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1. Introduction

Discovering the fixed point and the critical phenomena adomirare one of the intriguing
subjects in quantum field theory. The fixed point is definedheyziero point of the beta function of
the theory, and there the theory exhibits scale invariaBoene of them are exactly solvable. The
values of the coupling constant at the fixed point depend®nghormalization scheme. In general,
changing the renormalization scheme corresponds to threlioate transformation in theory space.
Thus, the renormalization group flows are changed by thistoamation, but the existence of fixed
point and whose critical exponents are not char{gdti[1, 2].

Recently, there have been many papers concerning the fixad ggarch and the study of
phase structure of SU(N) gauge theory with a large numbeawadfs. The perturbativg function
indicates the existence of non-trivial infrared (IR) fixemris for a certain range of the number of
large-flavor Nt) SU(N) gauge theories, which is so-called “conformal wintloPossible appear-
ance of these IR fixed points has stimulated phenomenolagfiedies of topics such as dynamical
electro-weak symmetry breaking and unparticle physics.

The existence of these IR fixed points depends on the gaugm,gilte number of flavors,
and the representation of fermion fields. For SU(3) gaugeryheith fermions in the fundamental
representation, such a fixed point has been predicted iratiger8< Ny < 16 using perturbation
theory [3]. However, the value of the renormalized couplingy be in the regime where per-
turbation theory is not applicable. There are some analystudies with improvements of the
perturbation for the search for the lower bound of the canfdrwindow, and the largest one give
a prediction thalN; < 12 is out of the window[4].

One of the nonperturbative approaches to this subject iftiedasimulation, and there are
some recent studies concerning it. First such lattice stod$U(3) gauge theory was carried out
in Ref. [§], where the authors investigated the phase streiaf the case dflf = 16. Appelquist
et al. performed lattice calculation of the running coupling dans in the Schrédinger functional
(SF) scheme and discovered evidence of an IR fixed point indbe ofNs = 12 []. On the other
hand, Fodoet al. does not obtain a signal of IR fixed point using the differaritesne based on
the Wilson loog[[7 [B]. The difficulty is mainly due to schemepeéndence of the running coupling
constant and the presence of significant lattice artifacthé strong-coupling regime. Therefore
it is important to measure the running coupling in differemormalization schemes, and estimate
the dicretization error carefully.

In this work, we perform lattice simulation of the runningupling constant for the funda-
mental representatiolN; = 12, SU(3) gauge theory. Similar to the approach of Appetatisil.,
we measure the step scaling functiois,g?(L)) = g?(sL) keeping the values of bare coupling
constant @) that give constant renormalzed couplirgg (L)) for each small lattice size. We work
in the Twisted Polyakov Loop (TPL) scheme which does notaior®(a/L) discretization errors.
This TPL scheme was first proposed by de Dividisal. [8, [[Q] for SU(2) gauge theory, and we
extend the definition of the scheme to the SU(3) da$e[11].

In this paper, we give a short review of TPL scheme jh §.2. Qeiiminary results foN; = 12
SU(3) gauge theory is reported irf]8.3. In the last sectiondiseuss some ways of improvements
to reduce the discretization error and show the future timedo search for the IR fixed point.



Search for the IR fixed point Etsuko Itou

2. Twisted Polyakov loop (TPL) scheme

In this section, we present the definition of the Twisted RaWlLoop scheme in SU(3) gauge
theory. This is an extension of the SU(2) case as discusdedfir9]. To define the TPL scheme,
we introduce twisted boundary condition for the link vatéhinx andy directions on the lattice:

Up(x+90L/a) = QU (0)Q).  (v=xy) (2.1)

Here,Q, are the twist matrices. The gauge transformation for limiakaesU,, (r) — A(r)U, (nAT(r+
ft) and eq[(Z]1) imply the gauge transformation at boundarly ativisted gauge matrix:

A(r+90L/a) = Q,A(NQ]. (2.2)

Because of this twisted boundary condition, the definitibPalyakov loops in the twisted direc-
tions are modified,

PX(y7 th) =Tr <[|_| UX(X = j7y7 th)]QXeizny/SL> ) (23)
i
in order to satisfy gauge invariance and translation imvarg, and similary foy-direction.

The renormalized coupling in TPL scheme is defined by takivgratio of Polykov loop
correlators in the twisted?) and the untwistedR,) directions:

»  1(3y,R(y.zL/2a)R(0,0,0)")

ITP = K {3y PXy.L/22)P,(0,0,0) ) (2.4)

At tree level, this ratio of Polyakov loops is proportionalthe bare coupling. The proportionality
factork is obtained by analytically calculating the one-gluonfexuge diagram. To perform this
analytic calculation, we choose the explicit form of thestwnatrices[[12], and in the case of SU(3)
gauge group we founki~ 0.03184 [11L].

To introduce the fermions which satisfy both the twistedrmary condition and translation
invariance on the lattice, we have to introduce additiosahéll" degree of freedom and indentify
the fermion field as &l x Ns matrix (5(x)), whereN; andNs are the numbers of color and smell
degrees of freedom respectively][13]. Then we impose thetéaliboundary condition for fermion
fields to be

WE(x+0L/a) = €73Q3PYp(Qu) ), (2.5)

for v =x,y directions. Here, the smell index can be considered as afflawdex, then the number
of flavors should be a multiple ®s(= N; = 3). We use staggered fermion in our simulation. This
contains four tastes for each flavour. This enables us t@merSimulations with a multiple of
12-flovors in this SU(3) gauge theory with twisted boundaopdition.

At the end of this section, we would like to remark on the cesyenmetry of this theory. The
generator of the symmetry is given ky= exp2mik/3), k = 0,1,2 for SU(3) gauge theory. Al-
though the Wilson gauge action is invariant under the falhguransformation for the link variable
for each direction,

Up(t,%) = 2U, (1, %), (2.6)
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the fermion action is not invariant. Therefore the vacuumpeexation values of operator at 1
and atz = exp£2mi/3) are different. In the simulation, we generated the gaugdéigmations
at nontrivial vacua where the vacuum expectation value dfeRov loop correlator in untwisted
direction has a nontrivial phase. We also investigated theloop effective potential for each
vacuum analytically, and found the nontrivial one is thestvacuuni[14].

3. Simulation detail

3.1 Simulation set up

The gauge configurations are generated by the Hybrid Montie @lgorithm, and we use the
Wilson gauge and the staggered fermion action. To reduge Ktatistical fluctuation of the TPL
coupling, as reported in Ref. ]15], we measure Polyakovdaimvery Langivin step and perform a
jackknife analysis with large bin size, typically ©{10°). This enables us to evaluate the statistical
error correctly. The simulations are carried out with selattice sizesl(/a=4,6,8,10,12,16) at
more than twenty3 values in the range.8 < 3 < 20. We generate 50,000-100,000 configurations
for each(p,L/a) combination.
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Figure 1. TPL renormalized coupling in the eaghandL/ain Ny = 12. The right figure shows the detail
behavior in lowg region.

Figure[] shows thg8 dependence of the renormalized coupling in TPL scheme #&usar
lattice sizes. The results can be fitted at each fixed lattkeets the interpolating function

Ct G G G

Q%P(B):f‘FE‘F@‘FEa (3.1)

whereC; are the fit parameters.

The right figure in Fig[]L shows the detailed behavor of lowatregion. We find thag?
increases monotonously with the increase of the lattiessadthin the whole range @ examined.
This holds even a8 = 4.5 This is in the contrast to the case of Schorddinger funatischeme
where the renormalized coupling exhibits some “crossirefiavior [§].

3.2 Thecontinuum extrapolation and the scaling function

We investigate the growth rate of TPL coupling in the contimulimit within the step scaling
method. The procedure of the step scaling is first to find afskeae coupling constan{3j for
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each small lattice size, which gives an input value of reratiad coupling §°(8,a/L) = u). Next,
we measure the step scaling functibfu,s,a/sL) = gZ(B,sL/a)]gz(&a/L):u. Finally, we take the
continuum limit and obtain the step scaling functio(s, u) in the continuum.

o(s,u) = EIiiTOZ(u, s,a/sb)|g(L)—u- (3.2)

In our study, we usé/a = 4,5,6,8 as a small lattice size of the step scaling, and estimate the
coupling constant fok /a= 5 from interpolations at the fixel using the interpolation fit results of
the lattice sizet /a=4,6,8. The step scaling parametesis 2, thus a large lattice size of the step
scaling isL/a=8,10,12,16. From now, we denote the step scaling functids = 2,u) = g(u).

The total error of the step scaling function can be estimbgethe sum of the statistical error
from each data and the systematic errors. The systematicsdrave two origins. One of them is
included in each data valt&u,s,a/sL), in which the value of3 that is tuned to giving an input
have the error. The other one comes from the continuum eotatpn. If we measure the running
behavior of coupling constant, the systematic error whimmes fromp-tuning is accumulated.
However, we can carry out each step-scaling procedure @émdkgmtly for a giveru. We focus on
the growth rate of the renormalized coupling for severali@alofu. And, if the running coupling
constant reaches the fixed point, the growth ) /u should be 1.

Now, we have to consider the statistical error and the syaiersrror which come from the
continuum extrapolation. To estimate the systematic gwertake the continuum limit using both
a constant fit and a linear function {@/L)2. In the case of quenched QCD, we found that the
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Figure 2: The continuum limit o@%P with s= 2. In the left figure, each line denotes a linear fit function of
(a/L)?. The statistical error bars are of the same size of the sysr(beds than 3%). The each input value
of TPL coupling (1= g2p(L/a)) is u=2.36,2.04,1.73,1.41,1.10,0.79,0.47 from top to bottom. The right
figure shows the detailed behavior of the lowest energy st#he left figure. The pink line denotes the value
of the input renormalized coupling= 2.36. The green and blue lines denote the linear extrapoltdidour
points /a = 8,10,12,16) and the constant extrapolation for three poibfa(= 10,12, 16) respectively.

coupling constant of the TPL scheme exhibits scaling bemaswen at the small lattice sizes, as
shown in Ref. [I1L]. In the case ®; = 12, we show the continuum extrapolation and scaling
behavior for each step scaling in F{g. 2. We found that thdiregdehavior in the low energy
region becomes worse. The right figure in Hig. 2 show the lget&iehavior of the lowest energy,
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in which the input renormalized couplingus= 2.36. We found that the data bffa= 8 is far from
the data of the other lattice size and there is a large scaloigtion in the step fronL./a=4 to
sL/a=8.
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Figure 3: The growth rate of the scaling function using a linear exttation (the left figure) and a constant
extrapolation (the right figure).

The growth rate of the scaling functioor(u) /u) in the continuum limit is shown in Fig] 3, in
which we use a linear extrapolation @/L)2 and a constant extrapolation.

The left figure in Fig[]3 may show that the growth rate is desirgaforu > 2.2. However,
the right one shows that there is no such signal. Actualy/difference between these two extrap-
olations gives a systematic error of the renormalized ¢ogplAt the low energy region, there is
more than 6% systematic error. The large systematic ermesdrom the large scaling violation
of a small lattice size, as we show in Fﬂ;. 2. To reduce theesyatic errors and to conclude the
existence of IR fixed point, we have to do some improvementsuay out the simulation for larger
lattice size.

4. Discussion and future direction

In this paper, we investigate the growth rate of TPL couplimépw energy regiorn ~ 5.0.
The TPL coupling does not show the inversion of the orderttitlasize even in the loy8 region.
The lattice renormalized coupling has a discretizationresind it depends on the renormalization
scheme. To remove the discretization effects and to eitiet systematic error, we took the
continuum limit using two ways: a linear extrapolation(afL)? and a constant extrapolation. The
statistical error is less than 3% even in a low energy rediohthe systematic error is more than
6%. We cannot give a conclusive statement for the existehtigedixed point due to the large
systematic error.

To solve this difficulty and to obtain the conclusion of theefipoint search iNs = 12, there
would be several directions to take. One direction is toycaut the simulations on larger lattices.
In Ref. [16] we carry out the step scaling using a set of laegtick size L /a = 6,8,10,12 and
sL/a=9,12 15,18, for SU(2) eight flavor case. In that study, the continuxtnegolation behaves
nicely even in the low energy region. Second direction magiten by some improvements of the
action to reduce the discretized effect in the low energyrditne is to estimate the discretization
error using the analytical calculation by lattice perttidratheory, and then to subtract this value
of discretization error from the lattice raw data. That mase@ better scaling behavior.
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Finally, we would like to show our future direction. We hawerheasure the anomalous di-
mension of the field around the fixed point, if there is a fixethpm the infrared region. The
anomalous dimension of the operator on the fixed point iggélaith the conformal algebra of
the conformal field theory, so that it should be scheme indéget. Comparision of its values
which are measured in several schemes gives a conclusteenstiat of the existence of the fixed
point. Furthermore, from the phenomenological motivatimexpect that the fermion composite
operator has a large anomalous dimension and gives a offigiiiggs sector of standard model.
We will report a new method of measurement of the anomalauemkion in Ref.[[14]
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