl. Phys. B147 (1979) 385; QCD and resonance physics.

Applications, B147 (1979) 448; V. A. Novikov, M. A. Shifman, A. I. Vainshtein, and

V. I. Zakharov, Calculations in external fields in Quantum Chromodynamics. Technical

review, Fortschr. Phys. 32 (1984) 585.

[7] M. A. Shifman, Vacuum Structure and QCD Sum Rules, North-Holland, Amsterdam, (1992).

[8] B. L. Ioffe, in “The spin structure of the nucleon”, edited by B. Frois, V. W. Hughes, N. de

Groot, World Scientific, (1997), hep-ph/9511401.

[9] S. Narison, QCD Spectral Sum Rules, World Scientific, Singapore, (1989).

[10] P. Colangelo and A. Khodjamirian, in: M. Shifman (Ed.), At the Frontier of Particle

Physics: Handbook of QCD, vol. 3, Boris Ioffe Festschrift, World Scientific, Sigapore,

(2001), pp. 1495-1576, hep-ph/0010175; A. Khodjamirian, QCD sum rules - a working tool

fro hadronic physics, (2002) hep-ph/0209166.

[11] BaBar Collaboration, B. Aubert et al., Evidence of a broad structure at an invariant mass

of 4 : 32 GeV in the reaction e+e− → π+π−ψ(2S) measured at BABAR, Phys. Rev. Lett. 98

(2007) 212001.

[12] Belle Collaboration, X. L. Wang et al., Observation of two resonant structures in

e+e− → π+π−ψ(2S) via initial-state radiation at Belle, Phys. Rev. Lett. 99 (2007) 142002.

[13] Z. Q. Liu, X. S. Qin, and C. Z. Yuan, Combined fit to BABAR and Belle data on

e+e− → π+π−ψ(2S), Phys. Rev. D 78 (2008) 014032.

[14] X. Liu, X. Q. Zeng, and X. Q. Li, Possible molecule structure of the newly observed

Y (4260), Phys. Rev. D 72 (2005) 054023; Y. Cui, X. L. Chen, W. Z. Deng, and S. L. Zhu,

The possible heavy tetraquarks qQq̄Q̄, qqQ̄Q̄, and qQQ̄Q̄, High Energy Phys. Nucl. Phys. 31

(2007) 7; S. L. Zhu, New Hadron States, Int. J. Mod. Phys. E 17 (2008) 283; S. L. Zhu,

Spectroscopy of mesons with heavy quarks, Nucl. Phys. A 805 (2008) 221c.

[15] C. Z. Yuan, P. Wang, and X. H. Mo, The Y (4260) as an ωχc1 molecular state, Phys. Lett. B

634 (2006) 399; C. F. Qiao, One explanation for the exotic state Y (4260), Phys. Lett. B

639(2006) 263; C. F. Qiao, A uniform description of the states recently observed at

B-factories, J. Phys. G: Nucl. Part. Phys. 35 (2008) 075008; G. J. Ding, J. J. Zhu, and

M. L. Yan, Canonical charmonium interpretation for Y (4360) and Y (4660), Phys. Rev. D

77(2008) 014033; Z. G. Wang, Mass spectrum of the scalar hidden charm and bottom

tetraquark states, Phys. Rev. D 79 (2009) 094027.

– 7 –



J
H
E
P
0
0
(
2
0
1
0
)
0
0
0

[16] K. K. Seth, Challenges in haron physics, hep-ex/0712.0340; D. Ebert, R. N. Faustov, and

V. O. Galkin, Excited heavy tetraquarks with hidden charm, Eur. Phys. J. C 58 (2008) 399;

J. Segovia, A. M. Yasser, D. R. Entem, and F. Fernández, JPC = 1−− hidden charm

resonances, Phys. Rev. D 78 (2008) 114033.

[17] R. M. Albuquerque and M. Nielsen, QCD sum rules study of the JPC = 1−− charmonium Y

mesons, Nucl. Phys. A 815 (2009) 53.

[18] M. Nielsen, F. S. Navarra, and S. H. Lee, New charmonium states in QCD sum rules: a

concise review, hep-ph/0911.1958.

[19] N. V. Drenska, R. Faccini, and A. D. Polosa, Higher tetraquark particles, Phys. Lett. B 669

(2008) 160.

[20] H. Kim, S. H. Lee, and Y. Oh, Anticharmed pentaquark Θc(3099) from QCD sum rules,

Phys. Lett. B 595 (2004) 293.

[21] F. S. Navarra, M. Nielsen, and S. H. Lee, QCD sum rules study of QQūd̄ mesons, Phys.
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