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1. Introduction

There is a long history of attempts to realize exact supersymmetry on a lattice. See [1] for
earlier and recent references. However exact lattice supersymmetry with interactions for full
extended supersymmetry has never been realized for gauge fields except for the nilpotent super
charge[2, 3, 4]. It has been pointed out that these formulations of lattice SUSY can be essentially
reformulated by orbifolding procedure[2, 5].

On the other hand the link approach of lattice SUSY formulation[6] includes the orbifold
construction as a specific parameter choice: shift parameter a = 0. It was, however, claimed by
several authors [7, 8, 5] that an exact SUSY invariance and the gauge invariance are lost for non-
vanishing shift parameter case of link approach:a 6= 0. Then later it was recognized for non-gauge
case that the claim of the exact supersymmetry for link approach is based on the Hopf algebraic
symmetry with mild noncommutativity[9].

In finding a possible solution for the difficulties of the linkapproach, we have found an exact
lattice SUSY formulation which includes lattice SUSY algebra in the momentum space. To show
the basic ideas and explicit presentation we examine the simplest one-dimensionalN = 2 super-
symmetry model on the lattice. The details of the formulation has already been given in [10]. Here
we explain the basic structure of the formulation.

In the coordinate representation of the formulation we introduce a new type of product on
which the difference operator surprisingly satisfies Leibniz rule. This new product introduces mild
non-locality and thus compatible with a claim of no-go of lattice Leibniz rule for difference operator
in [11], where another example of exact lattice SUSY in one dimensional model is given with
infinite flavors.

2. Basic ideas

In order to understand the basic structure of lattice SUSY, we first consider the simplest one
dimensional model withN = 1 symmetry in continuum theory. It is described in terms of a super-
field:

Φ(x,θ) = ϕ(x)+ iθψ(x), (2.1)

with a supersymmetry charge given by:

Q=
∂

∂θ
+ iθ

∂
∂x

, Q2 = i
∂
∂x

. (2.2)

This SUSY algebra can be conveniently represented by introducing matrix structure as an internal
degree of freedom for super coordinate and derivative:

θ =

(

0 1
0 0

)

,
∂

∂θ
=

(

0 0
1 0

)

, (2.3)

which satisfy the following anticommutation relation:

{ ∂
∂θ

, θ} = 1. (2.4)
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Since this representation is not hermitian, hermiticity should be taken care separately.
We may consider this matrix structure as an internal structure of the space time coordinate.

With respect to this internal structure the bosonϕ is considered as a field which commutes with
θ and ∂

∂θ and the fermionψ as a field which anticommutes with them. The component fields of
boson and fermion with respect to this internal structure has then the following form[12]:

ϕ(x) =

(

ϕ(x) 0
0 ϕ(x)

)

, ψ(x) =

(

ψ(x) 0
0 −ψ(x)

)

. (2.5)

A super parameter may have the same internal structure as thefermion field.
We now consider to formulate this model on the lattice. In thematrix formulation of fields

the coordinate dependence on the lattice can be introduced by diagonal entries of a big matrix
as direct product to the internal matrix structure [12]. It is thus very natural to introduce half
lattice structure to accommodate the 2× 2 matrix internal structure. One can then write a lattice
“superfield” corresponding to (2.1) as

“Φ(x)” = ϕ(x)+

√
a

2
(−1)

2x
a ψ(x), (2.6)

where we have introduced a factor
√

a
2 for later convenience and taken away the factori for hermitic-

ity since the second term is not a product of two Grassmann numbers but onlyψ(x) is Grassmann
field. In order to accommodate hermiticity in the lattice version of SUSY algebra (2.2) we need to
introduce symmetric difference operator to replace the differential operator. With this reason we
further need to introduce a quarter lattice and then the superfield “Φ(x)” on the lattice is actually
meant as:

Φ(x) =

{

ϕ(x) for x= na/2,
1
2a1/2(−1)

2x
a ψ(x) for x= (2n+1)a/4.

(2.7)

We now propose lattice supersymmetry transformations as a finite difference over a half lattice
spacinga

2:

δΦ(x) = αa−1/2(−1)
2x
a [Φ(x+a/4)−Φ(x−a/4)] . (2.8)

By separatingΦ(x) into its component fields according to (2.7) we find:

δϕ(x) =
iα
2

[

ψ(x+
a
4
)+ψ(x− a

4
)

]

−−→
a→0

iαψ(x) , (2.9)

δψ(x) = 2a−1α
[

ϕ(x+
a
4
)−ϕ(x− a

4
)

]

−−→
a→0

α
∂ϕ(x)

∂x
, (2.10)

wherex is an even multiple ofa/4 in (2.9) and an odd one in (2.10)[13]. It is surprising that
the half lattice translation together with alternating sign structure (staggered phase) for the lattice
superfields generates a correct lattice supersymmetry transformation. We consider that this obser-
vation is a key of our formulation.

If we now introduceN = 1 super charge asδ = αQ, we can show that

Q2ϕ(x) =
i
a
[ϕ(x+a/2)−ϕ(x−a/2)] , Q2ψ(x) =

i
a
[ψ(x+a/2)−ψ(x−a/2)] . (2.11)

3



Species Doublers as Super Multiplet Partners in Lattice Supersymmetry Noboru Kawamoto

This shows that SUSY algebra (2.2) is realized in the latticelevel. SUSY transformation on the
lattice is half lattice shift with alternating sign structure while super charge square generates single
lattice translation.

As we can see in the matrix representation of the component fields ϕ(x) andψ(x) in (2.5), the
same component fields are assigned on the two neighboring half lattice sites. It is natural to double
the degrees of freedom for component fields since we have introduced half lattice structure. In this
way it is natural to considerN = 2 lattice SUSY formulation to accommodate this doubled degrees
of freedom. In the following we will show that we can consistently formulate theD = 1, N = 2
supersymmetry model which contains two bosonic fields and two fermionic fields which are nicely
accommodated by species doubler states. It should also be noted that the action forD = N = 1
model is fermionic and thus the vacuum is not well defined.

3. N = 2 supersymmetry and its lattice realization

The N = 2, D = 1 supersymmetry algebra has two fermionic generatorsQi satisfying the
(anti)commutation relations:

Q2
1 = Q2

2 = Pt, {Q1,Q2}= 0, [Pt,Q1] = [Pt ,Q2] = 0, (3.1)

wherePt is the generator of translations in the one-dimensional space-time coordinatet. The su-
perfield formulation of (3.1) makes use of two Grassmann odd fermionic coordinatesθi (i = 1,2),
so that the degrees of freedom are given by the superfield expansion:

Φ(t,θ1,θ2) = ϕ(t)+ iθ1ψ1(t)+ iθ2ψ2(t)+ iθ2θ1D(t), (3.2)

whereψ1 and ψ2 are Majorana fermions. The supersymmetry transformationsin terms of the
component fields are given by:

δ jϕ = iη jψ j , δ jψk = δ j,kη j∂tϕ + ε jkη jD, δ jD = iε jkη j∂tψk. (3.3)

The supersymmetric action can then be defined in terms of the superfieldΦ, for instance with a
mass term and a quartic interaction:

∫

dtdθ1dθ2

[

1
2

D2ΦD1Φ+ i
1
2

mΦ2+ i
1
4

gΦ4
]

. (3.4)

By integrating overθ1 andθ2 one can obtain the action written in terms of the component fields:

S=
∫

dt{1
2

[

−(∂tϕ)2−D2+ iψ1∂tψ1+ iψ2∂tψ2
]

−m(iψ1ψ2+Dϕ)−g(3iϕ2ψ1ψ2+Dϕ3)}. (3.5)

According to the discussion of the previous section a lattice of spacinga
2 is needed to represent

theN = 1 supersymmetry on the lattice. In this way however the number of degrees of freedom are
doubled. If translations are identified with shifts ofa, a field on the lattice admits two translationally
invariant configuration: the constant configuration and theconfiguration constant in absolute value
but with alternating sign. Fluctuations around each of these configurations of a lattice field will
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represent two independent degrees of freedom in the continuum. So the field content of theN = 1
theory on the lattice, namely one bosonic and one fermionic field, can accommodate the full field
content of theN = 2 theory. We are going to show that theN = 2 supersymmetry algebra can be
represented on the lattice in terms of bosonic field byΦ(x) with x= na

2 , and a fermionic fieldΨ(x)
with x= na

2 + a
4. As in theN= 1 case the shift ofa4 in the fermionic field with respect to the bosonic

one has been introduced to have symmetric finite differencesin the supersymmetry transformations
and implement hermiticity in a natural way.

One of the two supersymmetry transformations, which we shall denote byδ1, of theN = 2 is
the same as the one already given on the lattice in the contextof theN = 1 model:

δ1Φ(x) =
iα
2

[

Ψ(x+
a
4
)+Ψ(x− a

4
)

]

x=
na
2
, (3.6)

δ1Ψ(x) = 2α
[

Φ(x+
a
4
)−Φ(x− a

4
)

]

x=
na
2

+
a
4

(3.7)

whereΦ(x) and Ψ(x) are dimensionless, so a rescaling of the fields with powers ofa will be
needed to make contact with the fields of the continuum theory. In momentum representation the
supersymmetry transformations (3.6) and (3.7) read:

δ1Φ(p) = i cos
ap
4

αΨ(p) , δ1Ψ(p) =−4i sin
ap
4

αΦ(p) . (3.8)

where for simplicity we used the same letters for fields in momentum representation.Φ(p) and
Ψ(p) satisfy the following periodicity conditions:

Φ(p+
4π
a
) = Φ(p), Ψ(p+

4π
a
) =−Ψ(p). (3.9)

The commutator of two supersymmetry transformationsδ1 with parametersα andβ defines an
infinitesimal translationδ t

αβ of parameterαβ on the lattice:

δ t
αβ F(p) = δ1β δ1αF(p)−δ1αδ1β F(p) = 4sin

ap
2

αβF(p), (3.10)

whereF(p) stands for eitherΦ(p) or Ψ(p). Invariance under (3.10) leads to a non local conserva-
tion law wherep is replaced by sinap

2 , namely , for a product of fields of momentap1,p2,...,pn:

sin
ap1

2
+sin

ap2

2
+ · · ·+sin

apn

2
= 0. (3.11)

This conservation law on the lattice was first pointed out by Dondi and Nicolai [14]. In the con-
tinuum limit (api ≪ 1) (3.11) reduces to the standard momentum conservation lawand locality is
restored. The conservation law (3.11) is not affected if anymomentumpi in it is replaced by2π

a − pi

due to the invariance of the sine. The interpretation is clear: in the continuum limit (ap≪ 1) F(p)
andF(2π

a − p) represent fluctuations of momentump respectively around the vacuum of momen-
tum zero and2π

a on the lattice. So the symmetryp→ 2π
a − p amounts to exchanging the two vacua

keeping the physical momentum unchanged.
The correspondence of the lattice fieldsΦ(p) andΨ(p) with the physical fields is

Φ(p) = a−
3
2 ϕ(p), Φ(

2π
a

− p) =−a−
1
2

4
D(p), (3.12)

Ψ(p) = a−1ψ1(p), Ψ(
2π
a

− p) = ia−1ψ2(p), (3.13)
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wherep is restricted in (3.12,3.13) to the interval(−π
a ,

π
a ), corresponding to a lattice of spacing

a. The rescaling with powers ofa keeps track of field dimensionality. With a similar rescaling
for the supersymmetry parameterα = a−

1
2 η we obtain for the component fields the following

transformations:

δ1ϕ(p) = i cos
ap
4

ηψ1(p), δ1D(p) = 4
a sinap

4 ηψ2(p), (3.14)

δ1ψ1(p) =−i
4
a

sin
ap
4

ηϕ(p), δ1ψ2(p) = cosap
4 ηD(p). (3.15)

which have the correct continuum limit. The component fieldsin (3.14,3.15) are defined in the
interval−π

a < p< π
a , hence in coordinate representation on a lattice with spacing a. However sine

and cosine functions in (3.14,3.15) are not periodic of period 2π
a , so that SUSY transformations do

not admit a local representation on such lattice. A lattice with a
2 spacing is needed for locality.

We have now to identify the second supersymmetry transformation δ2. In the continuumδ2

is obtained fromδ1 by replacing everywhereψ1(p) with ψ2(p), andψ2(p) with −ψ1(p). On the
lattice this corresponds to:

Ψ(p)−→−iΨ(
2π
a

− p). (3.16)

By performing this replacement on the supersymmetry transformations (3.8) one obtains the ex-
pression forδ2:

δ2Φ(p) = cos
ap
4

αΨ(
2π
a

− p), δ2Ψ(
2π
a

− p) = 4sin
ap
4

αΦ(p) . (3.17)

The supersymmetry transformationδ2 satisfies together withδ1 anN = 2 supersymmetry algebra.
In fact the commutator of twoδ2 transformations gives an infinitesimal translation as (3.10) and the
commutator of aδ1 andδ2 transformation vanishes. In terms of the component fields the explicit
expression for theδ2 transformation can be obtained from (3.17):

δ2ϕ(p) = i cos
ap
4

ηψ2(p) , δ2D(p) =−4
a sinap

4 ηψ1(p), (3.18)

δ2ψ2(p) =−i
4
a

sin
ap
4

ηϕ(p), δ2ψ1(p) =−cosap
4 ηD(p). (3.19)

As for δ1 in the limit ap≪ 1 the above transformation coincides, in the momentum spacerepre-
sentation, with the one generated byQ2 in the continuum theory.

The coordinate representation ofδ2 can be obtained directly from (3.18-3.19) by Fourier trans-
form, or from (3.6-3.7) by performing the following substitution:

Ψ(x)−→ (−1)nΨ(−x) x=
na
2

− a
4
, (3.20)

which is the same as (3.16) in the coordinate representation. Either way the result is:

δ2Φ(x) =
iα
2
(−1)n

[

Ψ(−x+
a
4
)−Ψ(−x− a

4
)

]

x=
na
2
, (3.21)

δ2Ψ(x) = 2α(−1)n
[

Φ(−x+
a
4
)−Φ(−x− a

4
)

]

x=
na
2

+
a
4
. (3.22)

6
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It is clear from (3.21) and (3.22) that the supersymmetry transformationδ2 is local in the
coordinate representation only modulo the reflectionx → −x. This was already implicit in the
correspondence (3.12,3.13) between the lattice fields and the ones of the continuum theory. In fact it
is clear from (3.12,3.13) that while for instanceϕ(x) is associated to the fluctuations ofΦ(x) around
the constant configuration (p= 0), the fluctuations ofΦ(x) around the constant configuration with
alternating sign (p= 2π

a ) correspond in the continuum toD(−x). For fermions this parity change
leads to a physical meaning. Sinceψ2(p) ↔ ψ2(x) is defined as a species doubler ofψ1(p) ↔
ψ1(x), the chirality ofψ2 is the opposite ofψ1. However by the change ofp→ 2π

a − p equivalently
x → −x, chirality of ψ1 and ψ2 are adjusted to be the same. Thus this bi local nature in the
coordinate space may be transferred to a local interpretation.

4. Supersymmetric invariant action

Let us defines1 ands2 as the supersymmetry transformations on the lattice without the super-
symmetry parameter, namelyδi,α = αsi . A supersymmetric invariant action on the lattice can be
defined in momentum space by giving itsn-point term (n≥ 2) in the following way:

S(n) = g(n)0 an 4
n!

∫ 3π
a

− π
a

dp1

2π
· · · dpn

2π

n

∏
i=1

cos
api

2
2πδ

(

n

∑
i=1

sin
api

2

)

×s1s2

[

Φ(p1)Φ(p2) · · ·Φ(pn)
]

.

(4.1)

The sine conservation law enforced by theδ function ensures the invariance of (4.1) under infinites-
imal translations (3.10) and the invariance under supersymmetry transformations follow from the
supersymmetry algebra. An explicit evaluation of (4.1) gives:

Sn = g(n)0 an
∫ 3π

a

− π
a

dp1

2π
· · · dpn

2π
2πδ

(

n

∑
i=1

sin
api

2

)

×
n

∏
i=1

cos
api

2

×
[

2sin2 ap1

4
Φ(p1) · · ·Φ(pn)+

n−1
4

sin
a(p1− p2)

4
Ψ(p1)Ψ(p2)Φ(p3) · · ·Φ(pn)

]

. (4.2)

For n> 2 (4.2) gives a generic interaction term, forn= 2 it may reproduce both kinetic and
mass term. The casen = 2 is in fact special because only in that case the sine conservation law
splits into the two separate conservation laws:

p1+ p2 = 0, p1− p2 =
2π
a

(

mod.
4π
a

)

(4.3)

which are linear in the momenta. The delta function in (4.2) can then be replaced without loss of
invariance by a superposition with arbitrary coefficients delta functions, namely:

ag(2)0

2

∏
i=1

cos
api

2
δ (sin

ap1

2
+sin

ap2

2
)−→ δ (p1+ p2)+m0δ (p1− p2−

2π
a
) (4.4)

wherem0 is a free parameter. The first delta function in (4.4) generates the supersymmetric kinetic
term, the second delta function the supersymmetric mass term given respectively by:

Skin = a
∫ 3π

a

− π
a

dp
2π

[

2sin2 ap
4

Φ(−p)Φ(p)− 1
4

sin
ap
2

Ψ(−p)Ψ(p)

]

, (4.5)

Smass= am0

∫ 3π
a

− π
a

dp
2π

[

Φ(p+
2π
a
)Φ(p)+

1
4

Ψ(p+
2π
a
)Ψ(p)

]

. (4.6)

7
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We can now use the correspondence (3.12,3.13) to write (4.5)and (4.6) in terms of the component
fields, defined on a2π

a interval:

Skin =
∫ π

a

− π
a

dp
2π

[ 4
a2 (1−cos

ap
2
)ϕ(−p)ϕ(p)+

1
4
(1+cos

ap
2
)D(−p)D(p)−

−1
a

sin
ap
2

ψ1(−p)ψ1(p)−
1
a

sin
ap
2

ψ2(−p)ψ2(p)
]

. (4.7)

Similarly for the mass term we get:

Smass= 2m
∫ π

a

− π
a

dp
2π

[−ϕ(−p)D(p)− iψ1(−p)ψ2(p)] , (4.8)

wherem is now the physical mass:m= m0
a . Thanks to the rescaling all fields in (4.7) and (4.8)

have the correct canonical dimension, and the continuum limit is smooth. The component fields
ϕ(p),D(p),ψ1(p) andψ2(p) are defined forp in the interval(−π

a ,
π
a ). This is the Brillouin zone

corresponding to a lattice of spacinga, so we could define a lattice with coordinates ˜x= naand the
component fields on it as the Fourier transforms of the momentum space components. However the
action written in the coordinate ˜x space is non-local, since the finite difference operators appearing
in (4.7) are periodic with period4π

a and not2π
a that would be needed for a local expression on a

lattice with spacinga. Instead it is possible to write (4.5) and (4.6) as local actions (modulox→−x
couplings) on the lattice of spacinga2.

The kinetic term can be written as:

Skin =
1
4 ∑

x=na
2

[

Φ(x)
(

2Φ(x)−Φ(x+
a
2
)−Φ(x− a

2
)
)

+
i
2

Ψ(x+
a
4
)Ψ(x− a

4
)

]

. (4.9)

The coordinate representation for the mass term (4.6) showsinstead a coupling between fields inx
and−x:

Smass=
m0

2 ∑
x=na

2

(−1)
2x
a

[

Φ(−x)Φ(x)+
i
4

Ψ(−x− a
4
)Ψ(x+

a
4
)

]

. (4.10)

The bi local structure of (4.10) shows that the extended lattice with spacinga
2 has not a straightfor-

ward relation to the coordinate space in the continuum limit. This is related to the fact that while
the fluctuations ofΦ(x) (resp. Ψ(x)) around a constant field configuration are associated to the
component fieldϕ(x) (resp.ψ1(x)), its fluctuations around(−1)

2x
a are associated toD(−x) (resp.

ψ2(−x)). In other words the two bosonic (resp. fermionic) components of the superfield are em-
bedded in a single bosonic (resp. fermionic) field on the extended lattice is non trivial and exhibits
a bi local structure. Although the extended lattice is not a discrete representation of superspace
(bosonic and fermionic fields have to be introduced separately on it) it carries some information
about the superspace structure and as such it does not simplymap onto the coordinate space in the
continuum limit.

Forn> 2 the general invariant expression (4.2) describes interaction terms. The sine conserva-
tion law is in these cases intrinsically non-linear in the momenta, and consequently the interaction
terms are non-local in coordinate representation. However, as it is shown in the following section,
they can be formulated in terms of a non local (but still associative and commutative)product, which
we name “star product” , in place of the ordinary field product. As for the kinetic and the mass

8
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term the interaction terms can be expressed in terms of the component fields by using the corre-
spondence (3.12, 3.13)and splitting each momentum integration into the two regions(−π

a ,
π
a ) and

(π
a ,

3π
a ). Since each bosonic fieldΦ(p) can represent eitherϕ or D, depending on the value ofp,

the expansion in terms of component fields produces a large number of terms including couplings
that do not appear in the continuum limit. Due to the different rescaling of the fields these terms
have different powers ofa, and by carefully counting the powers ofa one finds that in order to
have a finite and non vanishing continuum limit for the leading term of (4.1) the physical coupling
constantg(n) must be defined as:

g(n) = a−
n
2 gn

0. (4.11)

The naive continuum limit of the lattice theory can then be taken, it is smooth and it reproduces
the continuum supersymmetric theory described for instance, for aΦ4 interaction, in eq. (3.5).
This however is not sufficient: invariance under finite translations is violated on the lattice by the
sine conservation law. It is then crucial that translational invariance is recovered in the continuum
limit. This is not obvious and it requires the analysis of theUV properties of the theory when
the continuum limit is taken. The lattice theory described in the previous section in terms of the
fields Φ andΨ is free of ultraviolet divergences. In fact everything in that theory can be written
in terms of the dimensionless momentum variables ˜pi = api , which are angular variables with
periodicity 4π. Momentum integrations reduce to integrations over trigonometric functions of ˜pi,
and ultraviolet divergences never appear. All correlationfunctions ofΦs andΨs integrations are
therefore finite. This however is not enough to ensure that the continuum limit is smooth and that
ultraviolet divergences do not appear in the limiting process. The continuum limit in fact involves
a rescaling of fields with powers ofa, which is singular in thea→ 0 limit. At the same time the
continuum limit, being a limit wherea → 0 keeping the physical momentum fixed, corresponds
to a situation where all external momenta ˜pi are in the neighborhood of one of the vacua, namely
at p̃i = 0 or p̃i = 2π. The limit being a singular one, the ultraviolet behavior has to be checked.
This was done in ref. [10] where the lack of UV divergences in the continuum limit was explicitly
checked. The recovery of translational invariance in the continuum limit can then be verified, as
shown below. Since the conserved quantity on the lattice is not the momentum itselfp but sinap

2

finite translational invariance is explicitly broken at a finite lattice spacing. Indeed, if we denote
the component fields byφA = (ϕ ,D,ψ1,ψ2), the sine conservation law implies that correlation
functions are invariant under the transformation:

φA(p)→ exp(il
2
a

sin
ap
2
)φA(p) l : a finite length (4.12)

whereas invariance under finite translation would require the invariance under the transformation

φA(p)→ exp(il p)φA(p). (4.13)

To prove that invariance under finite translations is recovered we need to prove that in the contin-
uum limit (4.12) and (4.13) are equivalent. For ann-point correlation function ofφA, transformation

9
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(4.12) is equivalent to

〈φA1(p1)φA2(p2) . . .φAn(pn)〉 → exp

(

n

∑
i=1

2l
a

sin
ap
2

)

〈φA1(p1)φA2(p2) . . .φAn(pn)〉

≃
(

1− i
a2l
24

n

∑
i=1

p3
i

)

exp

(

il
n

∑
i=1

pi

)

〈φA1(p1)φA2(p2) . . .φAn(pn)〉, (4.14)

where in the last step higher order terms in the expansion of sin ap
2 have been neglected since

ap→ 0 in the continuum limit. The leading term that breaks translational invariance is then given
by the second term in the bracket at the r.h.s. of (4.14). Thisvanishes asa2 in the continuum limit
if we assumel pi to be of order 1 so that this term can be neglected as long as no divergence (
of order at least1a2 ) arises in the correlation function〈φA1(p1)φA2(p2) . . .φAn(pn)〉. As discussed
before this is not the case, so we can conclude that invariance under finite translations is recovered
in the continuum limit.

Finally let us consider invariance under supersymmetry. Invariance under supersymmetry
transformations is exact at the finite lattice spacing and itis not spoiled by radiative corrections,
which are all finite in the lattice theory. Since the continuum limit is smooth, we expect that exact
supersymmetry is preserved also in this limit. This can be confirmed explicitly, as shown in [10],
by checking that the corresponding Ward-Takahashi identities (WTi) are satisfied.

5. Coordinate representation

As we have seen in the previous section, momentum conservation on the lattice is the sine
momentum conservation. We now try to find out the coordinate counterpart of the corresponding
formulation.

With ordinary momentum conservation the product of a fieldF of momentump1 and a fieldG
of momentump2 is a composite fieldΦ = F ·G of momentump= p1+ p2, namely the momentum
is the additive quantity under product:

Φ(p)≡ (F ·G)(p) =
a

2π

∫

dp1dp2F(p1)G(p2)δ (p− p1− p2). (5.1)

In coordinate space this amounts to the ordinary local product:

Φ(x) ≡ (F ·G)(x) = F(x)G(x). (5.2)

On the lattice momentum conservation is replaced by the lattice (sine) momentum conservation
(3.11), which means that ˆp = 2

a sinap
2 is the additive quantity when taking the product of two

fields. In other words the product of a fieldF of momentump1 and a fieldG of momentump2

is a composite fieldΦ = F ∗G of momentump with sinap
2 = sinap1

2 + sinap2
2 . This amounts to

changing the definition of the “dot” product to that of a “star” product defined in momentum space
as:

Φ(p) ≡ (F ∗G)(p) =
a

2π

∫

dp̂1dp̂2F(p1)G(p2)δ (p̂− p̂1− p̂2) (5.3)

As we shall see this product is not anymore local in coordinate space but satisfies the Leibniz
rule with respect to the symmetric difference operator∂̂ . This is easily checked in the momentum

10
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representation. In fact acting with the symmetric difference operator corresponds in momentum
space to multiplication by ˆp= 2

a sinap
2 , so that from (5.3) we get:

p̂ Φ(p) =
a

2π

∫

dp̂1 dp̂2 [p̂1 F(p1) G(p2)+F(p1) p̂2 G(p2)]δ (p̂− p̂1− p̂2). (5.4)

Explicit form of the coordinate representation of the star product is given by

(F ∗G)(x) = F(x)∗G(x) = a
∫

dp̂
2π

e−ipx (F ∗G)(p)

=
∫ 3π

2

− π
2

dp̃ cosp̃ e−ipx
∫ 3π

2

− π
2

dp̃1

2π
dp̃2

2π
cosp̃1 cosp̃2

∫ ∞

−∞

dτ
2π

eiτ(sinp̃−sinp̃1−sinp̃2)

×∑
y,z

ei(mp̃1+l p̃2)F(y)G(z)

=

∫ ∞

−∞
dτJn±1(τ)∑

m,l

Jm±1(τ)Jl±1(τ)F(y)G(z), (5.5)

wherep̃= ap
2 , andx= na

2 ,y=
ma
2 ,z= la

2 should be understood. The lattice delta function is param-
eterized byτ

δ
(

2
a

sinp̃i

)

=
a

4π

∫ ∞

−∞
dτeiτ sinp̃i . (5.6)

Jn(τ) is a Bessel function defined as

Jn(τ) =
1

2π

∫ 2π+α

α
ei(nθ−τ sinθ )dθ , (5.7)

and we use the following notation:

Jn±1(τ) =
1
2
(Jn+1(τ)+Jn−1(τ)). (5.8)

It is obvious that the star product is commutative:

F(x)∗G(x) = G(x)∗F(x). (5.9)

We can now check how the difference operator acts on the star product of two lattice superfields
and find that the difference operator action on a star productindeed satisfies Leibniz rule:

i∂̂ (F(x)∗G(x))

= a
∫

dp̂
2π

i∂̂x e−ipx (F ∗G)(p)

=
a2

4

∫

dp̂ e−ipx∑
y,z

∫

dp̂1

2π
dp̂2

2π
eip1y+ip2z

(

(i∂̂y F(y))G(z) + F(y) (i∂̂z G(z))
)

δ (p̂− p̂1− p̂2)

= (i∂̂ F(x))∗G(x)+F(x)∗ (i∂̂ G(x)). (5.10)

One can then show that this definition of the∗-product leads to the vanishing nature of surface
terms for∗-products of several fields:

∑
x

i∂̂ (F(x)∗G(x)∗H(x)∗ · · · )

= ∑
x

(

(i∂̂ F(x))∗G(x)∗H(x)+F(x)∗ (i∂̂ G(x))∗H(x) + F(x)∗G(x)∗ (i∂̂ H(x))+ · · ·
)

= 0.

(5.11)

11
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It should be noted that if the∗-product in the above definition is simply replaced by the normal
product, the surface terms does not vanish for products of fields more than three fields.

We can now generalize the definition of∗-product for a product of any fields of the form:

F1(x+b1)∗F2(x+b2)∗ · · · ∗Fn(x+bn) =

∫ ∞

−∞
dτJn±1(τ) ∑

m1,··· ,mn

(

n

∏
j=1

Jmj±1(τ)Fj(y j +b j)

)

,

(5.12)

wherex= na
2 , y j =

mj a
2 andJn±1(τ) is defined in (5.8).

We can now derive the coordinate representation of the general interaction actionS(n). We first
note the following relation:

2πδ

(

n

∑
j=1

sin
apj

2

)

=
a
2∑

x

∫

d(sinp̃)e−ipxδ

(

sinp̃−
n

∑
j=1

sinp̃ j

)

. (5.13)

Then the general interaction action (4.1) can be expressed by the∗-products:

S(n) =
4
n!

g(n)0 ∑
x

[(

2Φ(x)−Φ(x+
a
2
)−Φ(x− a

2
)
)

∗Φn−1(x)

+
(n−1)i

2
Ψ(x+

3a
4
)∗Ψ(x+

a
4
)∗Φn−2(x)

]

, (5.14)

where Φn−1(x) is (n− 1)-th power of∗-product. TheS(2) action in the star products form is
equivalent to a sum of both the kinetic terms and the mass terms with fixed coefficient, which
include product of local fields and has the following form:

S(2) =∑
x

[

Φ(x)∗
(

2Φ(x)−Φ(x+
a
2
)−Φ(x− a

2
)
)

+
i
2

Ψ(x+
3a
4
)∗Ψ(x+

a
4
)
]

. (5.15)

It is interesting to recognize that the coordinate representation of the action with star product has
almost the same form of the kinetic term of the local action,Skin in (4.9), where the star product
is just replaced by the normal product. The arguments of the fermionic lattice superfield inSkin is
shifted with a

2 from that of (5.15). This is due to the loss of lattice translational invariance in the
star product formulation while in eq. (4.9) the translationw.r.t a

2 shift is recovered (this is a special
feature of bi linear terms) and thus we can obtain the same arguments.

The non local nature of the star product should disappear in the continuum limit. This is
however non trivial due to thep→ 2π

a − p symmetry of the sinap
2 function and the existence of two

translationally invariant vacua atp= 0 andp= 2π
a . It was shown by Dondi and Nicolai [14] that

in the continuum limit namely at fixedx with a→ 0:

J2x
a
(τ)→ δ (τ − 2x

a
). (5.16)

However in the present context the continuum limit picks up also the configuration atp= 2π
a and

the previous result has to be replaced by:

J2x
a
(τ)→ δ (τ − 2x

a
)+ (−1)

2x
a δ (τ +

2x
a
). (5.17)

Thus locality is recovered in the continuum limit, but with an extra coupling of fields in the points
x and−x accompanied with the alternating sign factor(−1)

2x
a . Such remaining non locality disap-

pears when the lattice fieldΦ andΨ are reinterpreted in terms of component fields.
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6. Conclusion and discussions

We have proposed a new lattice supersymmetry formulation which ensures an exact Lie al-
gebraic supersymmetry invariance on the lattice for all super charges even with interactions. We
have introduced bosonic and fermionic lattice superfields which accommodate species doublers as
bosonic and fermionic particle fields of super multiplets.

As the simplest model we have explicitly investigatedN = 2 model in one dimension. The
model includes interaction terms and the exact lattice supersymmetry invariance of the action
for two supersymmetry charges with lattice momentum are shown explicitly. In the momentum
representation of the formulation the standard momentum conservation is replaced by the lattice
counterpart of momentum conservation: the sine momentum conservation. The basic lattice struc-
ture of this one dimensional model is half lattice spacing structure and the lattice supersymmetry
transformation is essentially a half lattice spacing translation. The super coordinate structure and
the momentum representation of species doubler fields is hidden implicitly in the alternating sign
structure of a half lattice spacing in the coordinate space.

Since the symmetric difference operator does not satisfy Leibniz rule, it was very natural to ask
how the supersymmetry algebra be consistent in the coordinate space since super charges satisfy
Leibniz rule. In the link approach this problem was avoided by introducing shift nature for super
charges. In the current formulation this puzzle is beautifully solved by introducing a new star
product of lattice superfields: The difference operator satisfies Leibniz rule on the star products of
lattice super fields.

In the definition of the star product in (5.5), non-local summation is introduced with Bessel
functions. This non-local feature is not well-behaved non-locality as exponential type but not worse
than the inverse distance behaviour. It is expected to be in-between of these two behaviours since
Bessel function is integrable. Our claim in this paper includes the statement that exact supersym-
metry on the lattice accompanies a non-local behaviour.

Since we have established a new lattice supersymmetry formulation which has exact super-
symmetry on the lattice, it would be important to extend the formulation into higher dimensions
and to the models with gauge fields. An extension to two dimensions will be given elsewhere.
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