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Tetraquark-based analysis and predictions of the cross sections and distributions

for the processes e+e− → Υ(1S)(π+π−, K+K−, ηπ0) near Υ(5S)
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We calculate the cross sections and final state distributions for the processes e+e− →

Υ(1S)(π+π−,K+K−, ηπ0) near the Υ(5S) resonance based on the tetraquark hypothesis. This
framework is used to analyse the available data on the Υ(1S)π+π− and Υ(1S)K+K− final states
[K. F. Chen et al. (Belle Collaboration), Phys. Rev. Lett. 100, 112001 (2008); I. Adachi et

al. (Belle Collaboration), arXiv:0808.2445], yielding good fits. Dimeson invariant mass spec-
tra in these processes are shown to be dominated by the corresponding light scalar and tensor
states. The resulting correlations among the cross sections are worked out. We also predict
σ(e+e− → Υ(1S)K+K−)/σ(e+e− → Υ(1S)K0K̄0) = 1/4, reflecting the electric charges of the
underlying diquarks. These features provide crucial tests of the tetraquark framework and can be
searched for in the currently available and forthcoming data from the B factories.

PACS numbers: 14.40.Rt, 14.40.Pq, 13.66.Bc

The anomalously large production cross sections
for e+e− → Υ(1S)π+π−,Υ(2S)π+π− and e+e− →
Υ(3S)π+π− measured between

√
s = 10.83 GeV and

11.02 GeV by the Belle Collaboration [1, 2] at KEK
do not agree well with the lineshape and production
rates for the conventional bb̄ state Υ(10860) (also called
Υ(5S)). A fit to the measured production cross sec-
tions using a Breit-Wigner resonance shape yielded a
peak mass of [10888.4+2.7

−2.6(stat) ± 1.2(syst)] MeV and a

width of [30.7+8.3
−7.0(stat)±3.1(syst)] MeV for the observed

state, henceforth called Yb(10890) [2]. More data are
required to understand the resonance structure in this
region. In [3], a dynamical model was developed to ex-
plain the Belle data for the final states Υ(1S)π+π− and
Υ(2S)π+π− in terms of the production and decays of
the states Y[b,l/h], which are linear superposition of the
JPC = 1−− hidden bb̄ tetraquark states Y[bu] ≡ [bu][b̄ū]
and Y[bd] ≡ [bd][b̄d̄]. The mass difference, estimated as
M(Y[b,h])−M(Y[b,l]) = (5.6±2.8) MeV [4, 5], was ignored
and the mass-degenerate states Y[b,l] and Y[b,h] were iden-
tified with the Yb(10890). This model described the dis-
tributions in the dipion invariant mass and the helicity
angle measured by Belle [1] well and offered an expla-
nation of the rates in terms of the Zweig-allowed tran-
sitions Y[b,l/h] → (Υ(1S),Υ(2S),Υ(3S))π+π−. While
credible, the interpretation of Yb(10890) in terms of the
bb̄ tetraquark states Y[b,l] and Y[b,h] requires further ex-
perimental scrutiny. It is the aim of this Letter to provide
some definitive tests to confirm or rule out the tetraquark
interpretation of the Belle data.
To that end, we further develop the tetraquark formal-

ism for the processes

e+ + e− → Yb(q) → Υ(1S)(p) + P (k1) + P ′(k2) , (1)

where PP ′ stands for the pseudoscalar-meson pairs
π+π−, K+K− and ηπ0, and q, p, k1 and k2 are the
momenta of Yb, Υ(1S), P and P ′, respectively. We ne-

glect other background processes, based on prior data on
the dipionic transitions involving higher Υ(nS) to lower
Υ(mS) (m < n) states [6]. Following [7], the low mass
scalar 0++ hadrons σ or f0(600), f0(980) and a00(980)
(the upper index indicates the I3 = 0 component of the
iso-triplet a0), which enter as intermediate states in the
processes Yb → Υ(1S) + [σ, f0(980), · · · ] → Υ(1S)PP ′,
are assumed to be tetraquark states. These intermedi-
ate JPC = 0++ states together with the JPC = 2++

state f2(1270) provide the dominant resonating part of
the amplitudes for the processes considered in this work.
These resonances are labeled σ, f0, a00 and f2 hence-
forth. We determine the coupling constants involving
these light tetraquark states and the mesons PP ′ from
the known decays from the PDG [6] and data from the
E791 [8], the BES [9], the Crystal Barrel (CB) [10] and
the KLOE Collaborations [11, 12], adopting the Flatté
model [13] for the σ, f0 and a00 couplings to take into ac-
count threshold effects. The non-resonating continuum
contributions are parameterized in terms of two a pri-

ori unknown constants [14]. With this formalism, we
analyze the invariant-mass MPP ′ and the cos θ spectra,
where MPP ′ = (k1 + k2)

2 and θ is the angle between the
momenta of Yb and P in the PP ′ rest frame.

The theoretical framework described here provides
good fits of the Belle data on the invariant dipion mass
spectrum and cos θ distribution in the process e+e− →
Υ(1S)π+π− and the ratio σΥ(1S)K+K−/σΥ(1S)π+π− ,
with σΥ(1S)PP ′ being the cross section σ(e+e− →
Υ(1S)PP ′). We present the invariant mass distribu-
tions for the K+K− and ηπ0 mesons in the processes
e+e− → Υ(1S)(K+K−, ηπ0), which are dominated by
the respective JPC = 0++ resonances. The result-
ing correlations among σΥ(1S)π+π− , σΥ(1S)K+K− and
σΥ(1S)ηπ0 are worked out. Constraining these corre-
lations from the existing data on the first two pro-
cesses, we predict σΥ(1S)ηπ0/σΥ(1S)π+π− . We also pre-
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dict σΥ(1S)K+K−/σΥ(1S)K0K̄0 = 1/4, reflecting the ratio

Q2
[bu]/Q

2
[bd] with Q[bu] = 1/3 and Q[bd] = −2/3 being the

effective electric charges for the constituent diquarks of
Y[bu] and Y[bd], respectively.
We start by defining the tetraquark states in the

isospin basis, with the two isospin components Y 0
b ≡

(Y[bu] + Y[bd])/
√
2 and Y 1

b ≡ (Y[bu] − Y[bd])/
√
2 for isospin

I = 0 and I = 1, respectively. The two mass eigenstates
Y[b,l] and Y[b,h] are identified with Y[bu] and Y[bd], as the
mixings between them is small. We ignore the mass dif-
ference and also the isospin breaking effects except for
the production processes e+e− → Y I

b hereafter.
We calculate the decay amplitude as a sum of the Breit-

Wigner resonances and non-resonating continuum contri-
butions, with the latter adopted from [14]. The differen-
tial cross section is then written as

d2σΥ(1S)PP ′

dMPP ′ d cos θ
=

λ1/2(s,m2
Υ,M

2
PP ′)λ1/2(M2

PP ′ ,m2
P ,m

2
P ′)

384π3sMPP ′

[
(s−m2

Yb
)2 +m2

Yb
Γ2
Yb

]

×
{(

1 +
(q · p)2
2sm2

Υ

)
|S|2

+ 2Re

[
S∗

(
D′ +

(q · p)2
2sm2

Υ

D′′

)](
cos2 θ − 1

3

)

+ |D|2 sin2 θ
[
sin2 θ + 2

(
(q0)2

s
+

(p0)2

m2
Υ

)
cos2 θ

]

+

(
|D′|2 + (q · p)2

2sm2
Υ

|D′′|2
)(

cos2 θ − 1

3

)2
}
, (2)

where λ(x, y, z) ≡ (x − y − z)2 − 4yz, q0 and p0 are the
energies of the Yb and Υ(1S) in the PP ′ rest frame, re-
spectively, ΓYb

is the decay width of Yb, and mYb
, mΥ,

mP and mP ′ are the masses of Yb, Υ(1S), P and P ′, re-
spectively. We take mYb

= 10.89 GeV and ΓYb
= 30 MeV

in the numerical analysis below. A detailed derivation of
the above formula will be presented in [15].
Each PP ′ channel receives specified contributions de-

pending on the isospin of PP ′ and the kinematically
allowed region for the invariant mass MPP ′ ∈ [mP +
mP ′ ,

√
s − mΥ(1S)]. The S-wave amplitude for the PP ′

system, S, and the D-wave amplitudes, D, D′ and D′′,
are the sums over possible isospin states

M =
∑

I

MI for M = S, D, D′, D′′, (3)

where I = 0 for π+π−, I = 0, 1 for K+K−, and I = 1
for ηπ0, since the Υ(1S) is an isospin 0 state, and the
following resonances contribute to each process:

σ, f0 and f2 for π+π−,
f0, a00 and f2 for K+K−,
a00 for ηπ0.

(4)

The I = 0 amplitudes are given by the combinations of
the resonance amplitudes, MS

0 and Mf2
0 , and the non-

resonating continuum amplitudes, M1C
0 and M2C

0 :

S0 = M1C
0 + (k1 · k2)

∑

S

MS
0 , D0 = |k|2Mf2

0 ,

D′
0 = M2C

0 −D0 , D′′
0 = M2C

0 +
2q0p0

(q · p)D0 , (5)

where S runs over possible I = 0 scalar resonances in
Eq. (4), and |k| is the magnitude of the three momen-
tum of P (′) in the PP ′ rest frame. Similarly, the I = 1
amplitudes are given by

S1 =
ge+e−Y 1

b

ge+e−Y 0
b

[
M1C

1 + (k1 · k2)Ma0
0

1

]
,

D1 = 0 , D′
1 = D′′

1 =
ge+e−Y 1

b

ge+e−Y 0
b

M2C
1 , (6)

where the dimensionless couplings ge+e−Y 0
b

and ge+e−Y 1
b

are defined via the Lagrangian

L = ge+e−Y 0
b

Y 0
bµ (ēγ

µe) + ge+e−Y 1
b

Y 1
bµ (ēγ

µe) . (7)

The ratio ge+e−Y 1
b

/ge+e−Y 0
b

is determined by the ef-
fective diquark charges of the isospin eigenstates:
ge+e−Y 1

b

/ge+e−Y 0
b

= (Q[bu] −Q[bd])/(Q[bu] +Q[bd]) = −3.
To calculate the production cross sections, we derive

the corresponding Van Royen-Weisskopf formula for the
leptonic decay widths of the tetraquark states made up
of point-like diquarks:

Γ(Y[bu/bd] → e+e−) =
24α2|Q[bu/bd]|2

m4
Yb

κ2
∣∣∣R(1)

11 (0)
∣∣∣
2

, (8)

where α is the fine-structure constant, the parameter κ
takes into account differing sizes of the tetraquarks com-
pared to the standard bottomonia, with κ < 1 antici-

pated, and |R(1)
11 (0)|2 = 2.067 GeV5 [16] is the square

of the derivative of the radial wave function for χb(1P )
taken at the origin. Hence, the leptonic widths of the
tetraquark states are estimated as

Γ(Y[bd] → e+e−) = 4Γ(Y[bu] → e+e−) ≈ 83 κ2 eV , (9)

which are substantially smaller than the leptonic width of
the Υ(5S) [6]. Since the couplings in Eq. (7) are related
to the leptonic widths as

Γ(Y[bu/bd] → e+e−) =
mYb

24π
|ge+e−Y 0

b

± ge+e−Y 1
b

|2 , (10)

we obtain |ge+e−Y 0
b

| ≈ 2 × 10−4 κ from Eq. (9). Com-
bining the knowledge of the production process and the
measured cross section for e+e− → Υ(1S)π+π−, we es-
timate Γ(Y[bu/bd] → Υ(1S)π+π−) to be O(1) MeV.
The continuum amplitudes in Eq. (5) are written in

terms of the two form factors A and B [14, 15] as

M1C
0 =

2A

fP fP ′

(k1 · k2) +
B

fP fP ′

3(q0)2k01k
0
2 − |q|2|k|2
3s

,

M2C
0 = − B

fP fP ′

|q|2|k|2
s

, (11)
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where fP (′) is the decay constant of P (′), and |q|,
k01 and k02 are the magnitude of the three momen-
tum of Yb and the energies of P and P ′ in the
PP ′ rest frame, respectively. Using SU(3) symme-

try, we assume the relations M1C,2C
0 (Υ(1S)K+K−) =

(
√
3/2)M1C,2C

0 (Υ(1S)π+π−), M1C,2C
1 (Υ(1S)K+K−) =

M1C,2C
0 (Υ(1S)K+K−) and M1C,2C

1 (Υ(1S)ηπ0) =√
2M1C,2C

1 (Υ(1S)K+K−).
The resonant contributions are expressed by the Breit-

Wigner formula:

MR
I =

gRPP ′ gY I

b
Υ(1S)R ge+e−Y 0

b

M2
PP ′ −m2

R + imRΓR
eiϕR , (12)

where I = 0 for R = σ, f0 and f2, and I = 1 for R = a00.
The couplings for the scalar resonances S are defined
through the Lagrangian

L = gSPP ′(∂µP )(∂µP ′)S + gYbΥ(1S)S YbµΥ
µS , (13)

while those for the f2 meson are defined through

L = 2gf2PP ′(∂µP )(∂νP
′)fµν

2 + gYbΥ(1S)f2YbµΥνf
µν
2 . (14)

The couplings gRPP ′ and gY I

b
Υ(1S)R have mass dimen-

sions −1 and 1, respectively. For the σ, f0 and a00, we
adopt the Flatté model [13]

mσΓσ = f2
σππρππ , mf0Γf0 = f2

f0ππρππ + f2
f0KK̄ρKK̄ ,

ma0
0
Γa0

0
= f2

a0
0ηπ

ρηπ + f2
a0
0KK̄ρKK̄ (15)

with the phase space factor

ρab =

[(
1− (ma −mb)

2

M2
PP ′

)(
1− (ma +mb)

2

M2
PP ′

)]1/2
, (16)

where the Flatté couplings fSPP ′ are related to the vertex
couplings gSPP ′ entering in Eq. (12) via

gSPP ′(k1 · k2) = 4
√
π fSPP ′ . (17)

The couplings in Eq. (17) are defined for an exclusive
final state. Summing over final states, e.g., f2

f0ππ
=

f2
f0π+π− +f2

f0π0π0 , we obtain the isospin relations fSππ =√
3/2 fSπ+π− , fSKK̄ =

√
2 fSK+K− and fSηπ = fSηπ0 .

For the σ meson, we extract the coupling gσπ+π− from
the E791 data [8]: gσπ+π− = 26.7 GeV−1 with mσ = 478
MeV, yielding the Flatté coupling fσππ = 437 MeV. For
the f0 and a00 mesons, we adopt the masses and the Flatté
couplings measured by the BES [9] and CB [10] Collabo-
rations (the corresponding couplings from KLOE [11, 12]
are shown in the parentheses):

mf0 =965(984), ff0ππ=406(349), ff0KK̄=833(869),

ma0
0
=982(983), fa0

0ηπ
=324(398), fa0

0KK̄=329(429) (18)

0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.5

1
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π
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π
−
/(
0.
1
G
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)

(a)

-1 -0.5 0 0.5 1
0

0.2
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0.6

0.8

1
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d
σ̃
π
+
π
−
/0
.2

(b)

FIG. 1. Fit results (a) of the Mπ+π− distribution and (b) of
the cos θ distribution for e+e− → Yb → Υ(1S)π+π−, normal-
ized by the measured cross section. The histograms (green
bars) represent the fit results, while the crosses are the Belle
data [1]. The resonant contributions from the σ and f0(980)
(left red curve) and the f2(1270) (right black curve) are also
indicated in (a).

TABLE I. Best fit parameters, yielding χ2/d.o.f. = 21.6/15,
where A′ and B′ are dimensionless, g′

Y 0
b
Υ(1S)f0

and g′
Y 0
b
Υ(1S)f2

are given in units of MeV, and the angles are in units of rad.

A′ B′ g′
Y 0
b
Υ(1S)f0

g′
Y 0
b
Υ(1S)f2

ϕσ ϕf0 ϕf2

0.000081 −0.00020 0.320 0.432 0.38 −2.68 −0.31

in units of MeV. Furthermore, we extract the couplings
for the f2 meson through the formula

Γ(f2 → PP ′) =
g2f2PP ′m3

f2

480π

(
1− 4m2

P

m2
f2

)5/2

(19)

for mP = mP ′ , where the data for Γ(f2 → ππ) =
(3/2) Γ(f2 → π+π−) and Γ(f2 → KK̄) = 2Γ(f2 →
K+K−), and mf2 = 1275 MeV are taken from PDG [6].
The other inputs for the pseudo-scalar mesons and the
Υ(1S) are also taken from PDG.
Having detailed our dynamical model, we now perform

a simultaneous fit to the binned Υ(1S)π+π− data for
the Mπ+π− and cos θ distributions measured by Belle at√
s = 10.87 GeV [1], normalizing them by the measured

cross section: dσ̃π+π−/dMππ and dσ̃π+π−/d cos θ, where
σ̃π+π− ≡ σΥ(1S)π+π−/σBelle

Υ(1S)π+π− with σBelle
Υ(1S)π+π− =

1.61 ± 0.16 pb [1]. With SU(3) symmetry for the
Y 0
b Υ(1S)R couplings entering in Eq. (12), i.e., setting

gY 0
b
Υ(1S)σ = gY 0

b
Υ(1S)f0 , we have 7 free parameters:

A′, B′, g′Y 0
b
Υ(1S)f0

, g′Y 0
b
Υ(1S)f2

, ϕσ, ϕf0 , ϕf2 , (20)

where the first four primed parameters are rescaled as
A′ ≡ A|ge+e−Y 0

b

| and so forth. Hence the number of de-

gree of freedom (d.o.f.) in the fit is (12 + 10) − 7 = 15.
To make predictions for the Υ(1S)K+K− and Υ(1S)ηπ0

modes, we assume SU(3) for the couplings and the
phases, i.e., gY 0

b
Υ(1S)f0 = gY 1

b
Υ(1S)a0

0
and ϕf0 = ϕa0

0
. We

also assume that there is no phase difference between the
two continuum amplitudes M1C,2C

0 and M1C,2C
1 .

With these inputs, we have performed a large num-
ber of fits (typically O(5000)) of the Belle data with the
tetraquark theory predictions. The resultant best fit is
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η
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FIG. 2. Predictions (a) of the MK+K− distribution for e+e− → Yb → Υ(1S)K+K−, (b) of the Mηπ0 distribution for e+e− →

Yb → Υ(1S)ηπ0 and (c) of the correlation between the cross sections of Υ(1S)K+K− and Υ(1S)ηπ0, normalized by the
measured cross section for the Υ(1S)π+π− mode. In (a) and (b), the dotted (solid) curves show the dimeson invariant mass
spectra from the resonant (total) contribution. In (c), the red dots represent predictions from our fit solutions satisfying
χ2/d.o.f. < 1.6. The shaded (green) band shows the current Belle measurement σ̃K+K− = 0.11+0.04

−0.03 [1].

fairly good, with χ2/d.o.f. = 21.6/15 for the BES and CB
input in Eq. (18), which corresponds to a p-value of 0.12.
The corresponding best fit using the KLOE data is very
similar, having a χ2/d.o.f. = 21.9/15, yielding a p-value
of 0.11. The best fit using the BES and CB data is pre-
sented in Fig. 1 and the corresponding fit values of the
parameters are listed in Table I. Further details about
the correlations among the parameters and the cross sec-
tions will be presented in a forthcoming paper [15]. Con-
cluding the discussion of the final state Υ(1S)π+π−, we
note that the resonance contribution represented by the
left red curve (S-wave from σ and f0) and the right black
curve (D-wave from f2) in Fig. 1 (a) dominate theMπ+π−

spectrum, supporting our dynamical model in the decay
Yb → Υ(1S)π+π−. Sufficient data may provide enough
statistics to undertake an analysis in the end-region of
Mπ+π− to probe the angular distribution of f2 → π+π−.
The normalized MK+K− and Mηπ0 distributions, cal-

culated with the best-fit parameters in Table I, are shown
in Fig. 2 (a) and Fig. 2 (b), respectively. In these fig-
ures, the dotted (solid) curves show the dimeson invari-
ant mass spectra from the resonant (total) contribution.
Since these spectra are dominated by the scalars f0 + a00
and a00, respectively, there is a strong correlation between
the two cross sections. This is shown in Fig. 2 (c), where
we have plotted the normalized cross sections σ̃K+K−

and σ̃ηπ0 resulting from our fits (dotted points) which
all satisfy χ2/d.o.f. < 1.6. The current Belle measure-
ment σ̃K+K− = 0.11+0.04

−0.03 [1] is shown as a shaded (green)
band on this figure. Our model is in agreement with the
Belle measurement, though there is a tendency in the
fits to yield larger value for σ̃K+K− . Our predictions will
be further tested as and when the cross section σ̃ηπ0 is
measured. Noticing that we have neglected the SU(3)-
breaking effects, we predict 1.0 . σ̃ηπ0 . 2.0.
Finally, we note that the states Υ(1S)K+K− and

Υ(1S)K0K̄0 are produced by the underlying mechanism
e+e− → Y[bu] → Υ(1S)K+K− and e+e− → Y[bd] →
Υ(1S)K0K̄0. Hence, a firm prediction is

σΥ(1S)K+K−

σΥ(1S)K0K̄0

=
Q2

[bu]

Q2
[bd]

=
1

4
. (21)

This relation is valid under the assumption that the di-
quarks are point-like. In terms of the mass eigenstates,
we predict σΥ(1S)K+K− = σΥ(1S)KSKS

.
The distributions, cross sections, and correlations pre-

sented here are crucial tests of the underlying tetraquark
hypothesis in the bb̄ sector and go well beyond what has
been proposed in the literature to understand the nature
of the Yb(10890) state [3]. They will be scrutinized soon
in the existing and the forthcoming Belle data to which
we look forward.
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