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1. Introduction

There is a long history of attempts to realize exact supensgtry on a lattice. Se¢][1] for
earlier and recent references. However exact lattice sypenetry with interactions for full
extended supersymmetry has never been realized for galde decept for the nilpotent super
charge[R[]3[J4]. It has been pointed out that these fornmratof lattice SUSY can be essentially
reformulated by orbifolding procedufé[R, 5].

On the other hand the link approach of lattice SUSY formatg@] includes the orbifold
construction as a specific parameter choice: shift paramaete0. It was, however, claimed by
several authorq][T] §] 5] that an exact SUSY invariance amgjfiuge invariance are lost for non-
vanishing shift parameter case of link approaaks 0. Then later it was recognized for non-gauge
case that the claim of the exact supersymmetry for link aggirds based on the Hopf algebraic
symmetry with mild noncommutativityf9].

In finding a possible solution for the difficulties of the liabproach, we have found an exact
lattice SUSY formulation which includes lattice SUSY alggeln the momentum space. To show
the basic ideas and explicit presentation we examine thplesihone-dimensionall = 2 super-
symmetry model on the lattice. The details of the formutatias already been given inJ10]. Here
we explain the basic structure of the formulation.

In the coordinate representation of the formulation weoithice a new type of product on
which the difference operator surprisingly satisfies L&lvole. This new product introduces mild
non-locality and thus compatible with a claim of no-go ofit Leibniz rule for difference operator
in [L3], where another example of exact lattice SUSY in oneatisional model is given with
infinite flavors.

2. Basicideas

In order to understand the basic structure of lattice SUSfivgt consider the simplest one
dimensional model wittN = 1 symmetry in continuum theory. It is described in terms ofipes-
field:

(x,6) = ¢ () +i0yY(x), (2.1)
with a supersymmetry charge given by:

R , 0
Q= 5+i05., L= (2.2)

This SUSY algebra can be conveniently represented by iatiod matrix structure as an internal
degree of freedom for super coordinate and derivative:

01 17} 00
6= — = 2.3
(0 0> ’ 00 (1 O> ’ (2:3)
which satisfy the following anticommutation relation:

{% ;0 =1 (2.4)
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Since this representation is not hermitian, hermiticitgudt be taken care separately.

We may consider this matrix structure as an internal stractd the space time coordinate.
With respect to this internal structure the bospiis considered as a field which commutes with
6 and % and the fermiony as a field which anticommutes with them. The component fields o
boson and fermion with respect to this internal structuiethan the following fornj[12]:

(o0 o (v 0
¢<x>—< . ¢(X)>7 w(x)-( . _w(x)>. 25)

A super parameter may have the same internal structure ésrthion field.

We now consider to formulate this model on the lattice. Inregrix formulation of fields
the coordinate dependence on the lattice can be introdugetialgonal entries of a big matrix
as direct product to the internal matrix structufe] [12]. sltthus very natural to introduce half
lattice structure to accommodate the 2 matrix internal structure. One can then write a lattice
“superfield” corresponding td (2.1) as

va

D" = () + S (-1)

2
a

W(x), (2.6)

where we have introduced afacﬂé? for later convenience and taken away the facfor hermitic-
ity since the second term is not a product of two Grassmanrbesrbut onlyy(x) is Grassmann
field. In order to accommodate hermiticity in the latticesien of SUSY algebrd (3.2) we need to
introduce symmetric difference operator to replace thieihihtial operator. With this reason we
further need to introduce a quarter lattice and then therfiefte“®(x)” on the lattice is actually
meant as:

(X for x=na/2,
P = { Lal’2(—1)FY(x) for x=(2n+1)a/4
5 '

We now propose lattice supersymmetry transformations asita filifference over a half lattice
spacing$:

(2.7)

SD(x) = aa Y2(—1)% [d(x+a/4) — D(x—a/4)]. (2.8)

By separatingd(x) into its component fields according fo (2.7) we find:

5000 =5 [wix+ 3+ w5 iavco. .9
dy(x)=2ata ¢(x+g)—¢(x—2)] Qa%ﬁ(x), (2.10)

wherex is an even multiple of/4 in 2.9) and an odd one i (2]1P)[13]. It is surprising that
the half lattice translation together with alternatingnsjructure (staggered phase) for the lattice
superfields generates a correct lattice supersymmetrgftnamation. We consider that this obser-
vation is a key of our formulation.

If we now introduceN = 1 super charge a&= aQ, we can show that

LI90cHa2) — bx-a/2), QU =1 [Wix+a/2) - wix-a/2). (211

Qb (x) =
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This shows that SUSY algebrp (2.2) is realized in the latével. SUSY transformation on the
lattice is half lattice shift with alternating sign strucduwvhile super charge square generates single
lattice translation.

As we can see in the matrix representation of the componéds fhéx) andy(x) in (2.5), the
same component fields are assigned on the two neighboriffattige sites. It is natural to double
the degrees of freedom for component fields since we hawedinted half lattice structure. In this
way it is natural to consided = 2 lattice SUSY formulation to accommodate this doubled degr
of freedom. In the following we will show that we can consigtg formulate theD =1, N = 2
supersymmetry model which contains two bosonic fields ad@mmionic fields which are nicely
accommodated by species doubler states. It should alsotbd timt the action fob = N =1
model is fermionic and thus the vacuum is not well defined.

3. N =2 supersymmetry and itslattice realization

The N = 2, D = 1 supersymmetry algebra has two fermionic generafgrsatisfying the
(anti)commutation relations:

A=Q=R, {Q.Q}=0 [R.Q1] =[R,Q] =0, (3.1)

wherePR is the generator of translations in the one-dimensionatesfiiane coordinaté. The su-
perfield formulation of [(3]1) makes use of two Grassmann edahionic coordinate$ (i = 1,2),
so that the degrees of freedom are given by the superfielthexpa

D(t,601,60) = ¢ (t) +iBu(t) +1624n(t) +16:,61D(1), (3.2)

where ; and (», are Majorana fermions. The supersymmetry transformatiorterms of the
component fields are given by:

0j¢ =injyj,  OjYk =90jkNjc¢d +¢exnN;D, D =igkn;o Y. (3.3)

The supersymmetric action can then be defined in terms ofuperseld®, for instance with a
mass term and a quartic interaction:

/ dtde,de, [%D2¢Dl¢+i%m¢2+i:—:g¢4 . (3.4)

By integrating oveif; and6, one can obtain the action written in terms of the componelusfie

S:/dt{% [—(¢)*— D*+iyndyn +ind yn)
—m(iy1yp+ Do) — g(3ig* Y1y + D)}, (3.5)

According to the discussion of the previous section a laticspacing is needed to represent
theN = 1 supersymmetry on the lattice. In this way however the nurabdegrees of freedom are
doubled. If translations are identified with shiftsepfa field on the lattice admits two translationally
invariant configuration: the constant configuration andcihfiguration constant in absolute value
but with alternating sign. Fluctuations around each oféheanfigurations of a lattice field will
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represent two independent degrees of freedom in the camin&o the field content of thé = 1
theory on the lattice, namely one bosonic and one fermioald,fcan accommodate the full field
content of theN = 2 theory. We are going to show that tNe= 2 supersymmetry algebra can be
represented on the lattice in terms of bosonic fielddfy) with x = 52, and a fermionic field¥(x)
with x= 224 2. Asin theN = 1 case the shift of in the fermionic field with respect to the bosonic
one has been introduced to have symmetric finite differeimc® supersymmetry transformations
and implement hermiticity in a natural way.

One of the two supersymmetry transformations, which wel slealote byd,, of theN = 2 is
the same as the one already given on the lattice in the comftéxé N = 1 model:

B ia na

o P(x) = 5 W(x+ g) +W(x— 2)] X= =, (3.6)
SW(X) = 20 | D(x+ g) — d(x— g)} - %‘+ 2 3.7)

where ®(x) and W(x) are dimensionless, so a rescaling of the fields with powers wfll be
needed to make contact with the fields of the continuum thdargnomentum representation the
supersymmetry transformatior{s (3.6) and](3.7) read:

01 P(p) = icos%)all—'(p), aW(p) = —4i sin%’ad)(p). (3.8)
where for simplicity we used the same letters for fields in rantam representationd(p) and

WY(p) satisfy the following periodicity conditions:
am 4
- ) =%, Wp+—)=-%¥p). (3.9)

The commutator of two supersymmetry transformatidpsvith parametersx and 8 defines an
infinitesimal translatiorﬁéﬁ of parameten 3 on the lattice:

D(p+

84F (P) = B1pB1aF (P) — B1a g () = 4sin— B (p), (3.10)

whereF (p) stands for eithe®(p) or W(p). Invariance undel (3.]10) leads to a non local conserva-
tion law wherep is replaced by siﬁ}’, namely , for a product of fields of momenpa, py,...,pn:

sina—pl+sina—p2+---+sina—p"zo. (3.11)
2 2 2

This conservation law on the lattice was first pointed out lnd and Nicolai [T4]. In the con-
tinuum limit (ap < 1) (8.11) reduces to the standard momentum conservatioanawocality is
restored. The conservation lafv (3.11) is not affected ifrapynentump; in it is replaced by%T —pi
due to the invariance of the sine. The interpretation isrcieghe continuum limit @p < 1) F(p)
andF(%’T — p) represent fluctuations of momentymrespectively around the vacuum of momen-
tum zero and?” on the lattice. So the symmetp/— 2% — p amounts to exchanging the two vacua
keeping the physical momentum unchanged.

The correspondence of the lattice fiettlgp) andW(p) with the physical fields is

®(p) =a 2¢(p), ®(- —p)=——7-D(p). (3.12)
W(p) =a *yu(p), W(Zgn —p) =ia "yn(p), (3.13)
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wherep is restricted in [(3.12,3.1.3) to the intervia T, I), corresponding to a lattice of spacing
a. The rescaling with powers &f keeps track of field dimensionality. With a similar rescglin
for the supersymmetry parameter= a*%n we obtain for the component fields the following

transformations:
51(p) = icos nya(p). 81D (p) = sin%P ya(p). (3.14)
4 a
S (p) = —i—sin"Cné (p). 8u(p) = cosPnD(p). (3.15)

which have the correct continuum limit. The component fieid§3.14[3.1p) are defined in the
interval -3 < p < I, hence in coordinate representation on a lattice with sigaciHowever sine
and cosine functions if (3]14,3]15) are not periodic ofqté?f , SO that SUSY transformations do
not admit a local representation on such lattice. A lattiét § spacing is needed for locality.

We have now to identify the second supersymmetry transfioma,. In the continuumd,
is obtained fromd; by replacing everywherey; (p) with @o(p), ands(p) with —ygi(p). On the
lattice this corresponds to:

Y(p) — —ilP(%T— p). (3.16)

By performing this replacement on the supersymmetry tcanstions [(3J8) one obtains the ex-
pression fordy,:

B ap 2n 2m i @P
®P(p) = COSZG‘P(E -p), 62%3 —p) =4sin i ad(p). (3.17)

The supersymmetry transformatidp satisfies together withy, anN = 2 supersymmetry algebra.
In fact the commutator of twé, transformations gives an infinitesimal translation[asdBahd the
commutator of & and, transformation vanishes. In terms of the component fields#plicit
expression for thé, transformation can be obtained from (3.17):

&0(p) =icosTPnye(p) .  &D(p)=—4sinnya(p) (3.18)
& (p) = i sin PN (p). &:u(p) = —cos¥nD(p). (3.19)

As for 4 in the limit ap <« 1 the above transformation coincides, in the momentum spegre-
sentation, with the one generated®@y in the continuum theory.

The coordinate representationd®fcan be obtained directly frorp (3]118-3.19) by Fourier trans-
form, or from (3.p[3]7) by performing the following substibn:

Y(x) — (—1)"W(—x) =2-2 (3.20)
which is the same af (3]16) in the coordinate representdidiner way the result is:
0 wxr ) w2 _na
RP(X) = 2( 1) [lP( X+ 4) W(—x 4)] X= > (3.21)
—2a(~1)"|O(—x+ 2) —d(—x—2 _fa, a
&HW(x) = 2a(-1) [(D( X+ 4) d(—x 4)} X=—>+7 (3.22)
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It is clear from [3.2]1) and[(3.R2) that the supersymmetrpdfarmationd, is local in the
coordinate representation only modulo the reflectior —x. This was already implicit in the
correspondencé (3]12,3 13) between the lattice fieldsenaites of the continuum theory. In fact it
is clear from [3.72,3.13) that while for instangéx) is associated to the fluctuationsdfx) around
the constant configuratiomp & 0), the fluctuations ofp(x) around the constant configuration with
alternating signg = %’T) correspond in the continuum @(—x). For fermions this parity change
leads to a physical meaning. Singe(p) <> Y (X) is defined as a species doubler f(p) <
yn(x), the chirality ofy, is the opposite ofy;. However by the change @f— %’T — p equivalently
X — —X, chirality of Y5 and y» are adjusted to be the same. Thus this bi local nature in the
coordinate space may be transferred to a local interpoetati

4. Supersymmetric invariant action

Let us defines; ands, as the supersymmetry transformations on the lattice wittimusuper-
symmetry parameter, namedy, = as. A supersymmetric invariant action on the lattice can be
defined in momentum space by giving fitgpoint term 6 > 2) in the following way:

n _ qMan / dpl dnq ap C o ap
SV =gyla"— o) xon o iElcos 5 210 ilem 5 ><5182[¢(p1)¢(p2) q?(pn)]-

(4.1)

The sine conservation law enforced by thiunction ensures the invariance f {4.1) under infinites-
imal translations[(3.10) and the invariance under supemsstry transformations follow from the
supersymmetry algebra. An explicit evaluation[of|(4.1)egiv

n

3
mn [=dpr dp . ap ap
S = a/ — - ——2710 sin— | x COS——
90 7751 27T 2n <|Zi 2 ) II:! 2

X [ZSir?a% ®(pa) - ®(pn) + ”;1 sina(pl4_ B W(pl)”’(pz)qJ(ps)'-'@(pn)]- (4.2)

Forn > 2 (@.2) gives a generic interaction term, for= 2 it may reproduce both kinetic and
mass term. The case= 2 is in fact special because only in that case the sine costsemviaw
splits into the two separate conservation laws:

21T a1
p1+p2=0, PL—p2=— (mod-§> (4.3)

which are linear in the momenta. The delta function[in](4&) then be replaced without loss of
invariance by a superposition with arbitrary coefficierg#talfunctions, namely:
apy

2n
agy ﬂcos—é sm— +8in—==) — 3(P1+ P2) + Mod(pP1L— P2 — =) (4.4)

wheremy is a free parameter. The first delta function[in](4.4) gemsrttte supersymmetric kinetic
term, the second delta function the supersymmetric massgien respectively by:

S =a " SPlesit PLoipop - jsnPyowp]. @)
2 d 2 2
Snass— am / + 2 00+ Z00(0) + 300+ Zw(p)] @)
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We can now use the corresponderce (8.13,3.13) to \frite #4&]4.p) in terms of the component
fields, defined on 8% interval:

ad
S = [ 50 [ 51~ cosT)8(-p)d(p) + 5 (1-+00sTID(~P)D(P) -
25y (- p)n(p) — 2 sin " un(-p)us(p)] (@.7)
Similarly for the mass term we get:
2 d .
Sass=2m [ * 2P [—¢(—p)D(p) — i(~p)2(p)]. (4.8)

wherem is now the physical massn= "2. Thanks to the rescaling all fields i (#.7) ad](4.8)
have the correct canonical dimension, and the continuunt insmooth. The component fields
¢ (p).D(p),Y1(p) and Y, (p) are defined fop in the interval(—Z, ). This is the Brillouin zone
corresponding to a lattice of spaciagso we could define a lattice with coordinates fiaand the
component fields on it as the Fourier transforms of the moameispace components. However the
action written in the coordinatespace is non-local, since the finite difference operatopeapng

in (ET) are periodic with period” and not2” that would be needed for a local expression on a
lattice with spacingx. Instead it is possible to writg (4.5) ar[d {4.6) as localagti(modulok — —x
couplings) on the lattice of spaciryy

The kinetic term can be written as:

Sn=7 Y ﬁ(x) (2000~ Dx - 3) @~ 2)) + SWlxt SWix— Z)] )

X=n3

The coordinate representation for the mass térnh (4.6) shwtesad a coupling between fieldsxn
and—x:

S 13 3 (0% 000+ gw(x- v 3)]. (4.10)
The bi local structure of (4.10) shows that the extendedt&atwith spacingg has not a straightfor-
ward relation to the coordinate space in the continuum lififiis is related to the fact that while
the fluctuations ofd(x) (resp. W(x)) around a constant field configuration are associated to the
component fieldp (x) (resp. Y1 (X)), its fluctuations around—l)zfax are associated O (—Xx) (resp.
yr(—X)). In other words the two bosonic (resp. fermionic) compadserf the superfield are em-
bedded in a single bosonic (resp. fermionic) field on thereded lattice is non trivial and exhibits

a bi local structure. Although the extended lattice is noiszréte representation of superspace
(bosonic and fermionic fields have to be introduced sepsrateit) it carries some information
about the superspace structure and as such it does not simaplypnto the coordinate space in the
continuum limit.

Forn > 2 the general invariant expressi¢n {4.2) describes irtieraterms. The sine conserva-
tion law is in these cases intrinsically non-linear in thenemta, and consequently the interaction
terms are non-local in coordinate representation. Howegeit is shown in the following section,
they can be formulated in terms of a non local (but still agga@ and commutative)product, which
we name “star product” , in place of the ordinary field produas for the kinetic and the mass
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term the interaction terms can be expressed in terms of tipaoent fields by using the corre-
spondence(3.12, 3]13)and splitting each momentum irttegranto the two regiong—Z, X) and
(L, %’T). Since each bosonic fiell(p) can represent eithgr or D, depending on the value @f
the expansion in terms of component fields produces a lamygdeauof terms including couplings
that do not appear in the continuum limit. Due to the diffénescaling of the fields these terms
have different powers o, and by carefully counting the powers afone finds that in order to
have a finite and non vanishing continuum limit for the leadierm of (4.]) the physical coupling

constang™ must be defined as:

gV =a z2g). (4.11)

The naive continuum limit of the lattice theory can then Heety it is smooth and it reproduces
the continuum supersymmetric theory described for ingtafar ad®* interaction, in eq. [(3]5).
This however is not sufficient: invariance under finite tlatisns is violated on the lattice by the
sine conservation law. It is then crucial that translationeariance is recovered in the continuum
limit. This is not obvious and it requires the analysis of the properties of the theory when
the continuum limit is taken. The lattice theory describedhe previous section in terms of the
fields ® andW is free of ultraviolet divergences. In fact everything imittltheory can be written
in terms of the dimensionless momentum varialgbes= ap, which are angular variables with
periodicity 41. Momentum integrations reduce to integrations over trigoatric functions ofp;;
and ultraviolet divergences never appear. All correlafiomctions ofds andWs integrations are
therefore finite. This however is not enough to ensure threattmtinuum limit is smooth and that
ultraviolet divergences do not appear in the limiting psscerhe continuum limit in fact involves
a rescaling of fields with powers af which is singular in the& — 0 limit. At the same time the
continuum limit, being a limit wher@a — 0 keeping the physical momentum fixed, corresponds
to a situation where all external momengaafe in the neighborhood of one of the vacua, namely
at i = 0 or g = 2rt. The limit being a singular one, the ultraviolet behavios ha be checked.
This was done in ref.[[10] where the lack of UV divergencesimtontinuum limit was explicitly
checked. The recovery of translational invariance in thetinaum limit can then be verified, as
shown below. Since the conserved quantity on the lattice@tighe momentum itselp but sina—zp
finite translational invariance is explicitly broken at aitinlattice spacing. Indeed, if we denote
the component fields bys = (¢,D, Y11, Yr), the sine conservation law implies that correlation
functions are invariant under the transformation:

o (p) — exp(il gsin%))cpA(p) | : afinite length (4.12)

whereas invariance under finite translation would requiiesitvariance under the transformation

@ (p) — explilp)ga(p)- (4.13)

To prove that invariance under finite translations is recedave need to prove that in the contin-
uum limit (4.12) and[(4.33) are equivalent. Forrapoint correlation function ofa, transformation
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(#12) is equivalent to

(@n,(P1) P (P2) - - @1, (Pn)) — eXp@l%sin%’) (@n (P1) @ (P2) - .- @ (Pn))

21 n n
~ (l—ii;—él1i p?) eXp<il Zi pi> (0 (PL) @ (P2) - - Py (Pn)) (4.14)
where in the last step higher order terms in the expansiorin@shave been neglected since
ap — 0 in the continuum limit. The leading term that breaks tratigshal invariance is then given
by the second term in the bracket at the r.n.s[ 0f[4.14). Fdmsshes aa? in the continuum limit

if we assumdp; to be of order 1 so that this term can be neglected as long asvamence (
of order at Ieastal2 ) arises in the correlation functiofi, (P1) @, (P2) - - - @, (Pn)). As discussed
before this is not the case, so we can conclude that invariander finite translations is recovered
in the continuum limit.

Finally let us consider invariance under supersymmetrywariance under supersymmetry
transformations is exact at the finite lattice spacing ansl iitot spoiled by radiative corrections,
which are all finite in the lattice theory. Since the contimulimit is smooth, we expect that exact
supersymmetry is preserved also in this limit. This can béiocned explicitly, as shown in[]10],
by checking that the corresponding Ward-Takahashi idest{iVTi) are satisfied.

5. Coordinate representation

As we have seen in the previous section, momentum consamvati the lattice is the sine
momentum conservation. We now try to find out the coordinatmterpart of the corresponding
formulation.

With ordinary momentum conservation the product of a fielof momentump; and a fieldG
of momentump, is a composite field = F - G of momentump = p; + p2, namely the momentum
is the additive quantity under product:

®(p) = (F-G)(p) = 5- | AP (P)G(P2)3(P— 1~ o). (5.1
In coordinate space this amounts to the ordinary local produ
®(x) = (F-G)(x) = F(X)G(X). (5.2)

On the lattice momentum conservation is replaced by thizdatsine) momentum conservation
(B-I1), which means thap = 2sinZP is the additive quantity when taking the product of two
fields. In other words the product of a fiekdof momentump; and a fieldG of momentump,

is a composite fieldd = F « G of momentump with sin< = sin2% + sin%. This amounts to
changing the definition of the “dot” product to that of a “$taroduct defined in momentum space
as:

P(p) = (F+G)(p) = o [ dP10foF (1)G(P2) (P Pr— P2) (5.3

As we shall see this product is not anymore local in coordirsgdace but satisfies the Leibniz
rule with respect to the symmetric difference operatoil his is easily checked in the momentum

10
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representation. In fact acting with the symmetric diffe@@mperator corresponds in momentum
space to multiplication by = a%sina—z'o, so that from [(5]3) we get:

pO(P) = 5 [ dPydPe(Py F(py) G(pe) + F(pr) P2 G(P2)] S(p—Pr—Po)-  (5.4)

Explicit form of the coordinate representation of the stardoict is given by

(F*G)(x) = F(x) *G(x) :a/g—geipx (F+G)(p)

3 3T ~ ~
2. o~ i v dpldpz - (% dar ... Sl s

= db cosp e Ipx/ P Y2 st cos / 2 dt(sinp-sinpy—sinpy)
g PRSP B o

X Z dmPHlb)E (y)G(2)

V,Z
_ /_ Zdwnﬂ(r) S Ina(Mdsa(DF )6 (5.5)

wherep= 2P, andx= 2,y = 12 z= '7"‘ should be understood. The lattice delta function is param-
eterized byr

2 a "0 -
o —sing | =— dre™s"P, 5.6
<a5|np.> 471/700 T (5.6)
Jn(7) is a Bessel function defined as
1 r2mta .
J - = ep(ne—rsme)de 57
0 =5 | , (5.7)
and we use the following notation:
1
Inta(1) = E(‘Jn-i-l(-[) +Jh-1(T7))- (5.8)
It is obvious that the star product is commutative:
F(X) * G(X) = G(X) * F(X). (5.9)

We can now check how the difference operator acts on the stdupt of two lattice superfields
and find that the difference operator action on a star praddeed satisfies Leibniz rule:
i0(F (X) % G(X))

:a/%f;iéx & P (F +G)(p)

2 . 0 0 . . ~ ~
=5 [apervs [CPLCR gpusiar (i3, Fy)G() + Fy) (0.6(2) (- i )
Y.z

= (i0F (%)) * G(X) + F (X) * (i0G(x)). (5.10)

One can then show that this definition of tiroduct leads to the vanishing nature of surface
terms forx-products of several fields:

S0 (F(X) % G(X) # H(x) %)

=y ((iéF(x)) «G(X) *H(X) + F (%) * (10G(X)) x H(X) + F(X) * G(X) * (idH (x)) + ) =0.

(5.11)
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It should be noted that if the-product in the above definition is simply replaced by thenmair
product, the surface terms does not vanish for productsldsfiaore than three fields.
We can now generalize the definitioneproduct for a product of any fields of the form:

R+ by) 5 Rt bo) s s ot br) = [ dtdoaa() Y ( ﬁijmnFj v) +b,->> ,
- my,—My \ |=
(5.12)

wherex =2, yj = %% andJn.1(1) is defined in[518).
We can now derive the coordinate representation of the geiméeraction actior8™ . We first
note the following relation:

1 ap a o : . no
2o an)_2 /d -5 ( sinp— 50| . 5.13
TT (lesm 2) 2; (sinp)e (smp Jlemp,> ( )
Then the general interaction actidn [4.1) can be expresgéuel-products:

R

(n—1)i 3a a
> Z) * LP(X"F Z)
where ®"1(x) is (n— 1)-th power ofx-product. TheS? action in the star products form is
equivalent to a sum of both the kinetic terms and the massstevith fixed coefficient, which
include product of local fields and has the following form:

0 By, e

$? = 5 |00« (2009 ~ P(x-+ g) — D(x— g)) - izq"(x-i' %a) * W(x+ 2)] . (5.15)

It is interesting to recognize that the coordinate represdiem of the action with star product has
almost the same form of the kinetic term of the local acti&, in (.9), where the star product
is just replaced by the normal product. The arguments ofdéhmibnic lattice superfield &, is
shifted with 3 from that of [5.1b). This is due to the loss of lattice tratistzal invariance in the
star product formulation while in eq[_(#.9) the translatkent § shift is recovered (this is a special
feature of bi linear terms) and thus we can obtain the samaragts.

The non local nature of the star product should disappeandncontinuum limit. This is
however non trivial due to thp — %’T — psymmetry of the siﬁzi’ function and the existence of two
translationally invariant vacua @t= 0 andp = %’T It was shown by Dondi and Nicolg lL4] that
in the continuum limit namely at fixedwith a — 0O:

J%)((T)—)é(r—g). (5.16)

However in the present context the continuum limit picks lgo ¢he configuration ap = %’T and
the previous result has to be replaced by:

J%x(r)—>5(T—27:)+(—1)2€X5(T+27:). (5.17)

Thus locality is recovered in the continuum limit, but with extra coupling of fields in the points
x and—x accompanied with the alternating sign fac([erl)zfax. Such remaining non locality disap-
pears when the lattice field andW are reinterpreted in terms of component fields.
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6. Conclusion and discussions

We have proposed a new lattice supersymmetry formulatioichwbnsures an exact Lie al-
gebraic supersymmetry invariance on the lattice for alesugharges even with interactions. We
have introduced bosonic and fermionic lattice superfieldelwaccommodate species doublers as
bosonic and fermionic particle fields of super multiplets.

As the simplest model we have explicitly investigatéd= 2 model in one dimension. The
model includes interaction terms and the exact lattice rsypemetry invariance of the action
for two supersymmetry charges with lattice momentum arevehexplicitly. In the momentum
representation of the formulation the standard momentunserwation is replaced by the lattice
counterpart of momentum conservation: the sine momentursergation. The basic lattice struc-
ture of this one dimensional model is half lattice spacingcitire and the lattice supersymmetry
transformation is essentially a half lattice spacing ti@i@n. The super coordinate structure and
the momentum representation of species doubler fields dehidnplicitly in the alternating sign
structure of a half lattice spacing in the coordinate space.

Since the symmetric difference operator does not satisfyrliierule, it was very natural to ask
how the supersymmetry algebra be consistent in the codedspace since super charges satisfy
Leibniz rule. In the link approach this problem was avoidgdrtroducing shift nature for super
charges. In the current formulation this puzzle is bealljifsolved by introducing a new star
product of lattice superfields: The difference operataisfas Leibniz rule on the star products of
lattice super fields.

In the definition of the star product ifi (b.5), non-local suation is introduced with Bessel
functions. This non-local feature is not well-behaved tmrality as exponential type but not worse
than the inverse distance behaviour. It is expected to etween of these two behaviours since
Bessel function is integrable. Our claim in this paper idelsi the statement that exact supersym-
metry on the lattice accompanies a non-local behaviour.

Since we have established a new lattice supersymmetry fatimm which has exact super-
symmetry on the lattice, it would be important to extend therfulation into higher dimensions
and to the models with gauge fields. An extension to two dinoasswill be given elsewhere.
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