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Heavy-light decays such as B → πℓν, B → K∗γ and B → K(∗)ℓℓ can be used to constrain the
parameters of the Standard Model and in indirect searches for new physics. While the precision of
experimental results has improved over the last years this has still to be matched by equally precise
theoretical predictions. The calculation of heavy-light form factors is currently carried out in lattice
QCD. Due to its small Compton wavelength we discretize the heavy quark in an effective non-
relativistic theory. By formulating the theory in a moving frame of reference discretization errors
in the final state are reduced at large recoil. Over the last years the formalism has been improved
and tested extensively. Systematic uncertainties are reduced by renormalizing the m(oving)NRQCD
action and heavy-light decay operators. The theory differs from QCD only for large loop momenta
at the order of the lattice cutoff and the calculation can be carried out in perturbation theory as
an expansion in the strong coupling constant. In this paper we calculate the one loop corrections
to the heavy-light vector and tensor operator. Due to the complexity of the action the generation
of lattice Feynman rules is automated and loop integrals are solved by the adaptive Monte Carlo
integrator vegas. We discuss the infrared and ultraviolet divergences in the loop integrals both
in the continuum and on the lattice. The light quarks are discretized in the ASQTad and highly
improved staggered quark (HISQ) action; the formalism is easily extended to other quark actions.

PACS numbers: 12.15.Hh, 12.38.Bx, 12.38.Gc, 12.39.Hg, 13.20.He

I. INTRODUCTION

Decays of mesons containing heavy quarks provide an
excellent laboratory for studying the heavy flavor sector
of the Standard Model. For inclusive decays techniques
such as quark-hadron duality and the operator product
expansion have been used to predict decay amplitudes
and spectra to high precision (see, for example Refs.
[1, 2]). Exclusive decays have a well defined hadronic fi-
nal state and are easier to measure but obtaining precise
theoretical predictions for these processes is more chal-
lenging since the quarks in the final state are bound inside
a hadron. Nevertheless improving on these predictions is
crucial to check results from inclusive measurements and
overconstrain the parameters of the Standard Model to
uncover the effects of putative new physics.
The decay B → πℓν can, for instance, be used to con-

strain the magnitude of Vub, one of the least known
Cabibbo–Kobayashi–Maskawa (CKM) mixing matrix el-
ements. In addition, rare decays like B → K∗γ or
B → K(∗)ℓℓ are loop-suppressed in the Standard Model
and expected to be sensitive to the presence of new
physics [3–5].
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Precise calculations of hadronic matrix elements are
needed to match experimental precision (which is still
to improve further with new results from LHCb and the
planned SuperB factory). Lattice QCD provides a model-
independent framework for these calculations. It is, how-
ever, difficult to discretize the heavy valence quarks di-
rectly on lattices that are currently available since their
Compton wavelength is comparable to the lattice spac-
ing, a. To overcome this problem we use the effective lat-
tice field theory NRQCD [6–9], which describes QCD in
the non-relativistic limit where the heavy-quark velocity
is much less than unity. NRQCD is useful for studying
mesons with heavy-quark constituents such as J/ψ, Υ,
D and B. The heavy-light vector form factor has been
calculated in lattice NRQCD and combined with exper-
imental data to extract |Vub| [10]. The hadronic form
factors are functions of the squared momentum transfer
q2 = (pB − pF )

2, where pB and pF are the momenta of
the decaying B meson and the hadronic final state. Cur-
rent lattice calculations using NRQCD work well only for
large q2, partially owing to large discretization errors in
the hadronic final state. The radiative decay B → K∗γ
has q2 = 0, however, and most experimental data for
B → πℓν comes from the small q2 region. The large ex-
trapolation to small q2 is a sizable source of systematic
error in analyzing such decays and it is thus desirable
to extend the range of accessible q2 in a lattice calcula-
tion. In our approach, this is achieved by formulating the
theory in a moving reference frame [11]. The frame veloc-
ity is chosen to reduce the three-momentum of the final
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hadron state at small q2, and hence also suppress the
associated lattice artifacts. This approach is known as
moving NRQCD (mNRQCD) [12–15]. The momentum of
the heavy quark p = mu+pres is split into a contribution
mu associated with the frame velocity u = (γ, γv) and
a residual momentum pres, which is of the order of the
hadronic scale ΛQCD. The first contribution is treated
exactly so that corrections can be expanded in powers
of pres/m. Discretization errors, which scale with some
power of apres, can be removed systematically by improv-
ing the action.

Although we focus here on mNRQCD, we note that
similar calculations are possible using other descriptions
of moving heavy quarks [16–18]. A comparison of pre-
dictions from these different approaches would provide
a valuable test of our understanding of the systematic
errors in all these methods.

Hadronic matrix elements of heavy-light currents have
been calculated using lattice mNRQCD by the HPQCD
Collaboration [19, 20]. The NRQCD effective theory
is obtained from QCD by integrating out the effects of
physics on energy scales of order m or larger; on the
lattice this upper energy scale is determined by the lat-
tice spacing, a. Operators in QCD are written as a for-
mal expansion of operators defined in terms of the effec-
tive non-relativistic fields of NRQCD. The coefficients
of the NRQCD operators in the expansion are deter-
mined as power series in the strong coupling constant
αs(q

∗/a) which is defined in an appropriate renormal-
ization scheme and where q∗ is a dimension parameter
of order unity. The NRQCD operators are ordered in
powers of 1/m. For quarkonium matrix elements this
gives a series in αs and the quark relative velocity v2rel
whereas for heavy-light systems the series is an expansion
in αs and ΛQCD/m. These coefficients are the radiative
corrections which compensate for the missing contribu-
tion of ultraviolet modes in QCD which are omitted by
the imposition of the high-momentum ultraviolet cutoff
in the lattice formulation. QCD and the effective lat-
tice theory agree for infrared scales sufficiently below the
heavy quark mass m and so the radiative corrections are
governed by momenta larger than m & 1/a where the
strong coupling constant is small. It is therefore legiti-
mate to calculate these corrections in perturbation the-
ory. The coefficients are computed by equating the ma-
trix elements of the operator in QCD and of its NRQCD
expansion for any choice of external states. Because the
coefficients are independent of the matrix element cho-
sen, we carry out the radiative matching calculation for
appropriately chosen external on-shell quark states; this
is the usual technique employed in matching calculations
for NRQCD (see, for example, [21, 22]). These radia-
tive corrections are expected to be comparable in size to
higher order corrections in the 1/m expansion.

Owing to the complexity of the lattice actions used the
generation of Feynman rules has been automated [23–25]
and the resulting integrals are calculated using the adap-
tive Monte Carlo integrator vegas [26, 27], possibly after

smoothing the integrand by adding an infrared subtrac-
tion function. In [15] radiative corrections to the heavy
quark action have been calculated for a range of frame
velocities. In this work we extend this calculation to the
matching coefficients for the leading order operators of
the vector and tensor currents.
The outline of this paper is as follows. We discuss

the different heavy-light continuum operators that con-
tribute to B → πℓν and rare B decays in Sec. II, and we
introduce the various quark actions used in this project
in Sec. III. The central part of this work, the matching
calculation between continuum and lattice operators, is
presented in Sec. IV where we calculate one-loop matrix
elements both in the continuum and in the effective lat-
tice theory and combine them to obtain the matching
coefficients. In Sec. V we present numerical results. We
summarize and discuss our findings in Sec. VI.
Some preliminary results from this work appeared in

Ref. [19, 20, 28].

II. CONTINUUM OPERATORS

In general we shall denote current operators by J
(Γ)
n

with the appropriate number of Lorentz indices and
where Γ labels the symmetry and transformation prop-
erties and the integer subscript, n, distinguishes different
operators with the properties.
An example is the semileptonic decay B → πℓν which

occurs at tree level in the quark picture. It is mediated
by the hadronic vector current

J
(V )µ
0 = qLγ̂

µΨL, (1)

where q and Ψ are the light- and heavy-quark spinors.
We follow the convention in Appendix A of Ref. [15] for
the Dirac gamma matrices γ̂µ. Only left-handed parti-
cles (denoted by the subscript L) participate in the weak
interaction. For massless leptons the total width of this
decay is proportional to the square of the form factor
f+(q

2) defined by

〈π(p′)|J (V )µ
0 |B(p)〉 = f+(q

2)

(

pµ + p′µ − M2
B −M2

π

q2
qµ

)

+ f0(q
2)
M2
B −M2

π

q2
qµ (2)

and the CKM matrix element Vub.
The situation is more complicated for rare B decays

which can only occur at loop level in the Standard Model.
After integrating out physics at the electroweak scale, the
transition is described by a set of effective operators Qj
with their associated Wilson coefficients Cj(µ) [29]. For
the radiative decay B → K∗γ the Hamiltonian is

H = −4GF√
2
VtbV

∗
ts

∑

j

Cj(µ) Qj (3)



3

C1 0.016 C5 0.017
C2 0.711 C6 0.009
C3 −0.078 C7 −0.300
C4 0.093 C8 −0.144

TABLE I. Numerical values of the Standard Model Wilson
coefficients in the effective Lagrangian (3) for the radiative
decay B → K∗γ. The coefficients Cj(µb) are evaluated
in the leading logarithmic (LL) approximation at the scale
µb = 5.0MeV using the so-called “magic numbers” in Ref. [29]
with mZ = 91.1876MeV, mW = µW = 80.425MeV and
αs(mZ) = 0.118.

where the operator basis Qj used in this work is given,
for example, in Refs. [30, 31]:

Q1 = (cLβ γ̂
µbLα)(sLαγ̂µcLβ), (4)

Q2 = (cLαγ̂
µbLα)(sLβ γ̂µcLβ),

Q3 = (sLαγ̂
µbLα)

∑

q=u,d,c,s,b

(qLβγ̂µqLβ),

Q4 = (sLαγ̂
µbLβ)

∑

q=u,d,c,s,b

(qLβ γ̂µqLα),

Q5 = (sLαγ̂
µbLα)

∑

q=u,d,c,s,b

(qRβ γ̂µqRβ),

Q6 = (sLαγ̂
µbLβ)

∑

q=u,d,c,s,b

(qRβ γ̂µqRα),

Q7 =
e

16π2
mbsLασ

µνbRαFµν ,

Q8 =
g

16π2
mbsLασ

µνT aαβbRβG
a
µν ,

with

σµν =
i

2
[γ̂µ, γ̂ν ]. (5)

Fµν (Gaµν) is the electromagnetic (chromodynamic) field
strength tensor; α and β are color indices.
This factorization separates the physics at large energy

scales, which is contained in the model-dependent Wilson
coefficients Cj(µ), from the universal hadronic matrix el-
ements of the effective operators Qj .

A. Wilson coefficients

By matching the effective Hamiltonian in Eqn. (3) to
the Standard Model it is easy to see that at tree level
C2 = 1 and all other coefficients are zero. After sum-
ming the leading logarithms of the form [αs log(µW /µb)]

n

the dominant contribution to C7 comes from the mixing
of Q2 to Q7 via one loop diagrams [29]. The Standard
Model Wilson coefficients relevant for the radiative de-
cay are given in Tab. I in the leading logarithmic (LL)
approximation. As can be seen from these numbers, the
dominant operators are C2 and C7. Numerical values

b

γ

s

FIG. 1. Local tensor operator diagram contributing to the
decay B → K∗γ

of Cj are now known at next-to-next-to-leading (NNLL)
order in the Standard Model [1].

The Wilson coefficients are model dependent. For ex-
ample, in [32] it is shown how C7(µW ) and C8(µW )
change in a two Higgs doublet model. The numerical
size of these changes depends on the parameters of the
specific model. In [32] it is reported that the inclusive
decay rate B → Xsγ, which in the LL approximation is
proportional to |C7(µb)|2, could in principle be enhanced
by about a factor of three compared to the Standard
Model.

Although this enhancement is now ruled out by recent
calculations of the Standard Model branching ratio in
the inclusive B → Xsγ [1, 33] and exclusive B → K∗γ
[34–36] decays, which are compatible with experimental
results [37], the situation is less clear for the time de-
pendent CP asymmetry in the exclusive decay: although
it is expected to be small in the Standard Model [38] it
has not yet been measured to sufficiently high precision
[39, 40]. In the Standard Model the opposite chirality
operator, which is obtained by replacing bR 7→ bL and
sL 7→ sR in Q7 is suppressed by a factor of ms/mb as the
spin flip requires the insertion of a mass term. This is
not necessarily the case in the new physics models stud-
ied in [41] where it is shown that the opposite chirality
operator and mixing induced CP asymmetries can be en-
hanced even if the branching ratio agrees with Standard
Model predictions.

Similar conclusions can be drawn for the decay
B → K(∗)ℓℓ [42, 43], the forward-backward asymmetry is
dependent on C7, C9 and C10. The current experimen-
tal measurements [44–46] will be improved by the LHCb
experiment [47] and help constrain these coefficients.

B. Local and non-local operators

The operators in Eqns. (3,4) can be split into two
groups: the four quark operators 1-6 couple two hadronic
currents at one point in space time. All other operators
couple a heavy-light quark current to a gauge boson or a
leptonic current. These two sets of operators contribute
differently to hadronic heavy-light matrix elements [48].
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γ

b s

c

FIG. 2. Non-local four quark operator diagram contributing
to the decay B → K∗γ

1. Local contributions

The local contribution to the radiative decayB → K∗γ
is described by the tensor current (see Fig. 1)

Q7 =
e

16π2
m(qLσ

µνΨR)Fµν . (6)

The local contributions to the leptonic decay B → K(∗)ℓℓ
also include operators

Q9 =
e2

16π2
qLγ̂

µΨL
∑

ℓ

ℓγ̂µℓ,

Q10 =
e2

16π2
qLγ̂

µΨL
∑

ℓ

ℓγ̂µγ̂
5ℓ, (7)

which couple the heavy-light vector current J
(V )µ
0 to a

vector (or axial vector) leptonic current.

In the following we will consider the vector current in
Eqn. (1) and the heavy-light hadronic tensor current

J
(T )µν
0 = m(qLσ

µνΨR). (8)

The heavy quark mass is included in this current as only
left-handed particles participate in the weak interaction:
flipping the chirality on one of the external legs requires
the insertion of a mass termmqLqR+(h.c.). Whilst in the
Standard Model the operator mq(qRσ

µνΨL) with oppo-
site chirality is suppressed by mq/m relative to Eqn. (8),
this is not necessarily the case in new physics models [41].

As we set the light quark mass to zero in the match-
ing calculation we will drop all chiral projectors in the
following.

2. Non-local contributions

Non-local contributions come from diagrams like the
one in Fig. 2: The gauge bosons couple to an internal
quark loop which is created by contracting the two charm
fields of a four quark operator. Given the size of C2 it
is important to estimate the effect of these diagrams on
the hadronic matrix element.

γ

c

s

J/ψ

γ

b s b

c

FIG. 3. Resonant contribution to b → sγ from four quark
operators.

Long distance effects. The dominant contribution to
the long distance amplitude induced by the b → scc op-
erators is usually assumed to come from the diagram
where the photon couples directly to the charm quark
loop. This is confirmed by the perturbative calculation
combined with a quark model in [49] where it is found
that the main contribution generated by Q2 is given by
diagrams where the photon couples to the cc loop and
the gluon connects this loop to either the b or s quark.
Only Q7 contributes at tree level but in [49] it is argued
that the O(αs) contribution of the four quark operator
is of the same order as the one loop correction to the
electromagnetic tensor operator Q7.
The resonant contribution from the charm loop can

be described as the decay B → V ψn, where the ψn is a
bound cc vector state, such as J/ψ, which subsequently
decays into a photon, see Fig. 3.
In this approximation the long-distance amplitude can

be written as

A = Qce
∑

n,ǫn

(ǫ∗n)µ〈0|cγ̂µc|ψn〉A(B → V ψn)

q2 −M2
n + iMnΓn

. (9)

where ǫn is the polarization of the vector meson ψn with
mass Mn and width Γn. For real photons with q2 = 0
the sum is dominated by the lowest lying resonances. The
mass of the J/ψ is 3.097GeV so that long distance effects
from charm loops are expected to be suppressed by the
inverse of this mass.
This argument is supported by the explicit calculation

in [50] where the charm quark is integrated out to ob-
tain an effective bsgγ operator suppressed by 1/m2

c. The
matrix element of this local operator is calculated us-
ing QCD sum rules and found to be small, contributing
around 5% of the dominant amplitude from Q7.
Chromomagnetic tensor operator. The contribution

from the chromomagnetic tensor operator is estimated
in [51]. There the decay amplitude is calculated for
both the electromagnetic and the tensor operator in the
framework of a quark model. The contribution of Q8

is found to be suppressed relative to Q7 by a factor
ΛQCD/mB × C8/C7 ≈ 5%.
To summarize, matrix elements of four quark oper-

ators and of the chromomagnetic tensor operator are
suppressed for small q2 and it is likely that they con-
tribute little to the radiative decay. With currently avail-
able techniques these non-local contributions can not be
treated in lattice QCD and, if required, must be cal-
culated using different approaches, such as QCD sum
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rules [35, 49–54] to complement the lattice calculation
of the local operators. In the following we will concen-
trate on the vector current qLγ̂

µΨL and the tensor cur-
rent m(qLσ

µνΨR) which are the hadronic parts of the
electroweak operators in (6) and (7). Nonperturbative
lattice matrix elements elements of these currents have
been calculated [19, 20] by using mNRQCD as an effec-
tive theory for the heavy quark.

III. LATTICE QUARK ACTIONS

On currently available lattices the Compton wave-
length of the b quark is smaller than the lattice spac-
ing. We discretize the heavy quark in an effective, non-
relativistic theory where the high frequency fluctuations
have been integrated out. The construction of this action
is described in [15] and in the following we summarize the
main results.
The light quarks are discretized using highly improved

relativistic actions [55, 56]. In the one loop calculations
presented in this paper vacuum polarization effects of the
light quark do not contribute.

A. Moving NRQCD

The (tree level) NRQCD action is obtained by decou-
pling the quark and antiquark degrees of freedom in the
fermionic action by a Foldy-Wouthuysen-Tani transfor-
mation. The theory can be Lorentz-transformed to a
moving frame and higher order time derivatives are re-
moved by a subsequent field transformation. On the lat-
tice, where Lorentz invariance is broken by discretiza-
tion, this will give rise to a new theory which is known as
m(oving) NRQCD. As the theory contains only first or-
der time derivatives, propagators can be computed very
efficiently by a single sweep through the lattice.
The mNRQCD action is given by

S =
∑

x,τ

ψ†(x, τ) [ψ(x, τ)−K(τ)ψ(x, τ − 1)] (10)

with kernel

K(τ) =

(

1− δH

2

)(

1− H0

2n

)n

U †
4 (x, τ − 1)

×
(

1− H0

2n

)n(

1− δH

2

)

. (11)

The lowest order kinetic term H0 is

H0 = −iv ·∆± − ∆(2) −∆
(2)
v

2γm
(12)

where v is the frame velocity and ∆±
j , ∆

(2) and ∆
(2)
v are

first and second order gauge covariant finite difference

operators defined in Ref. [15]. In momentum space the
non-relativistic dispersion relation

E = v · pres +
p2
res − (v · pres)

2

2γm
+ . . .

≈
√

m2 + (mγv + pres)
2 − γm

=
√

m2 + p2 − γm (13)

is obtained. δH contains higher order corrections in 1/m
and operators which remove discretization errors. The
action used in this work is described in Ref. [15]; it is
correct to O(1/m2, v4rel), where vrel is the relative velocity
of the two quarks in a heavy-heavy system.
The integer stability parameter n is introduced to re-

move numerical instabilities for smaller quark masses m.

B. Relativistic quark actions

We separately consider two different staggered lattice
actions describing the light quarks.
The ASQTad action [55] suppresses “taste-breaking”

interactions of lattice doublers by O(αsa
2). This is done

by introducing form factors for one gluon emission in the
action. The Highly Improved Staggered Quark (HISQ)
action reduces discretization errors further by an addi-
tional level of smearing followed by link unitarization [56].
Physically, the light quark mass is much smaller than

the hadronic scale and in the matching calculation it will
be set to zero. This simplifies the calculation and leads
to additional relations between different matching coeffi-
cients due to chiral symmetry.
The MILC and UKQCD Collaborations have pro-

duced a set of lattice configuration ensembles including
ASQTad vacuum polarization effects and are currently
extending this to configurations with dynamical HISQ
fermions [57, 58]. These configurations are used in the
nonperturbative calculation of heavy-light form factors
[19, 20].

IV. MATCHING CALCULATION

To match heavy-light operators, expressed in terms of
effective mNRQCD heavy quark fields, to those in the
continuum theory, we must calculate radiative correc-
tions both in the continuum and on the lattice. We match
the theories at leading order in the 1/m expansion and
one loop order in αs. Matrix elements of O(1/m) oper-
ators are expected to be of the same size as the leading
radiative corrections and are matched at tree level.

A. Continuum calculation

In the continuum we calculate the one loop matrix

elements of the currents J
(Γ)
0 and expand the result in
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inverse powers of the heavy quark mass. We use the no-
tation Γ = V, T to denote the expressions in Eqns. (1,8).
Owing to Lorentz invariance these expansions can be ex-
pressed as linear combinations of a small number of tree
level matrix elements:

〈q|J (Γ)
0 |b〉con =

∑

j

Z
(Γ,con)
j 〈q|J (Γ)

j |b〉tree. (14)

At leading order in the 1/m expansion the operators that
contribute to the vector current are:

J
(V )µ
0 = qγ̂µΨ,

J
(V )µ
1 = quµΨ (15)

and to the tensor current:

J
(T )µν
0 = m(qσµνΨ),

J
(T )µν
1 = 2im (q(γ̂µuν − uµγ̂ν)) Ψ (16)

where uµ = (γ, γv) is the frame velocity. The
one loop contributions to the mixing matrix

Z
(Γ,con)
j = δj0 + αsδZ

(Γ,con)
j + . . . are for the vector

operator [21]

δZ
(V,con)
0 =

1

3π

(

−11

4
− 3

2
logλ2/m2

)

,

δZ
(V,con)
1 =

2

3π
, (17)

and for the tensor operator

δZ
(T,con)
0 =

1

3π

(

−27

4
− 3

2
logλ2/m2 + 4 logm2/µ2

)

,

δZ
(T,con)
1 = 0. (18)

We introduced a gluon mass λ to regulate infrared di-
vergences. It is important to use the same infrared reg-
ulator in both continuum QCD and the effective lattice
theory, any dependence on the gluon mass will cancel in
the matching coefficients.
As the tensor current is not conserved, its anomalous

dimension does not vanish:

γ
(con)
T =

8αs
3π

+ . . . . (19)

The coefficients of the infrared logarithms in Eqns. (17)
and (18) agree due to heavy quark symmetry.

B. Construction of lattice operators

On the lattice we must construct operators J
(Γ,lat)
0

which have the same on-shell matrix elements as the as-
sociated continuum operators:

〈q|J (Γ,lat)
0 |b〉lat = 〈q|J (Γ)

0 |b〉con. (20)

At tree level, the operators in the effective theory are
obtained from Eqns. (1,8) by applying the field transfor-
mation

Ψ(x) = S(Λ)T̃ (x̃)e−imγ̂
0u·xADt

1√
γ
Ψv. (21)

S(Λ) is a spinorial Lorentz boost, T̃ the FWT trans-
formation decoupling the quark- and antiquark fields
in the rest frame and ADt

an additional field trans-
formation to remove higher order time derivatives.

Ψv(x) = (ψv(x), 0)
T is the (positive energy) field in the

effective theory.
Using the explicit expressions in Ref. [15] one finds at

O(1/m)

Ψ =
1√
γ

(

1− iγ̂0v ·D
2m

+
iγ̂ ·D
2m

+
iv ·D
2γm

)

S(Λ)Ψv

(22)
from which the tree level currents in the effective theory
can be read off by inserting the field transformation in
Eqns. (1,8).
In the following we calculate the one loop matching

coefficients of the leading order operators in the 1/m ex-

pansion. At this order both T̃ and ADt
are equal to the

identity. The Lorentz boost is

S(Λ) =
1

√

2(1 + γ)

(

(1 + γ)− γvv̂ · γ̂γ̂0
)

. (23)

We choose v̂, the direction of the frame velocity, to be
along one of the lattice axes, i.e. v̂ = (1, 0, 0). We
can then classify the lattice directions (and associated
Lorentz indices) as timelike (denoted 0, as usual), paral-
lel to v̂ (denoted ‖) or perpendicular to v̂ (denoted ⊥).

1. Choice of operator basis

In the continuum the operator basis J
(Γ)
0 , J

(Γ)
1 is used.

On the lattice Lorentz invariance is broken and it is con-
venient to work in another basis which is spanned by op-
erators with different Dirac structure. Firstly, the opera-

tors J
(Γ)
0 and J

(Γ)
1 are split into the sum of two operators

J
(Γ)
n = J

(Γ)
n,1 + J

(Γ)
n,2 . For n = 0:

J
(Γ)
0,1 = ρ(Γ)f1(v)q(x)ΓΨv,

J
(Γ)
0,2 = −ρ(Γ)f2(v)q(x)Γv̂ · γ̂γ̂0Ψv . (24)

In the vector case Γ = γ̂µ and ρ(V ) = 1, and in the tensor
case Γ = σµν and ρ(T ) = m. The velocity dependence
has been absorbed in the functions

f1(v) =

√

1 + γ

2γ
, f2(v) = v

√

γ

2(1 + γ)
. (25)

The corresponding leading order (in the heavy quark

expansion) operators J
(Γ)
1,j are obtained by replacing
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Γ 7→ uµ in the vector case, and Γ 7→ 2i(γ̂µuν − γ̂νuµ)
for the tensor.

The tree level matrix elements of all these operators
form a basis for expanding higher order matrix elements.

In the following we do not, however, need to include J
(Γ)
1,j ,

because the tree level matrix elements are given by linear

combinations of those of J
(Γ)
0,j due to heavy quark sym-

metry γ̂0Ψv = Ψv. In the vector case:

J
(V )0
1,1 = γJ

(V )0
0,1 , J

(V )0
1,2 = −γJ (V )0

0,2 ,

J
(V )‖
1,1 = (1 + γ)J

(V )‖
0,2 , J

(V )‖
1,2 = (1− γ)J

(V )‖
0,1 , (26)

and for the tensor operator:

J
(T )0‖
1,1 = 2

(

γJ
(T )0‖
0,1 + (1 + γ)J

(T )0‖
0,2

)

,

J
(T )0‖
1,2 = 2

(

(1 − γ)J
(T )0‖
0,1 − γJ

(T )0‖
0,2

)

,

J
(T )0⊥
1,1 = 2γJ

(T )0⊥
0,1 ,

J
(T )0⊥
1,2 = −2γJ

(T )0⊥
0,2 ,

J
(T )‖⊥
1,1 = −2(1 + γ)J

(T )‖⊥
0,2 ,

J
(T )‖⊥
1,2 = −2(1− γ)J

(T )‖⊥
0,1 . (27)

Clearly, this decomposition is not Lorentz invariant, but
can be carried out for fixed frame velocity.

On the lattice the two operators in Eqn. (24) mix under
renormalization,

〈q|J (Γ)
0,j |b〉lat =

∑

k

(

δjk + αsδZ
(Γ,lat)
jk + . . .

)

×

〈q|J (Γ)
0,k |b〉tree , (28)

(with j, k = 1, 2). Instead of using this basis (which we
will call the (1, 2) basis), it is more convenient to work in
the (+,−) basis:

J
(Γ)
0,± = J

(Γ)
0,1 ± J

(Γ)
0,2 , (29)

as only J
(Γ)
0,+ contributes to processes at tree level. We

may then write

〈q|J (Γ)
0,+|b〉con = (1 + αsδZ

(Γ,con)
+ )〈q|J (Γ)

0,+|b〉tree+
αsδZ

(Γ,con)
− 〈q|J (Γ)

0,−|b〉tree. (30)

On the lattice renormalization factors δZ
(Γ,lat)
jk in this ba-

sis can then be defined in an analogous way to Eqn. (28)
[i.e. where j, k = ±]. For the vector operator, we must
distinguish whether the Lorentz index of the current is
timelike, parallel or perpendicular to the frame veloc-
ity. Relations like Eqn. (26) can then be used to relate

Z
(V,con)
± to Z

(V,con)
0 and Z

(V,con)
1 :

δZ
(V,con)0
+ = δZ

(V,con)
0 ,

δZ
(V,con)0
− = γδZ

(V,con)
1 ,

δZ
(V,con)‖
+ = δZ

(V,con)
0 + δZ

(V,con)
1 ,

δZ
(V,con)‖
− = −γδZ(V,con)

1 ,

δZ
(V,con)⊥
+ = δZ

(V,con)
0 ,

δZ
(V,con)⊥
− = 0 . (31)

For the tensor operator there is no dependence on the
Lorentz indices:

δZ
(T,con)
+ = δZ

(T,con)
0 ,

δZ
(T,con)
− = 0 . (32)

2. Matching coefficients

Combining Eqns. (28,30), the lattice operator which
has the same one loop matrix elements as the continuum
operator is

J
(Γ,lat)
0 =

(

1 + αsc
(Γ)
+

)

J
(Γ)
0,+ + αsc

(Γ)
− J

(Γ)
0,− (33)

with

c
(Γ)
+ = δZ

(Γ,con)
+ − δZ

(Γ,lat)
++ ,

c
(Γ)
− = δZ

(Γ,con)
− − δZ

(Γ,lat)
+− . (34)

C. Mixing matrix

In the (1, 2) basis of operators, the lattice mixing ma-
trix can be split into a diagonal part and a contribution
ξµνjk from one particle irreducible (1PI) diagrams,

δZ
(Γ,lat)
jk =

(

δZ
(Γ)
mult − δZfj

)

δjk + ξ
(Γ)
jk . (35)

For the vector current the multiplicative renor-
malization contains the wavefunction renormalization
only: δZ

(V )
mult =

1
2 (δZq + δZψ). For the tensor cur-

rent, however, there is an additional contribution
from the renormalization of the heavy quark mass:

δZ
(T )
mult =

1
2 (δZq + δZψ)− δZm.

The relation between renormalized and bare param-
eters is vR = Zvv, γR = (1 − v2

R)
−1/2, mR = Zmm

and q =
√

ZqqR, Ψ =
√

ZψΨR. mR is the pole mass,
which can be defined perturbatively both in the contin-
uum and on the lattice. The renormalization constants
can be expanded perturbatively using the generic formula
Zx = 1 + αsδZx + . . . .
The renormalization of the velocity functions f1,2 in

Eqn. (25) is fj,R = Zfjfj with

δZf1 =
1− γ

2
δZv, δZf2 =

1 + γ

2
δZv. (36)



8

One then finds

δZ
(Γ,lat)
++ = δZ

(Γ)
mult −

1

2
δZv + ξ

(Γ)
++,

δZ
(Γ,lat)
+− =

γ

2
δZv + ξ

(Γ)
+−. (37)

Even though we use only the leading order heavy-light
operators we still include 1/m corrections in the action.
Next we isolate infrared divergences in the renormaliza-
tion constants and find (in Feynman gauge)

δZq =
1

3π
log a2λ2 + Fq,

δZψ = − 2

3π
log a2λ2 + Fψ(v, am),

δZm = Fm(v, am),

δZv = Fv(v, am),

ξ
(Γ)
++ = − 1

3π
log a2λ2 + F

(Γ)
ξ++

(v, am),

ξ
(Γ)
+− = F

(Γ)
ξ+−

(v, am). (38)

Here we make the lattice spacing a explicit and λ is
the gluon mass used in the continuum calculation. The

infrared divergence of ξ
(Γ)
++ is independent of the Dirac

structure Γ due to heavy quark symmetry and can
be inferred from the subtraction integral discussed in
Sec. IVH1. The functions Fx are infrared finite and can,
if required, be expanded in powers of the inverse heavy
quark mass on the lattice.

It is interesting to note that the logarithms in Eqn. (38)
represent both infrared (λ → 0) and ultraviolet (a → 0)
divergences. A similar combination of short and long dis-
tance divergences occurs in HQET if the theory is reg-
ulated in dimensional regularization: The heavy quark
propagator does not contain any scales and the integral
vanishes in this case (see, for example, Ref. [59]). In the
HQET case, this simplifies the calculation of the match-
ing coefficients as only the QCD integrals need to be cal-
culated.

D. Results for the vector operator

After cancelling infrared divergences the final expression for the matching coefficients c
(Γ)
± is

c
(V )0
+ = − 11

12π
− 1

2
(Fq + Fψ) +

1

2
Fv +

1

2π
log a2m2 − F

(V )0
ξ++

,

c
(V )‖
+ = − 1

4π
− 1

2
(Fq + Fψ) +

1

2
Fv +

1

2π
log a2m2 − F

(V )‖
ξ++

,

c
(V )⊥
+ = − 11

12π
− 1

2
(Fq + Fψ) +

1

2
Fv +

1

2π
log a2m2 − F

(V )⊥
ξ++

,

c
(V )0
− =

2γ

3π
− γ

2
Fv − F

(V )0
ξ+−

,

c
(V )‖
− = −2γ

3π
− γ

2
Fv − F

(V )‖
ξ+−

,

c
(V )⊥
− = −γ

2
Fv − F

(V )⊥
ξ+−

. (39)

In the limit v → 0 the operator J
(Γ)
0,2 does not contribute as it is proportional to v; in NRQCD there is only one

operator with matching coefficient c(Γ):

c
(Γ)
1 = c

(Γ)
+ + c

(Γ)
− → c(Γ) for v → 0. (40)

We find

c(V )0 = − 1

4π
− 1

2
(Fq + Fψ) +

1

2π
log a2m2 − F

(V )0
ξ ,

c(V )j = − 11

12π
− 1

2
(Fq + Fψ) +

1

2π
log a2m2 − F

(V )j
ξ . (41)

The matching coefficient of the zero component of the vector (or axial vector) current at v = 0 has been calculated
in [60] and the corresponding calculation for the spatial components can be found in [10]. We tested our code by
reproducing these results.
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E. Results for the tensor operator

The corresponding results for the tensor operator are:

c
(T )µν
+ = − 9

4π
− 1

2
(Fq + Fψ) + Fm +

1

2
Fv − F

(T )µν
ξ++

+
1

2π
log a2m2 +

4

3π
logm2/µ2,

c
(T )µν
− = −γ

2
Fv − F

(T )µν
ξ+−

(42)

and in the NRQCD limit v = 0

c(T )µν = − 9

4π
− 1

2
(Fq + Fψ) + Fm − F

(T )µν
ξ +

1

2π
log a2m2 +

4

3π
logm2/µ2. (43)

F. The anomalous dimension

The ultraviolet behavior of the lattice theory is de-
scribed by the logarithmic terms in Eqns. (39,42). In
particular, the log a2m2 term is a UV divergence which
is independent of the Dirac structure of the renormalized
operator due to heavy quark symmetry. As the short
distance behavior of the effective theory is different from
that of continuum QCD, its coefficient is not the same as
that of the logm2/µ2 term in Eqn. (42). The anomalous
dimension of the lattice operator can be obtained by not-
ing that the renormalized operator is related to the bare

operator by multiplication by Z
(lat)
Γ :

J
(Γ,ren)
0,+ =

(

Z
(lat)
Γ

)−1

J
(Γ)
0,+. (44)

The counterterm has to be chosen such that it absorbs
the logarithmic UV divergence in δZ

(Γ,lat)
++ ,

Z
(lat)
Γ = 1− αs

2π

[

log a2µ2
lat + (finite terms)

]

+ . . . (45)

where µlat is an arbitrary scale which cancels in physical
results. We thus find

γ
(lat)
Γ =

1

Z
(lat)
Γ

dZ
(lat)
Γ

d log µlat
= −αs

π
+ . . . . (46)

This agrees with the result for HQET regularized in di-
mensional regularization [61].

G. Quark renormalization parameters

The wavefunction renormalization of massless ASQTad
quarks has been calculated to one loop in [60]. We re-
peated this calculation with a larger number of points in
the vegas integration to obtain

δZASQTad
q = −0.92411(42)+

1

3π
log a2λ2 (47)

in Feynman gauge (the error is the statistical error of the
vegas integral). For massless HISQ quarks we obtain

δZHISQ
q = −0.3905(16)+

1

3π
log a2λ2. (48)

γ

qb

FIG. 4. One particle irreducible diagram at one loop

The one loop renormalization of the heavy quark wave-
function, frame velocity and mass is given for a range of
frame velocities in Ref. [15]. As demonstrated there the
magnitude of all renormalization parameters is reduced
significantly by including mean fields corrections. Only
the wavefunction renormalization has a logarithmic IR
divergence, given by − 2

3π log a2λ2.

H. One particle irreducible matrix elements

The one particle irreducible (1PI) matrix elements can
be found by evaluating the one loop diagram in Fig. 4.
The O(αs) one particle irreducible correction to the

operators J
(Γ)
0,j = fjqΓSjΨv (with S1 = 1, S2 = −γ̂ · v̂γ̂0)

is given by

〈q|J (Γ)
0,j |b〉lat,1PI = αsfju(p

′)Σ
(Γ)
j U

= αs
∑

k=1,2

ξ
(Γ)
jk 〈q|J (Γ)

0,k |b〉tree

= αs
∑

k=1,2

ξ
(Γ)
jk fku(p

′)ΓSkU (49)

where the heavy-quark four spinor is

U (σ) =

(

χ(σ)

0

)

, with χ(σ) ∈
{(

1
0

)

,

(

0
1

)}

. (50)

Σ
(Γ)
j is the lattice integrand, after factoring out external

quark spinors, the strong coupling constant and the ve-

locity function fj. To extract ξ
(Γ)
jk , we replace the spinors
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by Euclidean [62] on-shell projection operators:

U 7→ Πq(p
′) ≡

∑

σ=↑,↓

u(σ)(p′)u(σ)(p′) = −ip/ ′
,

u(p′) 7→ Πb ≡
∑

σ=↑,↓

U (σ)U (σ)T =
1

2
(1 + γ0) (51)

and take the trace of (49):

fjTr
[

Πq(p
′)Σ

(Γ)
j ΠbΠ

(Γ)
]

=
∑

k=1,2

ξ
(Γ)
jk fkTr

[

Πq(p
′)ΓSkΠbΠ

(Γ)
]

(52)

The Dirac matrix Π(Γ) is a suitable projection operator
which depends on Γ; as both sides of (52) are a (linear)
function of the four momentum p′, this relation defines

ξ
(Γ)
jk for all j, k.

1. Infrared subtraction function

In some configurations in momentum space the inte-
gration contour in the k0 plane is pinched by poles. This
leads to large peaks in the integrand and can generate
infrared divergences in the final result.

We construct an appropriate infrared subtraction func-
tion f (sub) to smooth the integrand and thus speed up the
convergence of the vegas estimate of the integral. The
1PI matrix elements can be written as

ξ
(Γ)
jk =

∫

d4k

(2π)4

(

f
(Γ,lat)
jk − f

(sub)
jk

)

+

∫

d4k

(2π)4
f
(sub)
jk

= ξ
(Γ,lat)
jk + ξ

(sub)
jk . (53)

Construction of the subtraction function is guided by the
continuum integral, which has the same infrared behavior
as the corresponding lattice expression. In the continuum

the 1PI correction to the operator J
(Γ)
0,j at the matching

point p′ = 0, p = (m, 0) is given by

∫

d4k
(2π)4

[

u(p′)(−igT aγ̂ρ)−ik/k2 fjΓSjU
]

×

D
(0)
h (k)(−gT avρ) 1

k2+λ2

≡ αsfj u(p
′)Σ

(Γ,sub)
j U (54)

where D
(0)
h (k) is the heavy quark propagator at

p = (m, 0). This integral can be rendered UV finite with-
out changing the infrared structure by replacing

D
(0)
h (k) =

−i
k0 − iv · k 7→ 2γm

(k +mu)2 +m2
, (55)

where the metric is gµν = diag(+1,+1,+1,+1) in Eu-
clidean space, and the velocity four-vector is given by
u = (iγ, γv). As in Eqn. (49) we write

fju(p
′)Σ

(Γ,sub)
j U =

16π

3
fj

∫

d4k

(2π)4
u(p′)(−iγ̂ρ)

−ik/
k2

ΓSjU
2γm

(k + p)2 +m2
(−vρ)

1

k2 + λ2

=
∑

k=1,2

fkξ
(sub)
jk u(p′)ΓSkU. (56)

The subtraction integral is independent of the Dirac
structure and is easy to solve analytically:

ξ
(sub)
jk =

∫

d4k

(2π)4
f
(sub)
jk

= −δjk
3π

(

1 + logλ2/m2
)

+O(λ/m). (57)

This concludes our discussion of the structure of the
matching calculation. In the next section we present
numerical values for different quark masses and frame
velocities.

V. NUMERICAL RESULTS

In Figs. 5 and 6 we show results for the matching co-
efficients for the vector and tensor current (see Tables II

to V for numerical values).

In both cases we use a heavy mass of m = 2.8 and a
stability parameter n = 2. These are the values currently
used in nonperturbative calculations of heavy-light form
factors on coarse MILC lattices [19, 20]. The gluon action
is Symanzik improved [63]. We present results both for
the ASQTad and HISQ light quark action.

For the vector current we calculate the matching coef-
ficients for three different directions of the Lorentz index
µ: temporal (µ = 0), parallel to the frame velocity (de-
noted ‖) and perpendicular (⊥). The frame velocity is
chosen to be along the lattice axis µ = 1. For v = 0 we
consider a corresponding set of directions: µ = 0, µ = 1
and µ = 2.

For the tensor current there are four different cases for
indices (µ, ν): (0, ‖), (0,⊥), (‖,⊥) and (⊥,⊥). For v = 0
we choose (µ, ν) = (0, 1), (0, 2), (1, 2) and (2, 3). The
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FIG. 5. Matching coefficients, vector current (top) and ten-
sor current (bottom). The heavy quark mass is m = 2.8 and
the ASQTad action is used to discretize the light quark. Due
to chiral symmetry discussed in the main text the following

matching coefficients are identical for the tensor current: c
0‖
−

(open red squares) and c⊥⊥
− (open red downward triangles),

c0⊥− (open red circles) and c
‖⊥
− (open red upward triangles),

c
0‖
+ (filled blue squares) and c⊥⊥

+ (filled blue downward tri-

angles), c0⊥+ (filled blue circles) and c
‖⊥
+ (filled blue upward

triangles).

renormalization scale of the tensor current is µ = m.

A. Discussion

As the light quark is massless its propagator and vertex
functions anticommute with γ̂5. With σ01 = iγ̂5σ23, this
implies that matching coefficients for (0, ‖) and (⊥,⊥)
are identical (given that we boost in the direction µ = 1).
The same holds for (0,⊥) and (‖,⊥), as σ02 = −iγ̂5σ13.
For v = 0 the matching coefficients for all combina-
tions of (µ, ν) agree as there is no preferred direction.

Heavy quark symmetry (γ̂0Ψ̃v = Ψ̃v) and relations such
as γ̂0γ̂j = −iσ0j can be used to relate 1PI matrix ele-
ments of the vector and tensor current.
We emphasize that the magnitude of all matching co-

efficients is reduced by including mean field corrections
in the renormalization parameters, the dependence on
the frame velocity is weak and all matching coefficients
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FIG. 6. Matching coefficients, vector current (top) and tensor
current (bottom). The heavy quark mass is m = 2.8 and the
HISQ action is used to discretize the light quark. See the
comment on Fig. 5 for relations between the tensor current
matching coefficients.

(except for c
(T )
+ , which depends on the renormalization

scale) are of order 0.3 or smaller for moderate v. With
αs(2/a) ≈ 0.3 the relative size of the radiative corrections
does not exceed 10%. From heavy quark power counting
we expect the matrix elements of the O(1/m) operators
(which are matched at tree level) to be suppressed by
the same factor ΛQCD/m ≈ 0.1 relative to the leading
operators.

The matching coefficients appear to diverge for v → 1.
It should be noted that whereas mNRQCD reduces to
NRQCD in the limit v → 0, the collinear theory at v = 1
is qualitatively different, in particular both mass and ve-
locity renormalization are not defined in this limit.

In addition, for large v the momentum distribution of
the heavy quark in the initial state meson is boosted by a
factor of γ so that for highly relativistic frame velocities
the power counting in 1/m will break down. As shown
in [15] the statistical errors of nonperturbative matrix
elements grow with decreasing q2 and in practise it is
unlikely that they will be calculated for v & 0.5.
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1. Vector current

The matching coefficient for the zero component of the
vector current at m = 2.8, c(V )0 = 0.04293(52) in Ta-
ble II, is in perfect agreement with the corresponding
value ρ̃0 = 0.043(2) in Table III of [60]. For v = 0 we
find that the matching coefficients c(V )1 = 0.26970(40)
and c(V )2 = 0.26929(39) agree within errors as would be
expected from rotational invariance and are consistent

with ρ̃
(0)
k = 0.270(1) in Table II of [10].

The splitting between the matching coefficients for dif-
ferent Lorentz indices is reduced by using the HISQ light
quark action. This reduction is not, however, as pro-
nounced as for the tensor current. In the continuum the
matching coefficient c

(V )
− is zero. Using the HISQ action

reduces the magnitude of c
(V )‖
− by nearly a factor of two

and an even stronger reduction is observed for c
(V )0
− .

2. Tensor current

For the tensor current we find that the splitting be-
tween the matching coefficients for (µ, ν) = (0, ‖) and
(0,⊥) is reduced by using the HISQ action for the light
quark. A similar reduction is seen in the splitting be-
tween the (‖,⊥) and (⊥,⊥) matching coefficients.

The matching coefficients c
(T )µν
− are always very small

and their magnitude is about 0.1. The size of c
(T )µν
+

depends on the continuum renormalization scale µ; for
µ = m, we find that these coefficients are also very small
when using ASQTad light quarks. They are, however,
larger when the HISQ action is used to discretize the
light quark.

3. Quark mass dependence

We repeated the calculations for a heavy quark mass
m = 1.9, which corresponds roughly to the bare quark
mass on the fine MILC lattices. The results for a range
of frame velocities are shown in Tables VI to IX. The
absolute size of the matching coefficients is larger than
for m = 2.8 but still typically lies in the range 0.1 - 0.5
for the frame velocities considered.

VI. CONCLUSION

M(oving) NRQCD is a useful tool for extending the
range of accessible q2 in a lattice calculation of heavy-
light form factors. The formalism has been improved
and tested extensively over the last years. Radiative cor-
rections to the effective actions have been calculated in
a previous publication [15]. Further reduction of system-
atic uncertainties is justified by an increase in precision of

experimental results. In this paper we show how system-
atic errors due to radiative corrections can be reduced
by renormalizing the heavy-light vector and tensor cur-
rents. After cancelling infrared divergences the one loop
corrections to matching coefficients are of the order one
and smaller. The results will be used in the current cal-
culation of nonperturbative form factors [20].
As the lattice imposes a cutoff ∼ 1/a, operators which

are formally suppressed by 1/m can “mix down” to the
leading order operators [64]. These power law terms can
be suppressed by constructing perturbatively subtracted

O(1/m) operators J
(Γ)sub
k = J

(Γ)
k − αsξ

(Γ)
k0 J

(Γ)
0 which do

not mix down to the leading operators at one loop order.

ξ
(Γ)
k0 is calculated from the one particle irreducible correc-
tions to the O(1/m) operators. We find that at v = 0.4
the non-perturbative matrix element of the subtracted
1/m operators is a factor of around 0.05 smaller than the
leading order matrix element, which is consistent with
heavy quark power counting where ΛQCD/m ∼ 0.1. Be-
fore subtraction the ratio of the matrix elements can be
as large as 0.3.
In this work we used the ASQTad and HISQ actions

to discretize the light quark but it should be noted that
our approach is easily extended to other discretizations
such as the Domain Wall fermion action [65].
With currently available techniques only matrix ele-

ments of local operators in rare exclusive decays can be
computed in lattice QCD. Often these operators describe
the dominant effects. For the radiative decay B → K∗γ
the four quark operators Q3, . . . , Q6 are suppressed by
their small Wilson coefficients. At the physical point
where q2 = 0, the contribution of Q2 is suppressed as
the cc vector resonance which connects this operator and
the external photon is far off shell. Model calculations
show that the matrix elements of the chromomagnetic
operator Q8 are small. This implies that the dominant
contribution comes from the electromagnetic tensor op-
erator Q7 and the matrix elements of this operator can
be evaluated in lattice QCD.
An additional complication is that the effective heavy

quark theory is only valid at maximum recoil, i.e. at
q2 = m2. Results have to be extrapolated to q2 = 0
using a phenomenological ansatz. A simple, physically
motivated parametrization is given in [66, 67]. Recently
a model independent parametrization, which uses the an-
alyticity of the form factors, has been suggested in [68].
Even if the dominant contribution to a given process

is not given by a local operator, lattice calculations are
still useful when combined with other approaches such as
QCD sum rules.
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Appendix A: Pole shift

In this appendix we discuss the choice of contour for
the lattice integrals. As for the self-energy calculations in
Ref. [15], care has to be taken when choosing the integra-
tion contour in the k0 plane (where k is the momentum
of the gluon in the loop). The heavy quark pole must lie
inside the integration contour (in the z = eik0 plane) but
for certain values of the loop momentum it lies outside
the unit circle. The integration contour then has to be
deformed to ensure that the result can be Wick-rotated
back to Minkowski space.
In the following we discuss the corresponding contour

shift for the lattice three point functions. We begin by
mapping the positions of the poles of the light quark
propagator and then discuss the contour choice for the
full integrands.

1. Poles of the light quark action

We use the ASQTad and HISQ actions to describe the
light, relativistic quarks and, as discussed in the main
text, we treat these quarks as being massless. The prop-
agators for these actions are identical, with denominator

∆ =
∑

ν

sin2(kν)

(

1 +
1

6
sin2(kν)

)2

= ω(1 +
1

6
ω)2 + s(k), (A1)

where s(k) ≡ ∑3
j=1 sin

2(kj)
(

1 + 1
6 sin

2(kj)
)2

and

ω = sin2(k0).
The poles of the propagator correspond to ∆ = 0.

For given fixed, spatial three-momentum k (with

kj ∈ [−π, π]), finding the poles reduces to solving a cubic
equation with real coefficients,

y3 − 12y + 36s(k)− 16 = 0, (A2)

where y = ω + 4. This equation either has three real
solutions, or one real solution and one conjugate pair of
complex solutions, depending on the sign of the discrim-
inant D [69]: defined by

D = q2 − 64 with q = 18s(k)− 8 . (A3)

It has three real solutions if D ≤ 0 (or equivalently
s(k) ≤ 8/9):

y1 = −2P cosβ, y2,3 = 2P cos
(

β ± π

3

)

(A4)

where β = 1
3 arccos(q/P

3) and P = 2 sgn q = ±2.
Alternatively, it has one real solution and one conju-

gate pair of complex solutions if D > 0 (or equivalently
s(k) > 8/9):

y1 = −2P coshβ, y2,3 = P (coshβ ± i
√
3 sinhβ) (A5)

where β = 1
3 arccosh(q/P

3) and P is defined as above.
In either case, for each ω = y − 4, there are four solu-

tions for z = eik0 , which can be labelled as:

z±± = ±
√

1− 2ω ± 2
√

ω2 − ω. (A6)

Of these twelve poles, two are “physical” and survive in
the continuum limit. They can be identified as those that
lie on the unit circle |z| = 1 for k → 0. The other ten
“spurious” poles are lattice artifacts with masses propor-
tional to a−1 and therefore decouple in the continuum
limit. These poles (sometimes called ghost poles) are, of
course, not the lattice doublers.
We calculated z for a large number of randommomenta

k with kj ∈ [−π, π]; the resulting distribution of the poles
in the complex plane is shown in Fig. 7.
It is useful to compare the positions of these poles of

the improved actions with those of the naive propagator.
The equation describing the position of the poles is linear
in ω, leading to four solutions for z:

z
(naive)
±± = ±

√

1 + 2
◦

k
2

± 2

√

◦

k
2

(1 +
◦

k
2

) (A7)

with
◦

k
2

=
∑3
j=1 sin

2(kj). We show the comparison as

a function of |
◦

k| in Fig. 8. For each spatial momentum,
all the poles z in the improved propagator lie outside

the region defined by |z(naive)±+ | < |z| < |z(naive)±− |. This
allows us to use the positions of the naive poles as a safe
lower bound for the positions of the improved poles when
choosing integration contours.

http://www.hpc.cam.ac.uk
http://www.ecdf.ed.ac.uk
http://www.edikt.org.uk
http://www.usqcd.org/fnal
http://www.deisa.eu
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FIG. 7. Poles of the massless ASQ/HISQ fermion propagator
in the complex plane.
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FIG. 8. Absolute value of poles in the massless naive

and ASQ/HISQ fermion propagator as a function of |
◦

k| =
√

∑3
j=1 sin

2(kj). The plot is generated by finding the poles

for a large random sample of momenta kj ∈ [−π, π].

To take care of causality one can employ the iε pre-
scription, changing the denominator to

∆ =
∑

ν

sin2(kν)

(

1 +
1

6
sin2(kν)

)2

− iε. (A8)

For the discussion of the effects of this, it is sufficient to
concentrate on the three poles outside the unit circle with
positive real part (the other poles are related to these by
transformations z → 1/z,−z,−1/z). One of these is the
physical pole, which for s(k) = 0 lies on the unit circle
with a small negative imaginary part. In addition, there
are two additional, spurious poles with larger real part:
one with a negative (and small) imaginary part and one
with a positive (and small) imaginary part.
The movement of these poles as the momentum in-

creases is shown in Fig. 9. As s(k) gets larger, the physi-
cal pole moves outwards. The spurious poles, meanwhile,
move in opposite directions: one moves outwards just
below the real axis and away from the physical pole; the

Re(z)

Im(z)

s(k)=8/9
|z|=1

FIG. 9. Movement of three of the twelve poles in the mass-
less ASQ/HISQ propagator in the z complex plane (the other
poles are related by the transformations z → 1/z,−z,−1/z).
The arrows show the motion as s(k) increases. The physi-
cal pole is shown with a solid (red) line. The spurious poles
are shown using a dashed (blue) line. The unit circle is also
shown (in green). The contour pinch occurs for s(k) = 8/9.

other, meanwhile, moves inwards just above the real axis,
towards the physical pole.
When s(k) = 8/9, the physical pole touches (within

distance 2ε) one of the spurious poles and both, now
being complex conjugates of each other, start to move
away from the real axis in opposite directions.
Having established the positions of the poles, in the

next section we will use these to choose the contours in
the lattice integration appropriately.

2. Pole shift in one particle irreducible integrals

In this section we discuss the poles of one particle ir-
reducible three point integrals in Sec. IVH.
Let the position of the heavy quark pole in the z plane

be denoted by zh and the poles of the naive gluon prop-
agator by z± such that |z−| < 1 < |z+|. The two poles of

the naive light quark action are z
(ℓ)
± , whereas the six poles

of the improved light quark action are located at z
(ℓ)
±,j

(and the corresponding positions with opposite sign), or-
dered such that

|z(ℓ)−,3| < |z(ℓ)−,2| ≤ |z(ℓ)−,1| < 1 < |z(ℓ)+,1| ≤ |z(ℓ)+,2| < |z(ℓ)+,3| .
(A9)

Note that, as discussed in the previous section, only one
of the poles is physical.
From the calculation of heavy quark renormalization

parameters, it is known for naive (Wilson) glue that
|zh| < z+ [15]. The poles of the Symanzik-improved
gluon action lie outside the band defined by z− < |z| <
z+, so the same holds for improved gluons. We can there-
fore concentrate on the relative positions of the poles of
the heavy and (improved) light quark propagator.
At high frame velocities and for certain choices of spa-

tial momentum, it turns out that the heavy quark pole
can cross poles of the light propagator outside the unit
circle. Note, however, that as discussed in the main
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 0.1

 1

 10

-π -π/2 0 π/2 π

|z
|

x

FIG. 10. Absolute values of poles as a function of x with
k = (x, 0, 0). Poles of naive gluons are shown with a dashed
(green) line; of improved fermions with a long dashed (blue)
line; of the simple mNRQCD action (H0 only) with a dotted
(magenta) line; and of the full mNRQCD action with a solid
(red) line. The frame velocity is v = 0.95, the heavy quark
mass m = 2.8 and the stability parameter n = 2.

text, it is unlikely that very large frame velocities will
be used in the evaluation of non-perturbative matrix ele-
ments. Examples are shown in Fig. 10, where we choose
k = (x, 0, 0) with −π < x < π and discuss both a simple
action with H0 only and the full mNRQCD action.
The crossings are seen for certain negative values of

x, where |z(ℓ)+,1| < |zh| < |z(ℓ)+,2|. The problem gets worse
if the “full” mNRQCD action is used. To be able to
Wick-rotate back to Minkowski space in these cases, the
contour needs to be deformed such that it encloses the
heavy quark pole but not the light quark poles outside
the unit circle. Suitable contours are shown on the left
in Fig. 11. In a similar way to that used in Ref. [22], the
contours can be deformed to avoid the poles as much as
possible, arising at the triple contours shown on the right
in Fig. 11.
Computationally, the procedure is as follows. We

choose the contour(s) separately for each value of the
spatial momentum (generated, for instance, by the ve-

gas integration code):

1. |zh| < z−, |z(ℓ)−,1|: As zh is not the smallest negative
pole and the contour does not need to be shifted
from |z| = 1.

2. z−, |z(ℓ)−,1| < |zh| < z+, |z(ℓ)+,1|. The contour

is shifted outwards to halfway between |zh| and

min{z+, z(ℓ)+,1}.

3. |z(ℓ)+,j| < |zh| < |z(ℓ)+,j+1|, z+ for j = 1, 2 (see Fig. 10).
A pole crossing has occurred and it is necessary to
integrate along three contours: (a) anticlockwise
without shift, |z| = 1; (b) clockwise, shifting the

contour midway between |z(ℓ)+,j| and |zh|; and (c)

counterclockwise with the contour between |zh| and
min{|z(ℓ)+,j+1|, z+}.

To speed up the vegas calculation, in cases (1) and (2)
we first check using the poles of the naive light quark ac-
tion, only calculating the poles of the improved version
if that test is inconclusive. When shifting a contour mid-
way between poles za and zb, we shift the contour to√
zazb.
As the pole crossing only occurs for large momenta this

is a lattice artifact which would disappear in the contin-
uum limit. It must, however, be included in a lattice–
continuum matching calculation.
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FIG. 11. Integration contour for momentum space configurations with pole crossing. The light quark poles are denoted by ×,
the naive gluon poles by ◦ and the heavy quark pole by �.
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v c(V )0 c(V )1 c(V )2

0.00 −0.04293(52) −0.26970(40) −0.26929(39)

v c
(V )0
+ c

(V )‖
+ c

(V )⊥
+

0.10 −0.1945(21) −0.0553(22) −0.1384(18)

0.20 −0.1965(12) −0.0500(13) −0.1411(12)

0.30 −0.2005(10) −0.0419(11) −0.1444(10)

0.40 −0.20708(84) −0.0293(10) −0.15071(88)

0.50 −0.21660(77) −0.01038(88) −0.15972(84)

0.60 −0.22620(73) −0.01358(85) −0.16775(85)

0.70 −0.24297(71) −0.05349(80) −0.17817(87)

0.75 −0.25596(72) −0.08412(80) −0.18243(91)

0.80 −0.27674(77) −0.12920(85) −0.1862(10)

0.85 −0.3179(13) −0.2057(13) −0.1918(12)

0.90 −0.4244(15) −0.3604(16) −0.1986(15)

0.95 −0.6492(19) −0.6615(19) −0.2186(23)

v c
(V )0
− c

(V )‖
− c

(V )⊥
−

0.10 −0.1533(22) −0.3227(22) −0.1301(17)

0.20 −0.1547(13) −0.3220(13) −0.1274(10)

0.30 −0.1598(10) −0.3183(10) −0.12224(81)

0.40 −0.16838(86) −0.31106(85) −0.11325(72)

0.50 −0.18137(81) −0.29887(80) −0.09967(67)

0.60 −0.19460(80) −0.28291(80) −0.08532(68)

0.70 −0.21033(81) −0.25390(80) −0.06649(69)

0.75 −0.21513(84) −0.23150(83) −0.05808(73)

0.80 −0.21139(91) −0.20128(91) −0.05445(80)

0.85 −0.1931(11) −0.1530(12) −0.0561(10)

0.90 −0.1353(13) −0.0713(14) −0.0777(12)

0.95 −0.0615(23) −0.0832(23) −0.1347(22)

TABLE II. Vector current matching coefficients for heavy quark mass m = 2.8. The ASQTad action is used to discretize the
light quark. The Lorentz indices can be timelike (0), parallel (‖) or perpendicular (⊥) to the frame velocity. The table shows
the central value and error from the vegas integration.
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v c(T )0,1 c(T )0,2 c(T )1,2 c(T )2,3

0.00 −0.0762(12) −0.0761(12) −0.0763(12) −0.0761(12)

v c
(T )0,‖
+ c

(T )0,⊥
+ c

(T )‖,⊥
+ c

(T )⊥,⊥
+

0.10 −0.0507(24) −0.0159(21) −0.0157(22) −0.0463(24)

0.20 −0.0559(17) −0.0206(16) −0.0214(16) −0.0526(17)

0.30 −0.0675(16) −0.0325(15) −0.0321(15) −0.0652(16)

0.40 −0.0861(15) −0.0496(15) −0.0497(15) −0.0846(15)

0.50 −0.1148(16) −0.0748(15) −0.0750(15) −0.1136(16)

0.60 −0.1605(17) −0.1135(16) −0.1136(16) −0.1595(17)

0.70 −0.2302(19) −0.1666(18) −0.1668(18) −0.2295(19)

0.75 −0.2791(21) −0.1984(21) −0.1992(21) −0.2782(21)

0.80 −0.3379(26) −0.2280(25) −0.2292(25) −0.3368(26)

0.85 −0.4006(34) −0.2397(35) −0.2397(35) −0.3990(34)

0.90 −0.4463(53) −0.1688(53) −0.1696(53) −0.4441(53)

0.95 −0.279(14) −0.224(14) −0.223(14) −0.279(14)

v c
(T )0,‖
− c

(T )0,⊥
− c

(T )‖,⊥
− c

(T )⊥,⊥
−

0.10 −0.1184(20) −0.0849(18) −0.0871(18) −0.1189(20)

0.20 −0.1147(11) −0.0839(11) −0.0855(11) −0.1149(11)

0.30 −0.10781(85) −0.07967(86) −0.08054(86) −0.10774(85)

0.40 −0.09607(74) −0.07144(76) −0.07214(77) −0.09583(74)

0.50 −0.07857(69) −0.05896(72) −0.05912(72) −0.07848(69)

0.60 −0.05889(69) −0.04414(72) −0.04412(72) −0.05860(69)

0.70 −0.03355(70) −0.02162(73) −0.02142(73) −0.03332(70)

0.75 −0.02163(74) −0.00812(77) −0.00787(76) −0.02131(74)

0.80 −0.01460(82) −0.00494(84) −0.00522(84) −0.01425(82)

0.85 −0.0146(10) −0.0199(10) −0.0205(10) −0.0142(10)

0.90 −0.0361(13) −0.0310(13) −0.0312(13) −0.0357(13)

0.95 −0.0980(22) −0.0125(22) −0.0114(22) −0.0976(22)

TABLE III. Tensor current matching coefficients for heavy quark mass m = 2.8. The ASQTad action is used to discretize the
light quark.
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v c(V )0 c(V )1 c(V )2

0.00 −0.10173(91) −0.03811(87) −0.03825(87)

v c
(V )0
+ c

(V )‖
+ c

(V )⊥
+

0.10 −0.1323(22) −0.1980(22) −0.1593(20)

0.20 −0.1318(15) −0.1942(15) −0.1575(14)

0.30 −0.1286(13) −0.1902(13) −0.1513(12)

0.40 −0.1226(12) −0.1835(12) −0.1417(12)

0.50 −0.1147(11) −0.1732(12) −0.1276(11)

0.60 −0.1079(11) −0.1636(11) −0.1116(11)

0.70 −0.0982(11) −0.1454(11) −0.0895(11)

0.75 −0.0906(11) −0.1307(11) −0.0760(12)

0.80 −0.0775(11) −0.1067(11) −0.0610(12)

0.85 −0.0465(12) −0.0578(12) −0.0412(14)

0.90 −0.0268(13) −0.0411(14) −0.0157(16)

0.95 −0.2011(22) −0.2624(21) −0.0229(23)

v c
(V )0
− c

(V )‖
− c

(V )⊥
−

0.10 −0.0322(21) −0.1574(20) −0.1218(16)

0.20 −0.0303(13) −0.1562(12) −0.1183(10)

0.30 −0.0269(10) −0.15322(93) −0.11199(78)

0.40 −0.02062(84) −0.14692(82) −0.10099(70)

0.50 −0.01122(78) −0.13632(76) −0.08488(66)

0.60 −0.00253(77) −0.12358(76) −0.06641(67)

0.70 −0.00754(78) −0.10023(77) −0.04171(68)

0.75 −0.00961(81) −0.08269(80) −0.02950(72)

0.80 −0.00407(88) −0.05947(88) −0.02188(79)

0.85 −0.0132(10) −0.0209(10) −0.01954(93)

0.90 −0.0648(13) −0.0436(13) −0.0357(12)

0.95 −0.2373(22) −0.1771(23) −0.0933(22)

TABLE IV. Vector current matching coefficients for heavy quark mass m = 2.8. The HISQ action is used to discretize the light
quark.
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v c(T )0,1 c(T )0,2 c(T )1,2 c(T )2,3

0.00 −0.2317(15) −0.2318(15) −0.2316(15) −0.2317(15)

v c
(T )0,‖
+ c

(T )0,⊥
+ c

(T )‖,⊥
+ c

(T )⊥,⊥
+

0.10 −0.3610(25) −0.3330(23) −0.3305(23) −0.3555(25)

0.20 −0.3643(19) −0.3380(18) −0.3375(18) −0.3614(19)

0.30 −0.3741(17) −0.3500(17) −0.3496(17) −0.3726(17)

0.40 −0.3890(17) −0.3691(17) −0.3690(17) −0.3881(17)

0.50 −0.4120(17) −0.3974(17) −0.3970(17) −0.4109(17)

0.60 −0.4480(18) −0.4410(18) −0.4414(18) −0.4469(18)

0.70 −0.5022(21) −0.5040(20) −0.5043(20) −0.5011(21)

0.75 −0.5394(23) −0.5437(22) −0.5441(22) −0.5384(23)

0.80 −0.5829(27) −0.5843(26) −0.5854(26) −0.5827(27)

0.85 −0.6264(35) −0.6102(34) −0.6103(34) −0.6264(35)

0.90 −0.6497(53) −0.5754(53) −0.5761(53) −0.6490(53)

0.95 −0.458(14) −0.240(14) −0.240(14) −0.459(14)

v c
(T )0,‖
− c

(T )0,⊥
− c

(T )‖,⊥
− c

(T )⊥,⊥
−

0.10 −0.1230(19) −0.0964(17) −0.0955(18) −0.1234(19)

0.20 −0.1187(11) −0.0939(11) −0.0938(11) −0.1187(11)

0.30 −0.11138(82) −0.09018(84) −0.09064(84) −0.11126(82)

0.40 −0.09914(72) −0.08398(75) −0.08432(75) −0.09898(72)

0.50 −0.08099(67) −0.07380(70) −0.07417(70) −0.08075(67)

0.60 −0.05968(67) −0.06302(70) −0.06342(70) −0.05937(67)

0.70 −0.03107(68) −0.04637(71) −0.04668(71) −0.03060(68)

0.75 −0.01635(73) −0.03647(75) −0.03669(75) −0.01583(72)

0.80 −0.00591(80) −0.02745(82) −0.02778(82) −0.00529(80)

0.85 −0.00098(94) −0.0168(10) −0.0169(10) −0.00026(94)

0.90 −0.0146(12) −0.0102(12) −0.0108(12) −0.0141(12)

0.95 −0.0705(22) −0.0299(22) −0.0302(22) −0.0696(22)

TABLE V. Tensor current matching coefficients for heavy quark mass m = 2.8. The HISQ action is used to discretize the light
quark.
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v c(V )0 c(V )1 c(V )2

0.00 −0.06534(59) −0.33741(41) −0.33681(41)

v c
(V )0
+ c

(V )‖
+ c

(V )⊥
+

0.01 −0.246(18) −0.185(18) −0.162(14)

0.10 −0.2164(21) −0.1954(22) −0.1514(18)

0.20 −0.2147(13) −0.1924(14) −0.1501(12)

0.30 −0.2170(10) −0.1849(12) −0.1506(10)

v c
(V )0
− c

(V )‖
− c

(V )⊥
−

0.01 −0.294(18) −0.530(18) −0.185(14)

0.10 −0.2831(21) −0.5337(22) −0.1848(17)

0.20 −0.2829(13) −0.5353(13) −0.1847(11)

0.30 −0.2889(11) −0.5333(11) −0.18050(89)

TABLE VI. Vector current matching coefficients for heavy quark mass m = 1.9. The ASQTad action is used to discretize the
light quark.

v c(T )0,1 c(T )0,2 c(T )1,2 c(T )2,3

0.00 −0.3410(16) −0.3411(16) −0.3414(16) −0.3412(16)

v c
(T )0,‖
+ c

(T )0,⊥
+ c

(T )‖,⊥
+ c

(T )⊥,⊥
+

0.01 −0.141(18) −0.210(14) −0.205(14) −0.167(18)

0.10 −0.1524(26) −0.2094(24) −0.2085(24) −0.1577(26)

0.20 −0.1448(21) −0.2017(20) −0.2017(20) −0.1476(21)

0.30 −0.1319(19) −0.1907(18) −0.1903(18) −0.1339(19)

v c
(T )0,‖
− c

(T )0,⊥
− c

(T )‖,⊥
− c

(T )⊥,⊥
−

0.01 −0.162(18) −0.119(14) −0.119(14) −0.190(18)

0.10 −0.1784(20) −0.1268(18) −0.1285(18) −0.1814(20)

0.20 −0.1777(12) −0.1267(12) −0.1273(12) −0.1785(12)

0.30 −0.1712(10) −0.12228(94) −0.12256(94) −0.17183(95)

TABLE VII. Tensor current matching coefficients for heavy quark mass m = 1.9. The ASQTad action is used to discretize the
light quark.
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v c(V )0 c(V )1 c(V )2

0.00 −0.15556(94) −0.01365(88) −0.01296(88)

v c
(V )0
+ c

(V )‖
+ c

(V )⊥
+

0.01 −0.095(17) −0.273(17) −0.164(13)

0.10 −0.1180(23) −0.2782(22) −0.1721(20)

0.20 −0.1198(16) −0.2779(16) −0.1720(15)

0.30 −0.1176(13) −0.2744(14) −0.1689(13)

v c
(V )0
− c

(V )‖
− c

(V )⊥
−

0.01 −0.055(17) −0.283(17) −0.189(13)

0.10 −0.0359(21) −0.2908(21) −0.1840(17)

0.20 −0.0366(13) −0.2926(13) −0.1831(11)

0.30 −0.0415(10) −0.2914(10) −0.17766(88)

TABLE VIII. Vector current matching coefficients for heavy quark mass m = 1.9. The HISQ action is used to discretize the
light quark.

v c(T )0,1 c(T )0,2 c(T )1,2 c(T )2,3

0.00 −0.0171(17) −0.0175(17) −0.0172(17) −0.0173(17)

v c
(T )0,‖
+ c

(T )0,⊥
+ c

(T )‖,⊥
+ c

(T )⊥,⊥
+

0.01 −0.199(17) −0.123(13) −0.112(13) −0.174(17)

0.10 −0.1800(27) −0.1163(25) −0.1150(25) −0.1763(27)

0.20 −0.1863(22) −0.1231(21) −0.1229(21) −0.1840(22)

0.30 −0.1966(20) −0.1347(20) −0.1345(20) −0.1950(20)

v c
(T )0,‖
− c

(T )0,⊥
− c

(T )‖,⊥
− c

(T )⊥,⊥
−

0.01 −0.208(17) −0.135(13) −0.125(14) −0.183(17)

0.10 −0.1915(19) −0.1285(17) −0.1287(18) −0.1889(19)

0.20 −0.1889(12) −0.1282(12) −0.1287(12) −0.1876(12)

0.30 −0.18199(93) −0.12518(94) −0.12555(94) −0.18114(93)

TABLE IX. Tensor current matching coefficients for heavy quark mass am = 1.9. The HISQ action is used to discretize the
light quark.
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