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Shear and bulk viscosities for pure glue matter
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Shear η and bulk ζ viscosities are calculated in a quasiparticle model within a relaxation time
approximation for pure gluon matter. Below Tc the confined sector is described within a quasiparticle
glueball model. Particular attention is paid to behavior of the shear and bulk viscosities near Tc.
The constructed equation of state reproduces the first-order phase transition for the glue matter.
It is shown that with this equation of state it is possible to describe the temperature dependence
of the shear viscosity to entropy ratio η/s and the bulk viscosity to entropy ratio ζ/s in reasonable
agreement with available lattice data but absolute values of the ζ/s ratio underestimate the upper
limits of this ratio in the lattice measurements typically by an order of magnitude.

PACS numbers: 25.75.-q, 25.75.Ag

I. INTRODUCTION

The high-energy heavy-ion collisions at SPS and RHIC
energies have shown evidence for a new state of matter
characterized by very low shear viscosity to entropy den-
sity ratio η/s similar to a nearly ideal fluid [1–4]. Lattice
calculations indicate that the crossover region between
hadron and quark-gluon matter has been reached in these
experiments. On the other hand lattice calculations per-
formed in gluodynamics (GD) clearly demonstrate that
there occurs the first order phase transition.
The shear η and bulk ζ viscosities are parameters

which quantify dissipative processes in the hydrodynamic
evolution of a fluid. It is known that behavior of trans-
port coefficients is sensitive to the presence of phase tran-
sitions in a medium (see papers [5–11] and references
therein). Values of the bulk and shear viscosities near
the phase transition critical temperature Tc affect the hy-
drodynamic evolution of the medium and may influence
observables.
Lattice QCD is the most powerful technique to extract

nonperturbative information on equation of state (EoS).
When experimental data are lacking, lattice data are of-
ten used to fit model parameters. For pure gluon SU(3)
theory the EoS has been computed on the lattice more
than a decade ago [12]. Recently much more accurate
data have been obtained [13].
Among various existing phenomenological approaches,

quasiparticle (QP) models are used to reproduce results
obtained in the lattice QCD. In the case of GD the QP
models rely on the assumption that for the temperature
T above the critical one, T > Tc, the system consists
of a gas of massive deconfined gluons. In the confined
phase, at T < Tc, the glue matter is considered as a gas
of massive glueballs.
In this paper we aim to investigate the behavior of

viscosity coefficients for a gluon system which exhibits
deconfinement phase transition. The phenomenological
QP model is applied to describe available lattice data on
EoS. Shear and bulk viscosities are calculated within a

relaxation time approximation.

II. EQUATION OF STATE OF GLUE MATTER

In the QP approach the system of interacting gluons
is treated as a gas of noninteracting quasiparticles with
an effective mass mg(T ), which depends on T as [4]

m2
g(T ) =

Nc

6
g2(T ) T 2 (1)

with the temperature-dependent strong interaction con-
stant

g2(T ) =
48π2

11Nc ln [λ(T − Ts)/Tc)]2
, (2)

where parameters Ts/Tc =0.5853, λ =3.3 are taken to fit
the new lattice data, see below, and a number of colors
Nc =3. The energy density and the pressure acquire then
the following forms:

εg(T ) =
dg

2π2

∫
∞

0
p2dp E

exp(E/T )−1 +B(T )

≡ εidg (T,mg(T )) +B(T ), (3)

Pg(T ) =
dg

6π2

∫
∞

0
p2dpp2

E
1

exp(E/T )−1 −B(T )

≡ P id
g (T,mg(T ))−B(T ), (4)

where the degeneracy factor dg = 2(N2
c − 1) = 16 for the

SU(3) gluodynamics, εidg and P id
g are the energy density

and the pressure of the ideal gas of massive gluons. The
temperature-dependent function B(T ) in Eq. (3) results
from the thermodynamical identity, see Ref. [14],

T
dP

dT
− P (T ) = ε(T ), (5)
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which leads to the equation for B(T ):

dB(T )

dT
= −

εidg − 3P id
g

mg

dmg

dT
. (6)

Dealing only with gluon degrees of freedom one as-
sumes that the matter at T < Tc (the ”hadronic” phase)
consists of glueballs. While the meson scattering ampli-
tude is parametrically suppressed as 1/Nc, the scatter-
ing amplitude between glueballs scales as 1/N2

c [15] and
therefore the system can be considered as a noninteract-
ing Bose gas of glueballs. Expected glueball masses are
high, mgb

>
∼1 GeV, and thereby only lowest-lying glue-

ball states contribute to the EoS at temperatures of our
interest. It is difficult to single out which states of the
observed hadronic spectrum are glueballs because of a
lack of knowledge of decay properties and existence of a
strong mixing between glueballs and quark states [16].
However, using typical constant values for lowest-lying
glueball masses within a statistical model one fails to
reproduce the strong increase of thermodynamical vari-
ables near Tc [17]. The T -behavior of masses for two
lowest-lying scalar 0++ and tensor 2++ glueballs was in-
vestigated on the lattice in [18]. Therefore, below we
follow the SU(3) lattice GD results. It was shown that
the pole mass mgb(T ), the Breit-Wigner mass m̃gb(T )
and the thermal width Γgb are linked as follows :

mgb(T ) ≈ m̃gb(T )− 2T +
√
4T 2 − Γ2

gb(T ) . (7)

With the help of the ansatz m̃gb(T ) = m0
gb, i.e. that the

gluon Breit-Wigner masses are given by the PDG values,

Γgb = bgb(T − Tgb) Θ(T − Tgb) for Tgb < T < Tc (8)

and recommended parameters bgb(0
++) =4.23 and

bgb(2
++) =7.152, the relation (7) reproduces quite well

the lattice results in the measured range 0.5Tc < T <
Tc = 265 MeV [18]. In our consideration we limit our-
selves by the two above-mentioned spices of glueballs, the
only ones which lattice data are available for.
With the temperature-dependent glueball masses a

statistical treatment of glueballs needs an additional re-
quirement of thermodynamic consistency. It has been
satisfied in the same way as outlined above for gluons,
see Eqs. (5) and (6) above.
To describe glue matter in the whole range of temper-

atures we use the first order phase transition model in
accordance with lattice results for GD. Thus, one should
conjugate the pure gluon (g) and the glueball (gb) phases
by making use of the Gibbs conditions at the transition:

T g
c = T gb

c ≡ Tc , Pg(Tc) = Pgb(Tc) . (9)

We use the value Tc =265 MeV for the first order phase
transition in agreement with the lattice SU(3) GD [12,
13, 19].
In Fig. 1 we compare the model results for the pres-

sure and the energy density with the lattice data. Values
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FIG. 1: The reduced pressure (left panel) and the energy
density (right panel) of the glue matter. The solid line corre-
sponds to taking into account two glueballs, scalar 0++ with
m0

gb = 1470 MeV and tensor 2++ with m0
gb = 2150 MeV.

Experimental points are the old Karsch’s (filled squares) [20]
and the new Panero’s (circles) [13] lattice results. The region
near Tc is zoomed in the insertion.
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FIG. 2: The trace anomaly (left panel) and the reduced en-
talpy/entropy (right panel) of the glue matter. All notations
are the same as in Fig. 1.

are normalized to those in the Stefan-Boltzmann (SB)
limit. Both ε/εSB and P/PSB increase fast and mono-
tonically with the temperature above Tc but, as we see,
the Stefan-Boltzmann limit is not saturated up to 3Tc.
Two sets of lattice data are similar qualitatively but old
data [20] are appreciably higher than the new ones [13]
at T >

∼ 1.5Tc. Note that the new lattice data are ex-
tended to the region of the glueball phase, T < Tc. Our
QP model gives a reasonable agreement with the new lat-
tice data, except narrow vicinity to the left of Tc where
model predictions are evidently below lattice points (see
insertions in the left and right panels). Due to large glue-
ball masses, this result is not changed if one adds next
2-3 glueball states to our two lowest-lying glueball states,
although there exist statements that a good agreement
with lattice data near Tc can be reached only if the whole
high-lying glueball spectrum of the Hagedorn-type [21] or
glueball condensate [17] are additionally included.

The interaction measure or trace anomaly (ε−3P )/T 4
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and the reduced enthalpy (ε+P )/(εSB+PSB) are demon-
strated in Fig. 2, in the left and right panels, respectively.
Presence of a nonzero trace for the energy-momentum
tensor relates with the breaking of the scale and con-
formal invariances. Again, a nice agreement is observed
between the QP model and the new set of the lattice
data [13], for a narrow region near Tc. The reduced en-
thalpy in the right panel of Fig. 2 for pure gluon system
is just the reduced entropy, s/sSB, which is thereby also
reproduced by our QP model. Thus, we see that the de-
veloped QP model successfully describes thermodynamic
properties of the glue matter.

III. CALCULATION OF VISCOSITY

COEFFICIENTS

In principle it is possible to compute the shear and
bulk viscosities directly from GD at finite temperature
using Kubo formulae. However in practice, this is quite
difficult task because GD is generally a strongly interact-
ing theory with unknown mechanism of the confinement.
Essential assumptions of our kinetic approach are that
quasiparticles are well defined, elementary interactions
are local and the dynamics may be described in the re-
laxation time approximation.
Derivation of viscosity coefficients starts with the ex-

pression for the energy-momentum tensor for quasi-free
[41] boson quasiparticles of spices a :

T µν
a =

∫
dΓ

{
pµap

ν
a

Ea
Fa

}
, (10)

dΓ = da
d3~pa
(2π)3

, pµa = (Ea(~pa, ~r), ~pa) ,

da is the degeneracy factor. The QP distribution func-
tion Fa fulfills the QP kinetic equation. We assume that
gluon and glueball masses are given by Eqs. (1) and (7),
respectively. The QP energy is determined by

Ea(~p) =
√

~p 2 +m2
a(T, Fa) . (11)

Below we consider only collisional sources of the vis-
cosity. Applying the relaxation time approximation to
the relativistic QP kinetic equation we arrive at the ex-
pression for the variation of the energy-momentum tensor
(10) near the local equilibrium state:

δT µν = −
∑

a

∫
dΓ

{
τa

pµap
ν
a

E2
a

pκa∂κFa

}

loc.eq.

, (12)

where τa denotes the relaxation time of the given species
which generally depends on the QP momentum ~pa. The
local equilibrium distribution function for a boson is as
follows:

F loc.eq.
a (pa, xa) =

[
ep

µ

a
uµ/T − 1

]
−1

, (13)

uµ ≃ (1, ~u) for |~u| ≪ 1. Performing variation in (12) we
did not vary quantities which may depend on the distri-
bution function only implicitly, like Ea, since only doing
this one may arrive at the relaxation time form of the QP
kinetic equation. Besides, in the gluon-glueball model
used here only equilibrium values ma(T ) are known and
we are actually not able to find δEa[F ].
The shear and bulk viscosities can be expressed

through the variation of the energy-momentum tensor
as follows:

δTij = −ζ δij ~∇ · ~u− η Wij , (14)

with Wkl = ∂kul + ∂luk −
2

3
δkl ∂iu

i .

Here and below Latin indices run 1, 2, 3. To find the shear
viscosity, we put i 6= j in (14). To find the bulk viscosity,
we substitute i = j in (14) and use that T ii

loc.eq = 3Ploc.eq.

Taking derivatives ∂F loc.eq.
a /∂xµ in Eq. (12) and using

(14) as a definition of viscosity coefficients, by straight-
forward calculations we find expressions (see [22–25]) for
the shear viscosity

η =
1

15T

∑

a

∫
dΓ τa

~p 4
a

E2
a

F eq
a (1∓ F eq

a ) (15)

and for the bulk viscosity [42]

ζ = −
1

3T

∑

a

∫
dΓ τa

~p 2
a

Ea
F eq
a (1∓ F eq

a )Qa, (16)

where the EoS-dependent Qa factor is given by

Qa = −

{
~p 2
a

3Ea
− c2s

[
Ea − T

∂Ea

∂T

]}
(17)

and c2s = ∂P
∂ǫ is the speed of sound squared.

Simplifying, instead of the momentum dependent value
τa one may use the averaged partial relaxation time τ̃a
related to the cross section as

τ̃−1
a (T ) =

∑

a′

na′ (T )
〈
vaa′σt

aa′ (vaa′ )
〉
, (18)

where na′ is the particle density of a
′

-species, σt
aa′ =∫

d cos θ dσ(aa
′

→ aa
′

)/d cos θ (1−cos θ) is the transport
cross section, in general, accounting for in-medium effects
and vaa′ is the relative velocity of two colliding particles

a and a
′

in the case of binary collisions. Angular brackets
denote a quantum mechanical statistical average over an
equilibrated system. However one should bear in mind
that averaged values τ̃−1

a given by Eq. (18) yield only a
rough estimate for the values τ−1

a .

IV. RESULTS FOR VISCOSITIES

Below the shear and bulk viscosities are calculated with
the help of Eqs. (15) and (16), respectively. The only
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quantity which should be still specified is the relaxation
time τ̃a.
Calculations of the relaxation time τ̃a of partons al-

ready in the lowest order in the running coupling constant
g2 require summation of infinitely many diagrams. Re-
summation of the hard thermal loops results in the width
τ̃−1 of partons ∼ g2T ln(1/g) [26]. Based on this fact, the
following parametrization was used for gluons [4, 27]

τ̃−1
g = Nc

g2T

4π
ln

2c

g2
, (19)

with the strong interaction coupling constant (2) and a
tunning parameter c. The relaxation time for a mixture
of scalar and tensor glueballs was estimated according to
Eq. (18) assuming the glueball scattering cross section
σgb =30 mb to be isotropic.
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η/
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FIG. 3: The ratio of the shear viscosity to entropy density
for a pure glue matter. Solid and dashed lines are for our QP
two-phase gluon-glueball model with two different choices of
the coefficient c in Eq. (19), see the text for a detail. The
vertical short-dashed line joins two boundary points of the
mixed gluon-glueball phase. Dot-dashed line shows viscosity
calculations with the relaxation time τ̃g given by Eq. (20).
The horizontal dotted line is the η/s = 1/4π bound. The
lattice gauge SU(3) data with 163 ·8 and 243 ·8 lattice are from
Ref. [29] (triangles and squares) and [30] (filled circles). The
shaded region corresponds to the perturbative result (cited
from [28]).

Comparison between the GD lattice data [29, 30] and
our QP results for the shear viscosity of the glue matter
is presented in Fig. 3. The magnitude of the η/s ratio
in our model is defined mainly by the value of the re-
laxation time (19). The solid line shows results of our
calculation provided we use recommended value c =14.4,
though our parameters of Eq. (2) are slightly different
from those used in Ref. [4]. This c-value was tuned in
Ref. [4] to the old lattice data for thermodynamic quan-
tities [12]. As we see, the η/s ratio gets discontinuity at
T = Tc with more than by an order of magnitude lower
value at T → Tc+0 (in gluon phase) than at T → Tc− 0
(in the glueball phase). Also the solid curve lies rea-
sonably close to the points (filled circles, triangles and

squares) and its value in the minimum is slightly below
the AdS/CFT 1/4π bound [31] (compare with the dotted
curve). Preserving the form of the relaxation time (19)
we can still increase η/s values by tuning the parameter
c. Taking c = 11.44 we achieve the limit case τ̃g

−1 → 0
for T → Tc + 0 (full transparency). In this case (see the
dashed line in Fig. 3 for T > Tc) we may reach a slightly
better overall agreement with the lattice data [29, 30],
and the 1/4π bound is achieved at the minimum. Vary-
ing the c-value in the interval 11.44 < c < 14.4 one may
simulate different values of the η/s jump at T = Tc, but
for temperatures T >

∼ 1.5Tc the η/s ratio changes only
slightly demonstrating a slow increase with the growing
temperature. Thus, bearing in mind large error bars in
the lattice data we are able to conclude that the results
of the developed here two-phase gluon-glueball model are
consistent with the existing lattice results [29, 30]. Per-
turbative regime (see the shaded region) is not achieved
up to very high temperatures.
The η/s ratio for the pure gluon phase in the range of

T ∼ (1−2)Tc was also evaluated in Ref. [32]. The model
employs the QP ansatz for EoS successfully tested to de-
scribe old lattice results [28]. In the paper [32] viscosity
is treated by means of the kinetic theory for gluon quasi-
particles. It is of interest that the model, being consis-
tent with the old (and less accurate) lattice data for vis-
cosity [28] and thermodynamics [20] which overestimate
pressure at T >

∼ 1.5Tc (as follows from the comparison
with new data, see Fig. 1), predicts a stronger tempera-
ture dependence of η/s at T > Tc than our model, which
in turn is consistent with the new lattice data [29, 30].
The crucial point here is that the gluon relaxation time
is defined essentially differently:

τ̃−1
BKR = aη/(32π

2)T g4 log(aηπ/g
2) , (20)

where aη =6.8. Here τ̃−1
BKR ∝ g4, as it was estimated

in early work of Hosoya and Kaiantie [34], whereas the
above used τ̃−1

g ∝ g2 [4, 27].
The η/s ratio obtained with the relaxation time (20)

is plotted in Fig. 3 by the dot-dashed line. This re-
sult for T <

∼ 2Tc recovers that of Ref. [32] but it sig-
nificantly differs from those calculated with Eq. (19).
Using recent lattice results for higher T [29] it is pos-
sible to disentangle two parameterizations of relaxation
times (19) and (20). Indeed, for T >

∼ 10Tc shear viscosity
calculations with (20) demonstrate a noticeable growth
exceeding lattice data and even a perturbative estimate
(η/s)pert ≈ 0.8 − 1.0. Contrary, predictions of our QP
model with relaxation time (19) are in a reasonable agree-
ment with the lattice results and do not contradict per-
turbative estimates. Recently the relaxation time τ̃g was
estimated in Ref. [33] according to Eq. (18) from analysis
of cross sections of the gg → gg and gg → ggg processes.
It was found that η/s=0.13 and 0.076 for values αs =0.3
and 0.6, respectively (which correspond to temperatures
T/Tc =2.6 and 1.36 provided Eq. (2) is used). Would
these points be plotted in Fig. 3, they turned out to be
quite consistent with our QP model results. This can be
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considered as an additional numerical argument in favor
of using Eq. (19) as rather appropriate phenomenological
expression.
The measured lattice points for the ratio of the bulk

viscosity to the entropy density are plotted in Fig. 4
together with different model results. In a broad range
of temperatures the global behavior of lattice data can
be roughly approximated as ζ/s = 0.02/

√
T/Tc − 1 (see

short dashed curve). The reduced bulk viscosity ζ/s cal-
culated in our two-phase gluon-glueball model following
Eqs. (16) and (19) is shown by the solid line for c = 14.4
and by the dashed line for τ̃−1

g vanishing at Tc. Val-
ues of ζ/s for both curves noticeably underestimate the
corresponding values on the approximating short-dashed
curve, typically by an order of magnitude. Nevertheless
the shape of the curves is similar to that given by the
approximating curve. Singularity at T → Tc + 0 demon-
strated by the dashed line (see insertion in Fig. 4) is due
to the divergence of τ̃a in this limiting case.
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FIG. 4: The bulk viscosity to entropy density ratio for a glue
matter. Solid and dashed lines are results of our QP two-
phase gluon-glueball model with two relaxation times as in
Fig. 3. (the vertical short-dashed line joins boundary points
of the mixed phase). The dash-double-dotted line is the cal-
culation result with Eqs. (22) and (19) and dot-dashed one
is calculated according to Eq. (23) and (20). The perturba-
tive estimate (24) is plotted by the dotted line. Experimental
points are from [35] (empty squares) and [29] (filled circles).
Thin short-dashed curve corresponds to a simple approximat-
ing dependence ζ/s = 0.02/

√

T/Tc − 1 to guide the eye.

The bulk viscosity (16) includes rather complicated
factor Qa depending on the EoS used. Using the energy
conservation for a system with temperature-independent
masses of particles one may present the result (16) as
follows:

ζ =
∑

a

da
T

∫
d3p

(2π)3
τaF

eq
a (1∓ F eq

a )

[
~p 2

3Ea
− c2sEa

]2
.(21)

For a single-component gas this expression exactly coin-
cides with the 25-years old result of Gavin [36].
Chakraborty and Kapusta [37] presented another ex-

pression [43]

ζChK =
∑

a

da
T

∫
d3p

(2π)3
τ̄aF

eq
a (1 ∓ F eq

a )Q2
a (22)

which differs from (16) but also reduces to (21) for ma =
const. Note that they also disregard the QP interaction
term in the energy-momentum tensor, see Eq. (99) of
their work. The reasons of differences between (16) and
(22) are discussed in Appendix. The dash-double-dotted
line in Fig. 4 demonstrates the ζChK/s ratio following Eq.
(22) with the relaxation time τ̄g = τ̃g given by Eq. (19)
(for τ̃−1

g → 0 at T → Tc+0). We see that Eq. (22) yields

a strong T suppression of the bulk viscosity at T >
∼ 1.5Tc,

as compared to that given by Eq. (16) (compare dash-
double-dotted and dashed lines in Fig. 4).
A somewhat different expression for ζ was used by

Bluhm, Kämpfer and Redlich [32]. In their model the
bag constant B is a functional of the non-equilibrium
distribution function. They found

ζBKR =
∑

a

da
3T

∫
d3p

(2π)3
τa
Ea

F eq
a (1∓ F eq

a )

× Qa

[
m2

a(T )− T
dm2

a(T )

dT

]
. (23)

Here it was assumed that the QP interaction contributes
to the energy-momentum tensor. Thereby compared to
(16) there appeared the second term Tdm2

a(T )/dT in the
square bracket of Eq. (23). For constant masses the latter
equation is also reduced to (21). Numerical calculations
with (23) (see dot-dashed line in Fig. 4) give rise to
the ζBKR/s ratio which dramatically falls down, being
in large discrepancy with both used above models and
the lattice data for T > 1.5Tc. For T > 1.9Tc Eq. (23)
becomes invalid providing negative values.
A perturbative estimate [35] gives

(ζ/s)pert ≈ 0.02α2
s (24)

for 0.06 ≤ αs ≤ 0.3. Applying T -dependent coupling
constant (2) for αs = g2(T )/4π we get a perturbative
estimate of the bulk viscosity to entropy density ratio
(plotted by the dotted line in Fig. 4). As is seen, in the
region of its applicability Eq. (24) produces only slightly
larger values of ζ/s than those given by our QP model.
Above only the collisional source of the bulk viscosity

has been considered. An another source is associated
with a soft mode, being present near the second order
phase transition point [44], see [9, 10]. The new lattice
GD calculations demonstrate a significant increase of the
ratio ζ/s at approaching the critical point (ζ/s ≃ 0.5÷ 2
at T = 1.02 Tc). These values are neither reproduced
by our QP model using relaxation time Eq. (19) nor by
the approximating short-dash curve exploiting a simple
T dependence of the ζ/s ratio. Might be one needs to
include a soft mode and other extra sources of the bulk
viscosity to fit the lattice data on the bulk viscosity.
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Comparing results presented in Fig. 3 and Fig. 4 we
see that in the gluon phase in a narrow vicinity of the
critical point (for (T − Tc)/Tc

<
∼ 0.1) the ratio ζ/η >

∼ 0.1
reaching the value ζ/η ≃ 0.3 for T → Tc + 0. The ratio
sharply decreases with increase of the temperature up to
values ζ/η ∼ 10−2 ÷ 10−3 for T > 2Tc. Smallness of this
ratio controls the violation of the conformal symmetry.

V. CONCLUSIONS

A quasipartical approach has been applied to the
SU(3) glue matter with temperature-dependent masses.
Matching the pure gluon and glueball phase descriptions
by means of the Gibbs conditions allows one to describe
successfully this system in a thermodynamically consis-
tent way both above and below the critical temperature
Tc. For thermodynamic characteristics the quasiparti-
cle model results are in good agreement with the latest
lattice data.
The constructed equation of state was used to calcu-

late the shear and bulk viscosities in the relaxation time
approximation in a wide temperature range. The magni-
tudes of the shear and bulk viscosities are mainly deter-
mined by the value of the relaxation time which in our
case is evaluated in the hard thermal loop approximation.
With the chosen value of the relaxation time the shear
viscosity to entropy density ratio η/s fits rather well the
scant lattice data. We found that the ratio η/s under-
goes a discontinuity at the critical temperature T = Tc.
At T slightly above Tc the ratio η/s has a minimum,
which value is close to the AdS/CFT bound 1/4π. Then
η/s increases with subsequent growth of the temperature.
The bulk viscosity to entropy density ratio ζ/s also has
a break at Tc. Then it monotonically decreases with the
temperature increase. Although the calculated ζ/s ratio
essentially underestimates the upper limits given by the
corresponding lattice data, its temperature dependence
is well described.
Within our model the ratio ζ/η ≃ 0.3 at T → Tc + 0

and it sharply decreases with the rising temperature till
values ζ/η ∼ 10−2 ÷ 10−3 for T > 2Tc.
We point out that our QP model, including only

the collisional source of the viscosity (with the relax-
ation time estimated within the hard thermal loop pic-
ture), disregards other possible sources [10]. One of such
sources is associated with presence of a soft mode [9] in
the vicinity of the second and weak first order phase tran-
sition critical points. Being included these sources could
allow one to increase the resulting ζ/s ratio. However,
since statistical error bars are very large, new more cer-
tain lattice data are required in order to draw a more
definite conclusion on the agreement or disagreement of
the calculated ζ/s ratio with the lattice results.
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VI. APPENDIX

Deriving kinetic coefficients authors of [22–25] used the
relaxation time approximation to the kinetic equation
presenting collision integral as

StFa = −δFa/τa[F
loc.eq.], (25)

where

δFa = Fa(Ea[F ])− F loc.eq.
a (Ea[F

loc.eq.]), (26)

see e.g., Eqs. (38) and (40) in [25]. Here it was as-
sumed that the collision term should be zero for the
global and local equilibrium states, i.e. for Fa =
F loc.eq.
a (Ea[F

loc.eq.]).
Then after setting Fa = F loc.eq.

a (Ea[F
loc.eq.]) in the

l.h.s. of the kinetic equation one finds

δFa = −
τa[F

loc.eq.]

Ea[F loc.eq.]
pµa

∂F loc.eq.
a (Ea[F

loc.eq.])

∂xµ
a

, (27)

see Eq. (2.3) in [22] and Eq. (42) in [25]. We stress
that all quantities in the r.h.s. of this equation including
the relaxation time τ are expressed in terms of the local
equilibrium distribution functions.
To derive expressions for the shear and bulk viscosities

(15), (16) one presents spatial components of the vari-
ation of the energy-momentum tensor of quasiparticles
(10) as

δT ik =
∑

a

∫
dΓ

piap
k
a

Ea[F ]
δFa −

∑

a

∫
dΓ

piap
k
aF

loc.eq.
a

E2
a[F

loc.eq.]
δEa

→
∑

a

∫
dΓ

piap
k
a

Ea[F loc.eq.]
δFa. (28)

To avoid cumbersome expressions we omitted antiparti-
cle terms. The reduction done in the second line in Eq.
(28) is actually an ansatz: we vary only the distribu-
tion function and do not vary quantities which depend
on the distribution function implicitly (through phase-
space integrals incorporating the distribution function),
i.e., δEa[δF ] are put zero. This reduction is in spirit of
the relaxation time approximation to the kinetic equa-
tion, where the momentum dependent relaxation time
parameter is replaced in actual calculations by an aver-
aged value. Note that dropping the δE term we actually
ignore a sub-leading term in case of a weak coupling con-
stant and/or for a very dilute system, see Eq. (5.22)
of [38]. The distribution function δFa counted from the
local equilibrium value enters expression for δT ik, expres-
sion for δT 00 = 0 (see (45) and (50) in [25]) and expres-
sions for the viscosities. Thus one can easily compute
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kinetic coefficients knowing thermodynamic quantities in
the local rest frame ~u = 0.
However we should note that in the QP Fermi liquid

theory following the work of Abrikosov and Khalatnikov
[39] one usually uses a different procedure to obtain trans-
port coefficients, see [40] for detail. One exploits that in
the original Landau collision term enters a combination

δ

(
∑

a

Ea[F ]

)
· [F1(E1)F2(E2)(1 ∓ F3(E3))(1 ∓ F4(E4))

−F3(E3)F4(E4)(1 ∓ F1(E1))(1 ∓ F2(E2))] , (29)

where Ea are functionals of the exact non-equilibrium dis-
tribution function, a = 1, 2, 3, 4. The square bracketed
term is zero not only for Fa = F loc.eq.

a [Ea(F
loc.eq.)] but

also for F loc.eq.
a (Ea[F ]). Thereby StF loc.eq.

a (Ea[F ]) = 0.
Thus introducing

δF̃a = Fa(Ea[F ])− F loc.eq.
a (Ea[F ]) (30)

in the relaxation time approximation we may rewrite the
collision term as

StFa = −δF̃a/τ̄a[E(F )]. (31)

The quantity τ̄ [F ] entering Eqs. (31) and (22) depends
on unknown exact non-equilibrium distribution function,
since the δ-function term in the collision integral and the
local equilibrium distributions there continue to depend
on exact energies in this approach. If we want to cal-
culate the value of τ [F loc.eq.] entering Eqs. (15), (16)
using Eq. (31) we should still expand E[F ] in (31) near
the known value E[F loc.eq.] everywhere including the δ-
function term in the collision integral.
From the l.h.s. of the kinetic equation one gets

δF̃a = −
τ̄a[F ]

Ea[F ]
pµa

∂F loc.eq.
a (Ea[F ])

∂xµ
a

. (32)

Then one may use a simple expression for δT ik

δT ik =
∑

a

∫
dΓ

piap
k
a

Ea[F ]
δF̃a (33)

since now variations are everywhere performed at fixed
Ea. As above the QP interaction term is omitted. Com-
paring second line of Eq. (28) and (33) we see that disre-
garding implicit dependence E[δF ] Refs [22–25] actually

do not distinguish distributions δF and δF̃ .
Then in both considered approaches one uses exact

relation Ea[F ] = δT 00/δFa, i.e. that the variation of the
energy is determined through δFa as

δT 00 =
∑

a

∫
dΓEa[F ]δFa

=
∑

a

∫
dΓEa[F

loc.eq.]δFa +O((δF )2). (34)

Following (26) and (30) we have

δF − δF̃ =
∂F loc.eq.(E[F loc.eq.])

∂E
δE. (35)

Further instead of using a complicated implicit depen-
dence δE[δF ] with δF given by Eq. (27), that would be
fully correct procedure, Ref. [37] uses the ansatz relations
(see Eq. (102) of that work)

δF̃ = exp

{
−
E[F loc.eq.]

T [F loc.eq.]

}
Eloc.eq.

T 2
loc.eq.

δT, (36)

δE =
δT

E

mdm

dT
=

δF̃

F

T 2

E2

mdm

dT
,

which assume that the distribution function in non-
equilibrium state has the form F = e−E[F ]/T [F ] in the
Boltzmann limit F ≪ 1. Thus although Ref. [37] distin-

guishes distributions δF and δF̃ , it uses very special rela-

tions (36) which might be incompatible with δE(m[δF̃ ])
as it follows from Eqs. (32), (11).

In order to find bulk viscosity one further expresses
Fa = F loc.eq.

a (Ea[F ])(1−Aa∂ρu
ρ), see Ref. [37], and one

observes that the shift of the solution A(E) → A(E)−bE
generates new solutions of the Landau kinetic equation
for arbitrary constant b. Then one chooses b to explicitly
fulfill the Landau-Lifshitz condition uµδT

µν = 0. Note
that this modification of the solution is quite not neces-
sary provided one guarantees that the condition δT 00 = 0
holds in the local rest frame. We have checked that this
condition is satisfied in our QP model.

Finally within this approach one arrives at the expres-
sion (22) for the bulk viscosity which is explicitly posi-
tive definite, whereas positive definiteness of Eq. (16) is
not seen explicitly. However we stress once more that all
quantities in (22) still depend on exact energies while how
the latter depend on unknown exact distribution functions
is hidden. Thus explicit positive definiteness of expres-
sion (22) for ζ presents actually only an apparent im-
provement. Any case, in order to use Eq. (22) in prac-
tical calculations, where only equilibrium quantities are
known, one should replace E[F ] to E[F loc.eq.].

Moreover, we should stress that values of the relax-
ation time in (16) and (22) are different. Since we do
not perform complicated microscopic calculations of the
relaxation time but only estimate its average value we ac-
tually cannot distinguish, which expression (16) or (22)
is more preferable and may use both of them.

Note that Eq. (23) is derived for a different model,
where the QP interaction contributes to the energy-
momentum tensor. Also authors use different value for
the relaxation time.

Thus different ansatze used in derivation of Eqs. (16),
(22) and (23) lead to different values of the bulk viscosity,
as it is shown in Fig. 4.



8

[1] E.V. Shuryak, Nucl. Phys. A750, 64 (2005).
[2] M. Gyulassy and L. McLerran, Nucl. Phys. A750, 30

(2005).
[3] U.W. Heinz, arXiv:nucl-th/0512051.
[4] A. Peshier and W. Cassing, Phys. Rev. Lett. 94, 172301

(2005).
[5] J.I. Kapusta, arXiv:0809.3746.
[6] L. P. Csernai, J. I. Kapusta and L. D. McLerran, Phys.

Rev. Lett. 97, 152303 (2006).
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