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1. Introduction

Phase transitions in various spin models have served aserfohéxamples for the study of
quark-hadron transition in quantum chromodynamics (QQi) the related3J (N;) gauge theo-
ries, where\. is the number of colours. While average magnetization seagehe order parameter
in the former case, the Polyakov lodp,defined as the product of the timelike gauge links at a given
site, is the order parameter for the deconfinement trangfilb On an EuclideamN2 x N; lattice
L(X) is defined at a sit& as

L(X) = Nic Tr M, U, %) , (1.1)

whereUH(x) are the gauge variables associated with the directed Imkseiuth direction,u =
1,4. As in the spin models again, it is convenient to defin@vsrage over the spatial volume,
L= $xL(X)/N3. (IL|) was used to establish a second order deconfinement trarisitmimerical
simulations of theSJ(2) pure gauge theory. Since then it has been used for simildrestwf
the deconfinement phase transitions for a varietiNoff]], for establishing the universality][3]
of the continuum limit, as well as for theories with dynanhiqaarks [4]. Further, the predicted
universality[b] of critical indices has also been numehcaerified [B]. Indeed, one hopes to be
able to construct effective actior[§ [7] farin a Wilsonian RG approach. These will be similar to
the spin models in the same universality class but with pbssidditional interaction terms. A
large number of models of quark-hadron transitions use thgaRov loop as the order parameter
for the deconfinement transition as well.

An order parameter should be physical, i.e., independettitecthe lattice size. This is indeed
so for spin models for sufficiently large lattices. F8J (N;) gauge theories, this requirement
means in addition independence from the lattice spagimgthe continuum limit. Furthermore, it
must be so irboth the phases it seeks to distinguish. As is the case for anyW#sen loop, the
Polyakov loop, needs to be renormalized for this to be trirecesthe bare Polyakov loop is further
known to decrease progressively witlh, suggesting it to be zero in the continuum limit in the high
temperature phase, renormalizet even more desirable to have.

2. Results

The physical interpretation of the order parameter as a uneas the free energy of a single
quark,(L(T)) = exp(—Fo(T)/T) provides a straightforward clue for renormalization. gingany
years various attempts to remove the divergent contributidhe single quark free in the contin-
uum limit have been made. These include computations enmgjdgttice perturbation theory|[8],
use of the heavy quark-antiquark free enefgy [9], fitéd.foon N;-grids [I] and an iterative direct
renormalization procedur§ J11] fQD among others.

Here | advocate[]]2] another, perhaps better, method toeleéinormalized(L). Let me
elaborate why this maybe so. The definition of Rdf] [9] neeeavin quark potential at short
distances. Lattice artifacts are at their worse when oné ssieh short distances, with maximal
violation of the rotational invariance. Finite volume ogthattice also enters in defining the large
distance between the heavy quarks, or Polyakov loops. &imithe iterative procedure used in

Ref. [I1] to obtain the renormalization constants needgeléattices in both spatial and temporal
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Figure 1: The average Polyakov loop as a functiofTofT; for four different scales. The lattice sizes are as
indicated in the key.

directions. Physically perhaps an undesirable aspecteodéfiinition of Ref. [11] is that it works
only on the plasma side, i.e., fdr > T., whereT, is the position of the peak in the Polyakov
loop susceptibility. The definitiorf ][9] has so far been ergptbonly in theT > T, for pure gauge
theories for whictL is an order parameter. It would clearly be nice if the rendizaion procedure
is applicable to the usually employékﬂ, which is used as an order parameter on finite volumes.

| obtain a renormalized Polyakov loop which is valid for béile phases below and abovg
[LZ]. It can be defined in any spatial volume, and it becomesdrtie order parameter in the infinite
spatial volume limit. Of course, it is also physical, i.§-independent on finite volumes as well.
Indeed, it seems to work rather well for a range of tempotttkasizes, includingN; > 4. | use the
fixed scale approaclj [[L3] to do so. It was introduced to mirénthe computational costs for the
zero temperature simulations needed to subtract the vacauotribution in thermodynamic quanti-
ties such as the pressure and to isolate pure thermal effietsnputation off; [[L4]. Furthermore,
its advantage is that all the simulations stay on the lineaoistant physics in a straightforward
way. What | argue is that it is indeed this advantage which prmits an easy renormalization
of the Polyakov loop. Although these considerations areegg#nand apply to anfJ (N) gauge
theory as well as any quark representation, | shall considiaw the simplest case of tigJ (2)
lattice gauge theory to illustrate how and why it works.

Recall that the temperatufE is varied in this approach by varying;, holding the lattice
spacinga, or equivalently the gauge coupling= 2N./g? fixed. The single quark free energy
Fo(N;,a) is then obtained from the by the canonical relation,

In(|L]) = —aN;Fp(Nr,a) . (2.1)

The subscripb reminds us that one obtains the bare free energy this waye kthosen coupling is
Bc, corresponding to the position of the peak of fhiesusceptibility in the usual fixeld; approach,
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Figure 2: The heavy quark free energya function ofT /T, for two different scales. The lattice sizes are as
indicated in the key.

and it lies in the scaling region, then the physical deconfier temperaturé. = 1/N; ca., and
T /T. =N ¢/N; in the fixed scale approach, with the free energy giveRd0y /T, ac). Writing it as
a sum of a divergent and a regular contribution, onesgbg(T /T¢,ac) = acF (T /Te,ac) — acA(ac),
whereA is the divergent free energy in physical units. Clearly, dhergent contribution will be
same at all temperatures in the fixed scale approach since it dispemly onac.

Sincef, ora, is known precisely for the Wilson action of ti8 (2) theory for many different
N;, | chose four different scales labelldg;, T, Teg, Te12 corresponding to the known transition
couplings orN; = 4, 6 [I5] and 8, 12[[16] respectivelyy = 2.2991, B, = 2.4265,B3 = 2.5104,
and B = 2.6355. Note thafl /Tc is given simply byn/N; with n =4, 6, 8 and 12 respectively.
Employing therN; = 3 to 12, | varied the temperature in the range Z /T. > 0.6. Note that fixed
scalea; leads to a constant spatial volume in physical units in easle in contrast to the usual
fixed N; approach where the spatial volume varies WitH used a variety of spatial lattice sizes.

Figure[]1 shows the results for the thermal expectation valeas a function of the temper-
ature in the units ofi.. In most cases, | used both a random and an ordered start.ritie are
corrected for autocorrelations. The agreement in the daténé two starts suggest the statistics of
200K iterations to be sufficient. As expected, the four défe scales]c , Tes , Teg , and T2 lead
to four different curves for the order parameter. One alss ske known feature ol) — O as
ac — 0 even in the deconfined region. Fig{ife 2 displays the behawibthe bare free energy for
just two scales, obtained by using the Bg](2.1). The starfoathe scaldg while the squares are
for Teg corresponding to the higher lattice spacing of the two. Tineré reinforces the expectation
of the effect of the divergent free energy, since the freeggnmcreases with the decrease in the
lattice cut-offa..

Any two different scalesac; andag, have their respective divergent contributioag,A(ac )
andagA(ac). Multiplying eq.(2.1) byN;, for j = 1 and 2 corresponding to the critids} for the
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Figure 3: Heavy quark free enerdy as a function off /T with a constant shift, as explained in the text.
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Figure 4: Renormalized Polyakov loop verstigT; using the shifted free energy of the upper figure, as
explained in the text.

scale choices above, i.e, 6 and 8, one obtains

Fo(T/Te, acj)
T ’

Tinqi) = -

T (2.2)

whereFy(T /Te,acj) /Te = F (T /Te,acj) /Te — A(acj) /Te. Thus the free energies at the same temper-
atures but two different scales are related by a mere cansfac;) — A(ac)]/Te. For the four
scales considered here, this implies 3 such constantsteffjgshows the results for the free energy
with three constant shifts in the free energy determinedédiyahding coincidence at the highest
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Figure5: Renormalized Polyakov loop verstigT; after subtracting the would-be divergent contribution.

T = 2T.. A universal curve for the free energy seems to result as @triegs a wide range of
T > T.. The results for the low temperature phase are seen to bmeaependent, as expected. In
the infinite volume limit, the free energy should increas@nfmity in the confined phase whereas
it should essentially remain constant in the deconfinedgah@sch an expectation is indeed borne
out by the results in the Figufé 3. For the same physical ve|uime free energy appears to be
a-independent in th& < T; phase as well, as seen by comparing the crosses and the stars.

Finally, it should now be clear how one can obtain a univecsae for the order parameter
from the universal free energy curve. TﬁED corresponding to scalg, should simply be multi-
plied by the factor extN;[A(ac1)/Tc — A(ac2)/Tc]) and then the date will lie on a universal curve.
This is exhibited in Figur]4 foall the four scales. It is worth noting that the same universdgor
parameter results iboth below and abovd, by fixing only three constants for the four scales ex-
hibited. The entire low and high temperature region of thdepparameter is uniquely fixed, and
appears to be universal.

From the Figur¢]4, it appears as though the approa«éhfbfto unity is slow and from below.
It is, however, known since long T[L7] that perturbation ttyepredictsL — 1 from above at very
large T : L =1+Czg®+ 0(g*), wherecs(N) > 0 is a constant. The solution to this apparent
paradox can be traced to the usual fact that a renormalizadtitpudepends on the scale chosen
to define the scheme for renormalization. In my case, thausimh of a constant free energy
A(ac)/Te for the chosen scale. defines the choice. The details of the shape of the physidef or
parameter are therefore scale-dependent in the plasma pbt# is universal none the less once
a choice is made. Moreover, any further change of scale leadscomputable change in the
shape. Indeed, in order to mimic the perturbative renozaatin scheme | estimated the point-
divergent contribution. At the highest temperatuii, 2 fitted the results for the four scales to
—In(|Lj|) = F(2T)/2T. + B-N;j/2. Having thus determined the coefficieBitof the would-be
divergent contribution at the scalg, | eliminated theB-dependent contribution at that scale. The
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renormalized_ at the other three scales were related to it by the same sisiftefore. Figurg] 5
displays the resultar(qlfb. It crosses unity at about 1'R. Since all the multiplying factors tend
to unity at largeT, the approach of thik to unity is from above at larg&. Note also that large
spatial volumes, aspect ratio ©f10, are needed for this~ 0 in the lowT phase.

3. Summary

In conclusion, | showed that the fixed scale approach leagsisdural definition of a physical,
N;-independent, order parameter which is defined in both thérexd and the deconfined phases.
The definition itself does not depend on any lattice artfamt the lattice size in the deconfined
phase , and works very well for even coarse lattiGes: (1/4T.). Moreover, it displays the ex-
pected behaviour in the confined phase as the physical vdkimereased, suggesting that the so
determined physical free energy of a single quark in the nedfphasef, goes to infinity in the
infinite volume limit. Eliminating the point-divergent ctribution leads to a high temperature be-
haviour consistent with perturbation theory. It is strafigiward to generalize this idea &J (N;)
gauge theories and QCD as well as to sources in higher repatisas.
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