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ABSTRACT

We present an analytical model of a magnetar as a high density magnetized

quark bag. The effect of strong magnetic fields (B > 5× 1016G) in the equation

of state is considered. An analytic expression for the Mass-Radius relationship is

found from the energy variational principle in general relativity. Our results are

compared with observational evidences of possible quark and/or hybrid stars as

well as with numerical results.

1. Introduction

The fundamental aspects of the physics involved in the description of the matter inside

a white dwarf are well understood (Shapiro & Teukolsky 1983), but in the case of neutron

stars the situation is rather different because the equation of state (EoS) of neutron matter

at very high densities is still unknown.

The interior of a neutron star is an astrophysical laboratory in which matter is com-

pressed to high densities. The compression of matter several times the saturation nuclear

matter density, ρ0, may produce a phase transition from nuclear to quark matter, i.e., an

unconfined quark-gluon plasma. Besides, under suitable circumstances, a conversion d → s

quarks may happen through weak interactions, leading to what has been called strange quark

matter (SQM). It has been stated that SQM may be the absolute ground state of strong

interactions (Bodmer 1971; Witten 1984), although such hypothesis has not been confirmed

yet. The natural scenario where SQM could occur is the inner core of neutron stars. Hence,
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if the SQM hypothesis is true, some neutron stars could be either quark stars or hybrid stars

(stars which have quark cores surrounded by a hadronic shell).

On the other hand, it is well known that at the surface of neutron stars there exist

magnetic fields of the order of 1012−1013G. Compact stars with ultra strong magnetic fields

(102 − 103 larger than those of a typical neutron star) are called magnetars. In such objects

the magnetic field at the surface could be higher than 1018G (de la Incera 2009).

The knowledge of the magnetars composition would help explain some astrophysical

phenomena. Soft gamma ray repeaters (SGRs) and anomalous X-ray pulsars (AXPs) have

been interpreted as evidence of magnetars. However some authors (Cheng & Daib 2002;

Ouyed et al. 2007) claims that hybrid or magnetized quark stars could be the real sources of

SGRs and AXPs. The M-R relationship tells us how matter composing the star behaves un-

der compression, providing information about its composition. Several EoS for neutron, hy-

brid and quark stars have been proposed but none of them are conclusive (Douchin & Haensel

2001; Lattimer & Prakash 2001, 2007; Özel & Psaltis 2009). Each EoS produces a different

Mass-Radius (M-R) relationship which can be contrasted with the available observational

data in order to test their range of validity and/or set bounds on some parameters. At this

particular point astrophysical studies become of great importance since they could shed some

light in understanding fundamental aspects of matter: microphysics could be inferred from

macrophysics. Here lies the great importance of studies related to ultra compact objects. For

instance Lattimer & Prakash (2001, 2007) contrast some M-R relationships obtained theo-

retically for different EoS. Varying some parameters a difference of 4− 10% and 10− 15% in

determining the maximum radius Rmax and mass Mmax, respectively, is shown for the same

EoS.

Several papers study the M-R relationship of highly magnetized quark stars (HMQS)

(Chakrabarty & Sahu 1996; González Felipe & Pérez Mart́ınez 2009; Pérez Mart́ınez et. al.

2010) through numerical integration of the Tolman-Oppenheimer-Volkoff (TOV) equations

for different EoS. Although most studies of quark stars properties have used such method,

Banerjee et. al (2000) had obtained a maximum mass and radius for unmagnetized quark

stars analytically by using a non-relativistic gravitational treatment.

Approximate analytical solutions play an important role in astrophysical analysis, giv-

ing keener insight than the numerical solutions. Moreover, they may be used as a testing

point to check if the numerical scheme is accurate and also they are the first step in the

comparison between theory and observation. Indeed, an approximate analytical solution for

M-R relationship may be all that is required when comparisons with observational limits

that determine the confidence contour for the mass and radius are performed. Besides, in

the high density EoS the uncertainties are of the same order, or larger, that the errors in the
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variational method.

The appropriate treatment for quark stars should be relativistic, since the existence of

a maximum mass is associated to the behavior of a relativistic gas and general relativistic

corrections are dominant (Weinberg 1972). In this paper we shall use the general relativistic

energy variational principle described by Naurenberg & Chapline (1973) to obtain an ana-

lytic approximate formulae for the mass, radius and baryonic number of a highly magnetized

quark star (HMQS). Quark stars are particularly suitable for a variational treatment since

their density profile resembles a constant mass density star. We shall model a HMQS as-

suming quark matter within high density regime in the framework of a modified MIT Bag

model EoS. We also assume that the magnetic field B is low enough to be treated like a

correction in the EoS (B << µ2, with µ the baryon chemical potential). Although, as we

will see in the following Sections, this is not a strong restriction.

The paper is organized as follow. In Section 2 we calculate the thermodynamical quanti-

ties of the system and we analyze the stability of quark matter with respect to decomposition

in baryons. In Section 3 we provide the analytic relativistic M-R relationship and we com-

pare our results with numeric ones from TOV equation (Pérez Mart́ınez et. al. 2010) and

observational data. We also determine the adiabatic index and the speed of sound analyzing

the dynamical stability of the star. In Section 4 we present a summary of our main results

and conclusions.

2. High density quark matter within a strong magnetic field

In this section we shall discuss the analytic approximations to the strange quark matter

EoS in the presence of an uniform magnetic field B ‖ ẑ. Within the framework of the MIT

Bag model, we assume three massless quarks u, d and s, neglecting mediated interactions

between them. We also consider that the strong magnetic field is a small contribution to the

total energy, a fact that will be checked later.

2.1. Quark matter in a magnetic field

Let us compute the grand canonical thermodynamic potential Ω in the high density

regime. Due the Landau quantization the phase space volume integral in the momentum

space is replaced by

1

(2π)3

∫

d3pf(p) =
1

(2π)3

∫

dpzd
2p⊥f(p) =

qB

4π2

ν=∞
∑

ν=0

(2− δν0)

∫ +∞

−∞

dpzf(ν, pz),
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where (2 − δν0) means that the zeroth Landau level is singly degenerate, whereas all other

states are doubly degenerate. The grand canonical potential for each quark in the presence

of a strong magnetic field is given by

Ωi = −qiBgi
8π2

νmax
∑

ν=0

(2− δν0)

[

µ
√

µ2 − 2νqiB − 2νqiB ln
µ+

√

µ2 − 2νqiB√
2νqiB

]

,

where gi = 2× 3, are spin and color degeneracy, and qi is the absolute value of the charge of

the particle, qu = 2|e|/3 and qd = qs = |e|/3, with e the value of electronic charge.

For simplicity, we consider the quark massesmq = 0, which implies that the electrons are

not present and quarks chemical potential are, as a consequence of equilibrium conditions,

all equal µu = µd = µs ≡ µ.

By imposing that

p2z = µ2 − 2νqiB ≥ 0,

we can determine the upper limit of the sum νmax from

ν ≤ µ2

2qiB
≡ νmax.

Note that the presence of the magnetic field will affect the EoS only by a correction

term, even considering magnetic fields of the order of B ≈ 1018G because the magnetic

energy density is small compared with the MIT Bag constant, B, B2 ≪ B. Besides, in the

high density regime we have µ2 ≫ qiB. Thus, the magnetic energy contribution may be

treated as a perturbation.

The series can be summed with the Euler-MacLaurin formula
n

∑

j=0

f(j) =

∫ n

0

f(x)dx+
1

2
[f(n) + f(0)] +

1

12
[f ′(n)− f ′(0)] +R, (1)

where R is the remainder term, usually expressed in terms of periodic Bernoulli polynomials

(Spivey 2006), which can be estimated using

|R| ≤ 1

12

∫ νmax−1

1

∣

∣

∣
f

′′

(ν)
∣

∣

∣
dν.

To avoid divergences that appear in the the limit of high densities or negligible quark

masses, in the third term of equation (1) we apply the Euler-MacLaurin formula in the form

Ωi ≃ Ωi(νmax) + Ωi(0) +

∫ νmax−1

1

Ωi(ν)dν +
1

2
[Ωi(νmax − 1) + Ωi(1)]

+
1

12

[

∂νΩi |(νmax−1) −∂νΩi |(1)
]

+R (2)
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In the limit µ2 ≫ qiB the thermodynamical potential can be found performing first the

integral in equation (2) and then expanding in power series of B. The result is

Ωi = − µ4

4π2 +
3µ2qi B

2π2 +O(B2). (3)

Note that equation (3) has a linear dependence on the magnetic field B instead of a quadratic

one. SQM behaves like a ferromagnet in the B2 ≪ B limit. The particle density ni = −∂Ωi

∂µ

is

ni =
µ3

π2
− 3µ qiB

π2
+O(B2). (4)

The remainder, including terms of order B2 obtained by integrating equation (2) gives

R ≤ 2%. Note that when B = 0 in equations (3, 4) we recover the usual expressions for a

non-interacting massless quark gas at zero temperature and zero magnetic field.

2.2. Equation of state

With the above results, one can form the modified EoS of SQM in the MIT Bag model.

Within this framework, the difference between the energy density of the perturbative and

non-perturbative QCD vacuum is taken into account by the “bag constant” B. The charge

neutrality condition

2nu = nd + ns, (5)

and the β-equilibrium condition

µu = µd = µs ≡ µ

are automatically satisfied.

Combining the results of Section 2 we obtain

Ω =
∑

i=u,d,s

Ωi + B = −3µ4

4π2
+

2Bµ2

π2
+ B+O(B2).

Replacing equation (5) in the baryon number density condition, nB = 1
3

∑

i=u,d,s ni, we

obtain

nB =
µ3

π2
− 2Bµ

π2
+O(B2). (6)

Since we work in the T = 0 limit, the energy density is given by

ρ = Ω + 3µnB + B =
9µ4

4π2
− 4Bµ2

π2
+ B+O(B2), (7)
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whereas the pressure reads

P = −Ω =
3µ4

4π2
− 2Bµ2

π2
− B+O(B2). (8)

Note that we are not considering the anisotropy of pressures (González Felipe et al. 2008)

because we are working in the limit of weak magnetic field, µ2 ≫ qiB. The relation between

the total energy density (equation (7)) and the total pressure (equation (8)) determines the

EoS of the system as

ρ = 3P + 4B+
2µ2B

π2
+O(B2). (9)

By a dimensional comparison between Pmag and B ≈ (145MeV)4 = 57 MeV
fm3 , we find that

Pmag ≃ 0.03B, when B = 5×1018 G, typical of a magnetar. This guarantees the perturbative

treatment method on the magnetic field.

2.3. Stability analysis: Strong Interactions

It is well known that SQM may be stable with respect to decay into nucleons at zero

pressure and zero temperature if its energy per baryon ρ
nB

is less than the energy per baryon

of 56Fe = 930MeV (Farhi & Jaffe 1984). The presence of a magnetic field changes somewhat

this stability condition.

At P = 0 the chemical potential can be written as

µ(B,B) =

[

4B

3
+

2

3

(

4B2 + 3π2
B
)1/2

]1/2

,

which will be replaced in equations (6, 9) to estimate ρ
nB

. Contrary to previous results

(Anand & Singh 1999; Chakrabarty 1999; González Felipe & Pérez Mart́ınez 2009) we found

that the energy per baryon increases with B (equation (9)).

There is a closely linked relationship between B and B: the B value determines an

upper limit for the magnetic field to preserve the quark matter stability condition. Table

1 shows that as B increases the region for quark matter stability becomes more restricted.

The variation of baryon density is quite small for P = 0 when increasing the magnetic field

from 0 up to Bmax (Table 1). Furthermore the baryon density becomes almost constant as

B increases.
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3. Mass-Radius Relationship by Variational Method

The energy variational method in general relativity is explained in detail in Harrison et al.

(1965). Starting from an uniform density configuration in a spherically symmetric distribu-

tion the total mass M , the baryon number NB and the radius R of the star are given by

M =
4

3
πρR3,

NB = 2πnBa
3(χ− sinχ cosχ),

R = a sinχ

where ρ is the mass-energy density and the angle χ comes from substituting r = a sinχ

where a = [3/(8πρ)]1/2 is the curvature radius in the metric inside the star which adopts the

following form for the 3-geometry:

ds2 = a2
[

dχ2 + sin2 χ
(

dθ 2 + sin2 θdφ2
)]

.

Note that we are using natural units, ~ = c = G = 1. The configuration of maximum density

is achieved when χ = π/2. By recognizing that sin2 χ = 2M/R, χ ∼ 0 corresponds to the

Newtonian limit while χ = π/2 corresponds to the Schwarzschild one.

To obtain the equilibrium condition is appropriate to treat χ as an independent variable.

By doing ∂M/∂χ = 0 for fixed NB, the equilibrium condition reads

w ≡ P

ρ
= ζ(χ),

where ρ and P are given by equations (7, 8) and ζ(χ) is a function independent of the EoS

ζ(χ) = 3 cosχ

(

9

2
cosχ− sin3 χ

χ− sinχ cosχ

)−1

− 1.

We get an approximate value of ζ(χ) using a Taylor series, ζT , around χ = 0. Truncation at

eighth order gives

ζT =
1

10
χ2 +

113

2100
χ4 +

1747

63000
χ6 +

689687

48510000
χ8.

A Padé approximant of order (4, 4) gives a better representation of this function than the

Taylor series truncated at eighth order. Moreover, the advantage to apply Padé approximant

is to obtain an approximate analytic continuation beyond the circle of convergence. Thus

ζ(χ) is given as a ratio of two polynomials as

ζP =

(

− 23

6237
χ4 +

1

10
χ2

)(

1− 5123

8910
χ2 +

3002

93555
χ4

)−1

.
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By doing ζP = w we obtain the only physical solution, always possitive and fulfilling the

condition limw→0 χ = 0, for χ given by:

χ =

√
3

2

√

(

35861w + 6237−
√
786718681w2 + 389949714w+ 38900169

)

√
3002w + 345

.

Hence we get an analytical expression of the HMQS mass and radius as a function of the

baryonic chemical potential. This allows us to obtain the M-R relationship for different Bag

constant and magnetic field values. In particular in Figure 1 we show the B = 75MeV/ fm3

case for two different magnetic field values. Furthermore, in Table 2 we present the results

for different values of B.

3.1. Dynamical stability

In our model the condition for stable equilibrium is given by ∂2M/∂2χ > 0. For a given

EoS, it is possible determine the quark densities and pressures where quark stars are stable

against gravitational collapse from the condition

Γ > Γc,

where the adiabatic index for SQM, Γ, is given by:

Γ =
nB

P

dP

dnB

=
4µ4

3µ4 − 4π2B
+

16Bµ2(4π2
B− µ4)

(4π2B− 3µ4)2
+O(B2),

and the critical adiabatic index, Γc, for a cold star in general relativity is

Γc = (1 + w)

[

1 +
(3w + 1)

2

[

(w + 1)

6w
tan2 χ− 1

]]

.

To get dynamical stability the condition Γ > 4
3
must be satisfied. The intersection between

Γ and Γc determines when quark star becomes gravitationally unstable. Table 3 shows the

critical values for B = 75MeV/ fm3. The values of wc correspond to the maximum mass

values of Table 2.

Another quantity that is related with the stability of the star is the speed of sound cs.

To satisfy the causality of quark matter,

dP

dρ
= c2s ≤ 1.

For the extremely relativistic systems, the speed of sound is 1/
√
3, and in general it will be

less than 1/
√
3. We find

cs =
1√
3
− 2B

9µ2
√
3
+O(B2).
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4. Summary and conclusions

In this article we have furnished an analytical treatment to study a HMQS in the

framework of the MIT Bag model. We have analyzed the stability of quark matter with

respect to strong interactions and we have found a restriction in the stability condition: there

is a maximum value for the magnetic field beyond which quark matter becomes unstable.

In the limit of “weak” magnetic field that we have studied, quark magnetic moments are

aligned in the same direction of the field and this situation leads to such restriction. This

could mean that if the magnetic field strength exceeds that critical value, then quark or

hybrid stars should not be considered as magnetars.

We have also found an analytical approximate solution for the M-R relationship. Even

tough we used very simple physics, our results are in good agreement with the confidence

contours of available observational data. Furthermore, comparison with numerical results

(Pérez Mart́ınez et. al. 2010) indicate a reasonable agreement: the difference in the maxi-

mum mass is ∼ 15% while in the maximum radius value is ∼ 10%. This discrepancies are

similar to the ones obtained when considering the same composition of the compact object

but changing some parameters in the equation of state. Although the uniform energy den-

sity regime is a good approximation for quark stars, deviations in the determination of M-R

relationship may also occur because in the limit of high densities such approximation is no

longer valid.

Finally we calculate the adiabatic index and the speed of sound. The critical value for

the adiabatic index, which correspond to the collapse of the star is in agreement with that

of (Naurenberg & Chapline 1977), a pioneering work about quark stars. On the other hand,

the speed of sound is consistent with the expected values for quark stars.

We are grateful to A. Pérez Mart́ınez for comments and suggestions. M.O. acknowledges

the fruitful discussion with F. Weber and H. Rodrigues.
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Fig. 1.— Mass-Radius relationship for B = 75MeV/ fm3. Solid line and Dash-

dotted line correspond to our model while dashed and dotted line correspond to

(González Felipe & Pérez Mart́ınez 2009). The rectangle with diagonal pattern corresponds

to EXO 0748-676, interpreted as a hadronic star. Rectangles with crossed, vertical and hori-

zontal patterns correspond to quarks or hybrid stars (Drago & Lavagno 2010). The polygon

could be a low-mass strange star as sugested in (Zhang et al. 2007).
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Table 1: Bag constant, baryon density and magnetic field upper limit to preserve quark

matter stability condition.

B[MeV/fm3] nB/n0 Bmax [Gauss]

57 1.74 (±4× 10−2) 2.16× 1018

60 1.81 (±3× 10−2) 1.98× 1018

75 2.12 (±8× 10−3) 1.03× 1018

80 2.23 (±4× 10−3) 7.12× 1017

85 2.33 (±1× 10−3) 4.00× 1017

90 2.43 (±5× 10−5) 8.40× 1016
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Table 2: Maximum mass, maximum radius and baryonic number for different bag constants.

B [MeV/fm3] B [G] Rmax [km] Mmax/M⊙ NB/N⊙

57 0 12.10 2.55 4.30

2.16 × 1018 11.11 2.31 3.51

60 0 11.80 2.49 4.14

1.98 × 1018 10.94 2.27 3.45

75 0 10.55 2.22 3.50

1.03 × 1018 10.20 2.14 3.22

80 0 10.21 2.15 3.34

7.12 × 1017 9.99 2.10 3.16

85 0 9.91 2.09 3.19

4.00 × 1017 9.79 2.06 3.09

90 0 9.63 2.03 3.05

8.40 × 1016 9.60 2.02 3.04
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Table 3: Adiabatic index and p/ρ critical value for B = 75 [MeV ]/ [fm]3.

Γc wc Bmax [Gauss]

2.26 0.173 0

2.17 0.160 1.03× 1018
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