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The masses of ψ((n + 1) 3S1) and ψ(n 3D1) are calculated using the relativistic

string Hamiltonian with “linear+gluon-exchange” potential. They occur in the range

4.5–5.8 GeV, in particular, M(3D) = 4.54 GeV, M(5S) = 4.79 GeV, M(4D) =

4.85 GeV are calculated with accuracy ∼ 50 MeV. For higher charmonium states

linear Regge trajectories: M2(nS) = M2(ψ(4.42)) + 2.91 GeV2 (n − 4) (n ≥ 4)

and M2(nD) = (4.542 + 2.88(n − 3)) GeV2 ( n ≥ 3) are obtained only for higher

charmonium states. They have a slope two times larger than that of light mesons

and give a good description of calculated masses. These masses are compared to

enhancements in some recent e+e− experiments.

I. INTRODUCTION

Observation of higher charmonium states is very important for theory, first of all, to

understand the cc̄ dynamics at large distances. At present only the ψ(4415) resonance,

discovered long ago in 1976 [1], is well established; its mass,M(4415) = 4421±7 MeV, is now

known with a good accuracy [2, 3]. However, even for this resonance there is an uncertainty in

the value of its dielectron width [3]. The analysis of most precise BES data on the ratio R =

σ(e+e− → hadrons) /σ(e+e− → µ+µ−) in [4] has given Γee(ψ(4415)) = 0.37±0.14 KeV, while

in [5] from the same experimental R values four different Γee(ψ(4415)), in the range 0.45–

0.78 KeV, have been extracted in different fits. Meanwhile precise knowledge of dielectron

widths of higher charmonium states may give an important information on the S−D mixing

and different decays.

Therefore in our paper we concentrate on the masses for the higher nS and nD char-

monium states. Although the resonances, like ψ(3D), ψ(5S), and ψ(4D), are not well
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established yet, several enhancements in the range 4.5–5.0 GeV were observed in a number

of recent e+e− experiments: in e+e− → D0D̄∗−π+, D∗+D∗−, D∗+
s D∗−

s [6], e+e− → Λ+
c Λ

−

c [7]

of the Belle Collab., and also in the BaBar data on e+e− → π+π−J/ψ [8], e+e− → D∗D̄∗,

e+e− → DD̄∗ via the initial state state radiation [9]. These enhancements have been anal-

ysed in [10, 11], where they are interpreted as the ψ(3D), ψ(5S), and ψ(4D) vector char-

monium states, and their masses and total widths were extracted from fits to experimental

data.

Here we consider only conventional cc̄ mesons in the framework of relativistic string

picture. We perform calculations of two kinds: with a universal linear + gluon-exchange

(GE) potential [12] and also for purely linear potential when GE interaction is taken as a

perturbation. We shall show that linear confining potential dominates in cc̄ dynamics at

large distances, thus simplifying an analysis for several reasons.

Firstly, at large distances GE potential is small as compared to confining term. Its

typical contribution to the energy excitation E(nl) (3 ≤ n ≤ 8) is of order 150 MeV, while a

contribution from linear potential is ∼ 1.5− 2.2 GeV. Therefore the masses of higher states

weakly depend on the parameters of GE potential, which may be very much different even

in QCD motivated models [13, 14].

Secondly, higher states have large sizes and their hyperfine and fine-structure splittings

are small, so that their masses practically coincide with the centroid masses. Thus one

escapes uncertainties coming from parameters of spin-dependent potentials [15].

Also we assume here that hadronic shifts of higher resonances due to open channel(s) are

not large, being of the same order as for low-lying states, which are typically ≃ 40 MeV

[16, 17], and only for X(3872) a hadronic shift is larger, ∼ 70 MeV, due to specifically

strong coupling of the P−wave charmonium state to the S−wave threshold. In this respect

the situation in charmonium differs from that of light mesons, where hadronic shifts of

radial excitations are large and a creation of virtual quark-antiquark pairs should be taken

into account [18]. Hence, we can perform calculations in single-channel approximation,

estimating an accuracy of our calculations as ±50 MeV.

We use here the relativistic string Hamiltonian (RSH) [19–21], which describes light,

heavy-light mesons, and heavy quarkonia in a universal way, only via such fundamental

parameters as string tension and the pole (current) mass of the c quark. For low-lying states

it is also important to fix the value of the vector strong coupling at large distances – αcrit (the
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freezing constant), but for high excitations different choice of αcrit gives small uncertainty

in their masses, ∼ 20 MeV.

At this point we would like to underline that widely used spinless Salpeter equation (SSE)

appears to be a particular case of RSH with the only restriction. If in constituent potential

models the c− quark mass is taken as a fitting parameter, in our approach in SSE the c-

quark mass has to be equal to its pole mass. At present the pole mass of the c quark is

defined with a good accuracy: m = mc(pole) = 1.40 ± 0.07 GeV [2]. It is of interest that

the masses of higher charmonium states appear to be very sensitive to accepted value of

m(pole). We also show that if GE potential is considered as a perturbation, then the masses

M̃(nl) (n ≥ 3) coincide with exact solutions of RSH (or SSE) with an accuracy ≃ 2%.

Moreover, in “linear” approximation the masses are shown to be defined by simple ana-

lytical expressions.

We do not consider here non-conventional charmonium resonances, in particular, those

which occur near thresholds, since they may be calculated only within two-(many-)channel

approach [16, 17].

II. THE MASSES M(nS) AND M(nD)

Although RSH was derived for an arbitrary q1q̄2 meson [19, 20], in case of heavy quarkonia

it has more simple form, because so-called string and self-energy corrections are small and

can be neglected [21]:

H = ω(nl) +
m2

ω(nl)
+

p
2

ω(nl)
+ VB(r), Hϕnl =M(nl)ϕnl. (1)

We use here einbein approximation (EA) [20, 21], when the mass M(nl) ≡ Mcog(nl) is

defined as

M(nl) = ω(nl) +
m2

ω(nl)
+ Enl(ω(nl)). (2)

This mass formula does not contain any overall (fitting) constant and depends on the

pole mass of the c quark m, which is defined via the current mass of the c quark and now

known with an accuracy ∼ 70 MeV [2]; in our paper we take m = 1.40 GeV.

In (2) a variable ω(nl) is the averaged kinetic energy of the c quark for a given nl state,
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which plays a role of a constituent quark mass, being different for different states:

ω(nl) = 〈
√

p2 +m2〉nl. (3)

In (2) Enl(ω(nl)) is the excitation energy of a given state nl; its depends on static potential

used. Here we take “linear + GE” potential VB(r) as in [12, 21],

VB(r) = σr − 4αB(r)

3r
. (4)

For low-lying states both linear and GE terms are important and to calculate Enl, ω(nl)

one needs to solve two equations in consistent way: firstly, the equation (1) and also the

equation for ω(nl):

ω(nl)2 = m2 + ω(nl)2
∂Enl

∂ω(nl)
(5)

For higher states confining potential dominates and due to this fact exact solutions of (1),

(5) and the masses M̃(nl), calculated for linear potential with GE potential taken as a

correction, coincide with an accuracy better 2% (see Tables II, III).

In “linear” approximation (with only linear potential) the excitation energy E0(nl) is

given by the expression:

E0(nl) =

(

σ2

ω0(nl)

)1/3

ζnl, (6)

while from (5) the equation for ω0(nl) is

ω0(nl)
2 = m2 +

1

3
(σω0(nl))

2/3ζnl. (7)

From (6) and (7) one can see that E0(nl) and ω0(nl) are expressed via the string tension

σ and the Airy numbers ζnl. It is also important that ω0(nl) depends on the c− quark pole

mass, being proportional m. Through our paper the conventional values σ = 0.18 GeV2 and

m ≡ mc(pole) = 1.40 GeV are taken. The Airy numbers for n = 1, ..., 8 (l = 0.2) are given

in Appendix.

The equation (7) (with m 6= 0) easily reduces to the Cardano equation, from which ω0(nl)

is obtained in analytical form:

ω
2/3
0 (nl) =

(

m2

2

)1/3













1 +

√

1−
(

2σ

27m2

)2

ζ3nl





1/3

+



1−

√

1−
(

2σ

27m2

)2

ζ3nl





1/3










(8)
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From this equation it follows that

ω0 =
m√
2













1 +

√

1−
(

2σ

27m2

)2

ζ3nl





1/3

+



1−

√

1−
(

2σ

27m2

)2

ζ3nl





1/3










3/2

. (9)

In linear approximation the kinetic energies ω0(nl) have several characteristic features

(see Table 1):

1. They differ for the states with different quantum numbers nl, increasing for larger

radial excitations: from 1.73 GeV for the 4S state to ω0(7S) = 1.94 GeV.

2. For n ≥ 3 ω0(nD) and ω0((n + 1)S) almost coincide and due to this property the

masses of these states are degenerated for linear potential – a difference between them

is ≤ 5 MeV.

3. The masses ω0(nl) are proportional to the c-quark pole mass.

4. The values of ω0(nl) do not practically depend on GE interaction, coinciding with

exact ω(nl) for n ≥ 3 with an accuracy better 3% (see Table VI in Appendix).

A growth of ω0(nl) for larger n is an important feature of “a constituent” mass in relativistic

string approach. Due to this property, the r.m.s. of higher charmonium states are not very

large, changing from 1.4 fm for the 4S state to 2.0 fm for the 7S state (these radii are given

in Appendix). Therefore one can expect that higher charmonium resonances exist and can

manifest themselves in different e+e− processes, if their leptonic widths are not small.

In Appendix (Table VI) the values of ω0(nl) are compared to “exact” ω(nl) calculated

for SSE :

{2
√

p2 +m2 + VB(r)}ϕnl =M(nl)ϕnl, (10)

with the same “linear+GE” potential (4); their values coincide with an accuracy better 3%,

i.e. for higher excitations ω(nl) appears to be independent of GE potential used.

The SSE (10) may be considered as a particular case of the RSH, in which a string

correction is neglected as in (1). It can be derived from RSH, if the extremum condition is

put as ∂H
∂ω

= 0 [22]. On the other hand, EA follows from RSH, if the extremum condition is
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TABLE I: The kinetic energies ω0(nl) (l = 0, 2) (in GeV) from (8) for linear potential with

σ = 0.18 GeV2 (m = 1.40 GeV).

nS ω0(nS) nD ω0(nD)

1S 1.512 - -

2S 1.598 1D 1.606

3S 1.669 2D 1.674

4S 1.732 3D 1.736

5S 1.789 4D 1.793

6S 1.884 5D 1.847

7S 1.896 6D 1.898

8S 1.945 7D 1.947

put on the mass (2) as ∂M(nl)
∂ω

= 0 [20, 22]. Here we mostly use EA, because in this approach

the wave functions (w.f.) with l = 0 are finite near the origin, while for SSE the S−wave

solutions diverge.

In Tables II, III “exact” solutions of SSE, denoted asM(nl), are compared to approximate

masses M̃(nl):

M̃(nl) =M0(nl)+ < VGE >nl, (11)

where M0(nl) is a solution of (1) with only linear potential. The masses M0(nl) for l = 0, 2

and the matrix elements (m.e.) < VGE >nl are given in Appendix, Tables VII and VIII. The

GE contribution to M̃(nl) is negative, with much smaller magnitude (∼ 150 MeV) than

that for linear potential, which is ∼ 1.5− 2.0 GeV. However, this GE correction, ∼ 10%, is

important to improve an agreement with known experimental masses.

From Tables II, III one can see that the differences between M(nl) for SSE and M̃(nl),

≃ 40 MeV, lie within accuracy of our calculations. Thus our calculations (in single-channel

approximation) show that

1. The value M(3S) = 4.09 GeV is by 50 MeV larger than experimental number,

M(ψ(4040) = 4.04 GeV, and this difference between them agrees with the value of

hadronic shift for this resonance, ∼ 40 MeV, predicted in [16].



7

TABLE II: The masses M̃(nS) (11) and exact solutions M(nS) for SSE (in GeV) (σ = 0.18 GeV 2,

αcrit = 0.54)

State M(nS) for SSE M̃(nl) experiment

- m=1.41 GeV m=1.40 GeV -

1S 3.07 3.068 3.067

2S 3.67 3.663 3.67(4)

3S 4.09 4.099 4.040

4S 4.45 4.464 4.421

5S 4.75 4.792 4.78a

6S 5.04 5.087 5.09a

7S 5.31 5.365 5.44a

8S - 5.630 5.91a

a This number is taken from the fit to experimental data [10].

2. For ψ(4415) a smaller hadronic shift, ∼ 30 MeV, follows.

3. Calculated M(5S) = 4.79 GeV agrees with the prediction of M(ψ(5S)) = 4.78 −
4.82 GeV from [10], [11], where this mass has been extracted from fits to experimental

cross sections for different e+e− processes [6–9]. Such a coincidence takes also place

for the M(6S) = 5.09 GeV.

4. On the contrary, our masses for the 7S, 8S charmonium states: M(7S) = 5.365 GeV

and M(8S) = 5.63 GeV, are by 80 MeV and ∼ 300 MeV smaller than those from [10]

(see Table II). ,

5. For the D−wave states M(3D) = 4.54 GeV andM(4D) = 4.86 GeV are obtained; the

value of M(4D) agrees with M(4D) ∼ 4.87 GeV from [10] (see Table III). For higher

5D and 6D our values are smaller, by 160 MeV and 250 MeV, respectively, than in

[10].

6. For purely linear potential the spacings δn+1,n = M0(nD) −M0((n + 1)S) are small,

∼ 15± 5 MeV (see Tables VII, VIII), i.e., these levels are degenerated. However, due
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TABLE III: The masses M(nD) for SSE and M̃(nl) (11) (in GeV) with σ = 0.18 GeV2

nD M(nD) for SSE M̃ (nD) experiment

m = 1.41 GeV m = 1.40 GeV

1D 3.80 3.80 3.77

2D 4.18 4.192 4.16

3D 4.51 4.543 4.55a

4D 4.81 4.854 4.87a

5D 5.09 5.143 5.30a

6D 5.35 5.413 5.66a

7D 5.62 5.669 -

a See the footnote to Table 2.

to GE potential these mass differences increase, so that M̃(3D)− M̃(4S) = 80 MeV

and M̃(6D)− M̃(7S) = 50 MeV.

Here in our analysis of high charmonium excitations we do not use flattening potential,

introduced for light mesons to take indirectly into account a creation of virtual qq̄ pairs (q is

a light quark) [18]. Such flattening of confining potential was useful for light mesons, which

have large hadronic shifts. The situation in charmonium is supposed to be different, because

for higher states the c-quark kinetic energy increases, being ∼ 1.7 − 1.9 GeV, and one can

expect that their hadronic shifts are not large (≤ 40 MeV) and their overlapping integrals,

which describe different decay modes, are smaller than those for low-lying resonances.

In [23] the masses of higher charmonium states have been calculated with the use of a

static potential, which contains a large number of additional parameters and large overall

constant, while the value of the string tension is relatively small. Nevertheless calculated in

[23] masses of the nS (n = 5, 6) and nD (n = 3, 4, 5) charmonium states coincide with our

predictions within ±50 MeV, while in [23] M(ψ(6D) = 6.03 GeV is by 260 MeV larger than

in our calculations.

At this point we would like to stress that with the use of RSH all calculated masses do not

contain a fitting constant and totally defined only by σ = 0.18 GeV2, m(pole) = 1.40 GeV,

while a choice of the freezing value of the strong coupling αcrit is not very important.
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III. RADIAL REGGE TRAJECTORIES FOR THE nS AND nD STATES

The Regge trajectories, orbital and radial, are usually studied in light mesons and now

it remains unclear whether a regime of linear trajectories takes place for the charmonium

family or not. In [24] it was assumed that linear Regge trajectories describe charmonium

states with different quantum numbers with an accuracy ∼ 100 MeV, while the slopes were

defined fitting the masses of low-lying (well-established) charmonium states.

Here from our dynamical calculations of the M(nS) and M(nD) it follows that linear

Regge trajectories take place only for higher charmonium states.

The radial Regge trajectory can be presented as:

M2(nl) = µ2
l + Ωl n, (12)

where µl and the slope Ωl are supposed to be constants. In classical string picture for

massless quarks Ωl = 4πσ = 2.26 GeV2 (σ = 0.18 GeV2), however, for light mesons the

values of Ωl have appeared to be smaller, 1.3 − 1.6 GeV2, because of large hadronic shifts

[18].

Here we consider the masses of the centers of gravity and define the Regge trajectories

for a given l, when from (12) the spacing between squared masses:

∆n+1,n = M̃2((n + 1)l)− M̃2(nl) = Ωl (13)

has to be a constant Ωl. Taking from [2] experimental values of the c.o.g. masses for J/ψ−
ηc(1S), ψ(3686)−ηc(2S), ψ(4040), ψ(4415) one obtains that the spacing ∆21 = 4.07 GeV2,

while ∆32 = 2.84 GeV2 is significantly smaller, and ∆43 = 3.22 GeV2 is by ∼ 15% larger

than ∆32. A decrease of ∆32 possibly occurs due to hadronic shift of the ψ(4040) resonance,

which is ∼ 50 MeV. If one takes unshifted masses from Table II: M(3S) = 4.099 GeV and

M(4S) = 4.464 GeV, then ∆32 = 3.32 GeV2 and ∆43 = 3.13 GeV2 become close to each

other, still being larger than ΩS for higher states (calculated ∆n+1,n are given in Table IV).

The numbers from Table 4 show that M(nS) with 4 ≤ n ≤ 8 can be described by linear

(radial) Regge trajectory with the slope

ΩS = 2.91 GeV2, (14)

which is a constant with a good accuracy. From here
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TABLE IV: The differences ∆(n+1),n (in GeV2) between squared masses M̃2(nl) for the nS states

∆43 3.22

∆54 3.04

∆65 2.91

∆76 2.91

∆87 2.91

M2(nS) =M2(4.21) + 2.91 GeV2(n− 4). (15)

For the masses M(nD) the slope ΩD slightly decreases changing from ∆43 = 3.13 GeV2

to a smaller value, ∆76 = 2.84 GeV2 (see masses from Table III). Therefore for the nD states

their masses are described by linear Regge trajectory with worse accuracy than for the nS

excitations, giving

ΩD = (2.88± 0.04) GeV 2, (16)

and

M2(nD) =M2(4.54) + ΩD (n− 3). (17)

In [24] charmonium states with different quantum numbers, including low-lying states,

were described by linear Regge trajectories with µ2
l and the slopes ΩJ , defined from fits to

known experimental masses. For the masses of ψ(nS) and ψ(nD) the slope ΩS = ΩD =

3.2 GeV2 was obtained, which is only 10% larger than that in our dynamical calculations,

while the values of µS = 2.6 GeV and µD = 3.31 GeV in [24] are taken as fitting parameters.

In our calculations linear Regge trajectories can be applied only to higher charmonium states

and µl (l = 0, 2) is equal to experimental mass.

Moreover, for the slopes ΩS,ΩD approximate analytical expressions can easily be derived.

If in (2), (6) one takes an averaged ω̄0 = ω̄S = ω̄D for a kinetic energies with n ≥ 4, then

the slope

Ωl =

(

σ2

ω̄0

)1/3

(ζ(n+1)l − ζnl)

{

(

σ2

ω̄0

)1/3

(ζ(n+1)l + ζnl) + 2ω̄0 +
2m2

ω̄0

}

(18)
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is fully defined by ω̄0 and the Airy numbers. From (18), taking ω̄0 ≃ 1.84 GeV (ζnS, ζnD

are given in Table V), one obtains ΩS ≃ ΩD ≃ 2.90 GeV2 in good agreement with “exact”

number in (14), (16).

It is important to stress that in charmonium the slopes ΩS,ΩD have appeared to be two

times larger than those for light mesons [18].

For calculated masses a spacing between neighbouring radial excitations, M((n + 1)l)−
M(nl), is large, being ∼ 300 MeV for the nS states and ∼ 270 MeV for the nD states.

On the contrary, the mass difference M(nD) − M((n + 1)S) is smaller, decreasing from

∼ 120 MeV for low-lying states to ∼ 80−60 MeV for large n. Evidently, that for such small

spacings the S − D mixing has to be important. Then the S − D mixing strongly affects

dielectron widths of vector charmonium states. As shown in [21], higher nS states have

large dielectron widths, ∼ 1 KeV, which are by two orders larger than Γee(nD) for purely

D−wave states, e.g. Γee(1D) ≃ 15 eV and ∼ 40 eV for the 4D state. Therefore purely nD

resonances with such small dielectron widths cannot be observed in the e+e− experiments,

while they may be seen, if due to the S −D mixing, their dielectron widths are of the same

order as those of the nS states.

IV. CONCLUSIONS

Our calculations of higher charmonium states were performed in single-channel approx-

imation when the cc̄ dynamics at large distances can be studied in detail. With the use of

RSH we have obtained that

1. The 5S − 8S and 3D − 7D states occur in the range 4.5-5.8 GeV and the spacing

between neighbouring radial excitations is of the order of 250-300 MeV for n ≥ 4.

2. The mass differences between M(nD) and M((n + 1)S) are rather small, decreasing

from ∼ 80 MeV for n = 4 to ∼ 50 MeV for n = 7. The important point is that for

purely linear potential these levels are degenerated (their mass difference is ≃ 15 MeV),

while due to GE interaction a spacing M(nD)−M((n + 1)S increases.

3. The masses of radial excitations, M(nS) and M(nD) with n ≥ 3, are described with

good accuracy by linear Regge trajectories with the slope ΩS = 2.91 GeV2 and ΩD =

2.88 GeV2.



12

4. The masses of high excitations in charmonium are mostly defined by linear confining

potential and at the same time they depend on the pole mass of a c−quark. Here

m(pole) = 1.40 GeV is used.

5. Higher nD resonances can be observed in experiments only if their dielectron widths

are of the same order as those for the nS states, which happens due to the S − D

mixing.

6. We predict the following masses: M(3D) = 4.54 GeV, M(5S) = 4.79 GeV,

M(4D) = 4.85 GeV, M(6S) = 5.09 GeV, M(5D) = 5.14 GeV, M(7S) = 5.365 GeV,

M(6D) = 5.41 GeV, M(8S) = 5.63 GeV, and M(7D) = 5.67 GeV. An accuracy of

our calculations is estimated to be ∼ 20 MeV, if hadronic shifts are neglected.

These characteristic features of the cc̄ dynamics at large distances can be tested by future

experiments in which the masses and dielectron widths of higher charmonium resonances

have to be measured with precision accuracy.
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Appendix

The matrix elements, M0(nl), and the Airy numbers

Firstly, we give the Airy numbers for the nS and nD states.

TABLE V: The Airy numbers ζnl for l = 0, 2.

nS state ζnS nD state ζnD

1S 2.338107 - -

2S 4.087949 1D 4.24818

3S 5.520560 2D 5.62971

4S 6.786708 3D 6.86889

5S 7.944134 4D 8.00981

6S 9.022651 5D 9.07700

7S 10.040174 6D 10.08646

8S 11.008524 7D 11.04874

Using the Airy numbers, one can calculate the kinetic energies ω0(nl) (9) as well as

excitation energies E0(nS) and E0(nD) (6) for purely linear potential. In Table VI ω0(nS)

and ω0(nD) for linear potentil and also “exact” ω(nS), calculated for SSE, are given.

As seen from Table VI, for linear potential the kinetic energies ω0((n+1)S) and ω0(nD)

practically coincide for all n, while “exact” ω(nS), calculated for SSE, differ from ω0(nS)

only by ≤ 3%. It means that ω(nS) weakly depends on GE potential taken and only for

low-lying states a difference between them is ∼ 6%.

Knowing ω0(nl) one can define the excitation energy E0(nl), the total mass M̃(nl),

and also the w.f. at the origin for a given state nl. The excitation energies E0(nS) and

E0(nD) are given in Tables VII, VIII together with r.m.s.
√
<r2 >nl and m.e. < VGE(r) >nl.

For the D−wave states a contribution from GE potential is smaller (see < VGE(r) >nD

in Tables VI, VII); due to this fact the mass differences M̃(nD)− M̃((n+ 1)S) increase.

In our calculations of M̃(nl) =M0(nl)+ < VGE >nl for higher states the strong coupling

αB(r) = αcrit = constant was taken, i.e., in the GE potential VGE = −4αcrit

3r
the asymptotic
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TABLE VI: The averaged kinetic energies ω0(nS), ω0(nD) (in GeV) for linear potential and ω(nl)

from SSE (σ = 0.18 GeV2).

state ω0(nS) ω(nS) state ω0(nD)

1S 1.512 1.60 - -

2S 1.598 1.66 1D 1.606

3S 1.669 1.73 2D 1.674

4S 1.732 1.78 3D 1.736

5S 1.789 1.84 4D 1.793

6S 1.844 1.88 5D 1.847

7S 1.896 1.94 6D 1.898

8S 1.9449 - 7D 1.9470

freedom behavior of the strong coupling was neglected , since it gives negligible correction

for high excitations. Here the value αcrit = 0.54 and < VGE >nl= −0.72 < r−1 >nl are used.

TABLE VII: The values E0(nS), M0(nS), the m.e. < VGE(r) >nS (in GeV), and
√
<r2 >nS (in

fm) for linear potential with σ = 0.18 GeV2, m = 1.40 GeV.

nS state E0(nS) M0(nS) < VGE(r) >nS
√
<r2 >nS

1S 0.6494 3.458 - 0.390 0.519

2S 1.1147 3.939 - 0.276 0.891

3S 1.4837 4.327 - 0.228 1.186

4S 1.8016 4.665 -0.201 1.440

5S 2.0861 4.971 -0.179 1.667

6S 2.3454 5.252 -0.165 1.875

7S 2.5861 5.516 -0.151 2.067

8S 2.8115 5.764 -0.134 2.250
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TABLE VIII: The values E0(nD), M0(nD), the m.e. < VGE(r) >nD (in GeV), and
√
<r2 >nD

(in fm) for linear potential with σ = 0.18 GeV2, m = 1.40 GeV.

nD state E0(nD) M0(nD) < VGE(r) >nD
√
<r2 >nD

1D 1.5645 3.983 -0.183 0.879

2D 1.5114 4.356 - 0.164 1.179

3D 1.8219 4.687 - 0.144 1.436

4D 2.1017 4.988 - 0.134 1.664

5D 2.3584 5.267 - 0.124 1.872

6D 2.5970 5.528 - 0.115 2.065

7D 2.8208 5.775 - 0.106 2.246


