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Abstract
The interactions of DX.-DA., D*Y.-D*A., and related strangeness channels, are studied within
the framework of the coupled channel unitary approach with the local hidden gauge formalism. A
series of meson-baryon dynamically generated relatively narrow N* and A* resonances are predicted
around 4.3 GeV in the hidden charm sector. We make estimates of production cross sections of

these predicted resonances in pp collisions for PANDA at the forthcoming FAIR facility.
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I. INTRODUCTION

The use of chiral Lagrangians in combination with unitary techniques in coupled chan-
nels of mesons and baryons has been a very fruitful scheme to study the nature of many
hadron resonances. The poles found in the analysis of meson baryon scattering amplitudes
are identified with existing baryon resonances. In this way the interaction of the octet of
pseudoscalar mesons with the octet of stable baryons has lead to J/P = 1/27 resonances
which fit quite well the spectrum of the known low lying resonances with these quantum
number [1-5]. The combination of pseudoscalars with the decuplet of baryons has also
received attention and also leads to several dynamically generated states 6, [7]. Work sub-
stituting pseudoscalar mesons with vector mesons has also been done recently leading to
new resonances dynamically generated [8;19].

One of the interesting findings in the study of the interaction of pseudoscalars with the
octet of baryons is the generation of the N*(1535) resonance which has large couplings to KX
and KA, to the point that the resonance can be approximately considered as a bound state
of these meson baryon components [12-14]. Another point of view is that this resonance can
be considered as a hidden strangeness state. In fact, phenomenological studies show that,
indeed, this seems to be the case [15, 16].

The idea that we want to explore here is to see if one can also generate dynamically
baryon states in the hidden charm sector. The interaction of charmed mesons with the octet
of stable baryons has been studied in |17, 18] and further refined in [19-21]. Several states
with open charm are dynamically generated there, in particular the A.(2593).

In the present work we follow the steps of [9,119] but concentrate in states of hidden charm,
for which we study the interaction of a anticharmed meson with a charmed baryon. The
underlying theory that we use is an extension to SU(4) of the local hidden gauge Lagrangians
[22-25], where SU(4) is broken to account for the different masses of the vector mesons
exchanged in the t- and u- channels. The study is done both with pseudoscalar mesons and
vector mesons and we obtain three dynamically generated hidden charm baryons generated
from the pseudoscalar baryon interaction plus three other states from the interaction of
vector mesons with baryons, all of them with masses around 4200-4600 MeV.

We also make estimates of production cross sections with p collisions that could be carried

out at the future FAIR facility within the PANDA project. We also study how the presence



of these resonances could increase the rate of J/¢ and 7. production around the energies
where the resonances can be formed. Part of our results have been briefly reported in [26],
here we give a much more complete report of our investigation.

In the next section, we present the formalism and ingredients for the study of the in-
teraction, and give the poles obtained. In the last section, our numerical results are given,

followed by a discussion.

II. FORMALISM FOR MESON-BARYON INTERACTION
A. Lagrangian and Feynman diagrams

We consider the PB — PB and VB — V B interaction by exchanging a vector meson.

The corresponding Feynman diagrams are shown in the Fig[ll
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FIG. 1: Feynman diagrams for the pseudoscalar-baryon (a) or vector- baryon (b) interaction via
the exchange of a vector meson (Py, P, are D~, D° or D, and Vi, V5 are D*~, D*® or D!~, and

By, By are X, AT, E., 2. or Q., and V* is p, K*, ¢ or w).

In order to evaluate these Feynman diagrams, we give the three types of vertices for BBV,
PPV and VVV interaction from [9]. The Lagrangians for the interaction of vector mesons
between themselves (three - vector vertex), pseudoscalar mesons with vectors and baryons

with vectors are:
Lyyy = ig(V*[V",0,V,])
ﬁppv = —ig(V”[P, 8MP]>
Lppy = g((By,[V*,B]) + (B7,B)(V*)) (1)
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where B and P are the standard matrices including the pseudoscalar and baryon nonets [27]
and g = My /2f. The g fulfills the KSFR rule [10] which is tied to vector meson dominance
[11]. When we go to SU(4) we can still use the Lagrangian for VPP of Eq. () and the V
and P matrices extended to SU(4):
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Let us recall that here 7, stands for the SU(3) singlet of the 15th SU(4) representation
and we denote 77, for the singlet of SU(4). On the other hand, wg plays the role of the 7
for the vectors, while @, the role of 7., and we denote by &’ the SU(4) singlet. We take 7°,
n, 0’y M. as a basis for the neutral pseudoscalar mesons, where 7’ is the singlet in SU(3),

(utt + dd + s5)/+/3, and 7. stand for cé. Recalling the standard quark composition of the



SU(4) mesons

1 _
7T0 = ﬁ(uﬂ—dd)
1 _
= —(uu+dd — 2ss
UE \/6( )
1 _
Ne = ——(uu + dd + s5 — 3cc
7 \/ﬁ( )
1 _
n. = ﬁ(uﬂ+dd+s§+cé) : (4)
we find
Mg = 1N
1 V3
/)7 - 2175 2 770
1 . .
ne = 5(=V3ic+1) (5)

in the physical basis. On the other hand, for vectors we use the physical basis p°, w, ¢ and

J /1, where

- i uii — dd
1 _ _
w = ﬁ(uuded)
¢ = s§
J/ = ¢, (6)

which can be written in terms of wg, &, and @/, as!

w = (V60 +2v3us +3VEE)
¢ = %(ﬁ@c — 2v/6ws + 30))
TP = (/o)) (7)
The use of Lagrangians to give the BBV vertex in SU(4) is more cumbersome than in SU(3)

and thus it is simpler to use SU(4) Clebsch Gordan coefficients. Yet, this requires a certain

phase convention for the physical states with respect to the isospin states implicit in the

[1] Latter on, in order to use the SU(4) Clebsch Gordan coefficients we shall change a phase to the 7. and

We.



SU(4) tables, which makes convenient to use the same procedure to evaluate the PPV
vertex.

In the PPV vertex we go from the 15 ® 15 representation of pseudoscalars to the 15
representation of vectors. Yet, the nature of the couplings (with the explicit commutator)
has as a consequence that only the 155 (antisymmetric) representation for the vectors is

needed. The resulting ¢ amplitude for PP, — V is given by

thpv = G15; C15, (15 ® 15) (1 + ¢2) - €, (8)

where ¢; and ¢y are the four-momentum of the initial and final pseudoscalar mesons respec-
tively, and C5,(15®15) is the SU(4) Clebsch Gordan Coefficient that we take from [28] and
g15, 1s the reduced matrix element that by comparison with the result of the Lagrangian is
given by

M
915 = —2\/597 g= 2—}/ . (9)

However, the use of the SU(4) tables requires a phase convention. We find a compatible

and convenient phase convention of the isospin states implicit in the SU(4) tables and those

used by us in Egs. () and (@) by means of:

[K°) = —[1/2,-1/2) 5 |7%) = —[1,1) ; [7%) = —[1,0) ;

|D;—>:_|0a0> ; |D0>:_|1/2a1/2> ) |ﬁc>:_|0a0> ¥

and equivalent phases for the corresponding vectors, K*°, p*, p° D+ D** and @. The

necessity for the change in phases stems from demanding that the 15® 15 — 1 combination
of SU(4) isospin states is a symmetrical expression in the physical states [29]. The use of
this convention (and also the convention for baryon that we give later) leads to the same
amplitudes in charge basis given by the Lagrangians of Eq. (II) with the P and B matrices
written in the SU(3) basis.

When we go to the BBV vertex (we look for BB — V'), we need now the three repre-
sentations, 151, 155 and 1, and we must note that when the 8 representation of SU(3) is
involved, only the F' coefficients are needed. In this case we have 20’ ® 20" — 15;, 155, 1, and

the t amplitude for the BBV vertex is given by

tg, By = {915 C15, (20’ ® 20") + g15, C15,(20' ® 20") + g1 C1(20' @ 20')} Uy (p2)7y - € up(pr) -
(10)



Once again by writing the expression for 20’ ® 20" — 1 in terms of the SU(4) isospin states,
and demanding that the expression is symmetrical in the physical baryons, we obtain a
convention of phases. The one we have chosen, partly motivated to agree formally with

earlier SU(3) results, is given by changing the phases of the states

=) = —11/2,-1/2) , 19%) = —[0,0) , B = —11/2,-1/2) , |E7) = —|1/2,-1/2) ,
A7) =—0,0) , X5 =—I10), S =-1L1),  ZE)=-1,-1),
) =—1/2,-1/2) , |=%) =-[1/2,-1/2) , [E") = —[1, 1), X7) =—=[1,1),

2% = —[1,0), %) =—[1,0) .

The reduced matrix elements of Eq. (1), ¢15,, 915, and g; are evaluated demanding:
1) The coupling pp — J/1 should be zero by OZI rules,
2) The coupling pp — ¢ should be zero by OZI rules,
3) The coupling pp — p° should be the one obtained in SU(3).

We finally obtain
Gi5s = —0; 015, =2V3¢; 1 =3V5g. (11)

with ¢ = My /2f and f = 93MeV the pion decay constant.
The diagram of Fig. 1l (a) requires the exchange of the vector meson with the two vertices

given by Eqgs. (8) and (I0). In the sum of polarizations in the vector meson exchanged,

qu.9v
E €€y = — Gy + ) (12)
)\ K’ " M‘%

We can keep just the p = v = 0 component since we assume that the three momenta of the
particles are small compared to their masses. Similarly, the ¢? /M2 term in the vector meson
propagator is neglected (further on, when we consider these transitions from heavy mesons

to light ones, we perform the exact calculation). The transition potential corresponding to



the diagrams of Fig. [I] are given by

Cab

v“b(PlBl—ﬂszz) - 4f2 (q? + qg)v (13)
Cab 0 0\ = —

Vab(viBi>vaBy) = e (7 +g3)é1 - € . (14)

Where the a, b stand for different groups of Py(Vy)B; and Py(V,)Bs, respectively. The ¢, ¢3
are the energies of the initial, final meson. We list the value of the Cy; coefficients for

different states of isospin, I, and strangeness, S in the Appendix. Here we study six different

cases with (1,5) = (3/2,0),(1/2,0),(1/2,-2),(1,-1),(0,—-1), (0, —3).

B. The G function and the unitary 7" amplitudes

The G function is a loop function of a meson (P) and a baryon(B) which we calculate in

dimensional regularization by means of the formula

dq 1 1
— 2M 15
Guran = M | e VAT 1
2Mp M?B M}% — M?B + s MI%
].6722{ K /“1“2 2s M%

+% [n(s — (M3 — M3) + 2qv/5) + In(s + (M3 — M2) + 24V/5)

—In(—s — (Mg — M}) +24y/s) — In(—s + (Mp — M) +23v/s)]} ,  (16)
where

s = P2 (17)
 \/(s=(Mp+ Mp)?)(s — (Mp — Mp)?)

g = NG with Im(q) > 0 . (18)

In Eq. (), ¢ is the four-momentum of the meson, and P is the total four-momentum of

the meson and the baryon. The x is a regularization scale, which we put 1000 MeV, and a,,
is of the order of —2, which is the natural value of the subtraction constant |3]. When we
look for poles in the second Riemann sheet, we must change ¢ by —¢ when /s is above the

threshold in Eq. (I6]) [30].

Here we also regularize the G loop function in a different way by putting a cutoff in the



three-momentum. The formula is:

Gpp) = i2M / &g ! !
(%:B) B @m)t (P —q)? — M} +icq® — M} +ic
_ /A q?dq 2Mp(wp + wp) (19)
o 4m2 wpwp ((P°)? — (wp +wp)? +i€) ’

where

wp = \/q_)2+M]237
wp = \/P?+ Mg, (20)

and A is the cutoff parameter in the three-momentum of the function loop.

For these two types of G function, the free parameters are a, in Eq. (16) and A in Eq.
(M9). When we choose a,, or A, the shapes of these two functions are almost the same close
to threshold and they take the same value at threshold.

Then we can get the unitary T amplitudes by solving the coupled channels Bethe-Salpeter

equation in the on shell factorization approach of [3, 131, 132]
T=[1-VG]'v. (21)

When we look for poles in the complex plane of /s, poles in the T" matrix that appear
in the first Riemann sheet below threshold are considered as bound states whereas those
located in the second Riemann sheet and above the threshold of some channel are identified

as resonances.

C. The coupling constant and the width of the poles

From the T" matrix we can find the pole positions zg. In this work, we find all of these
poles in the real axes below threshold, in a few words, they are bound states. In view of
that, for these cases the coupling constants are obtained from the amplitudes in the real

axis. These amplitudes behave close to the pole as:

GaGb
Ty =—""-. 22
b \/g — n ( )
We can get the coupling constant as:
g = lim (Tha x (/5 — 2R)). (23)

\/§—>ZR



This expression allows us to determine the value of g,, except by a global phase. Then, the

other couplings are derived from

. gaTab
go = lim (Z5—) . (24)
S—ZR aa

As all the states that we find have zero width, we should take into account some decay
mechanisms. Thus, we consider the decay of the states to light meson - light baryon by
means of box diagrams as it was done in [35, 37]. The Feynman diagrams for these decays
are shown in Fig. We assume that P3, V3 and Bs are on-shell and neglect the three -
momentum of the initial and final particles. Then, using Eq. (), the transition potential of

these diagrams can be written as:

CaCchMé'* (\/g + MB3)2 — MI%3
Vacb(P1Bl—>P3B3—>P2B2) - Tfﬁl X G(PB’BB) % 4\/5 MB
3

—2EP1 _l_ (MB3 - MBI)(MI231 + M‘2/1* - Ml%g)/M\%l*

x M2 ¥ M2 — 2FEp Ep — M2
P P P3P Vl*
% _2EP2 + (MBS - MBQ)(MI%Q + M\2/2* - M]%3)/M‘2/2* (25>

M3, + M3, — 2Ep,Ep, — M. ’

and the same for vectors (see Fig. 2l (b)) changing Ep,, Ep,, Ep, by Ev,, Ev,, Ev, and Mp,,
Mp,, Mp, by My,, My,, My,, respectively. Here ¢ stands for a different group of P3(V3)Bs.
Then, the kernel V' in the Bethe Salpeter equation, Eq. (21I), becomes now:

Vab(P By~ PyBy) = f—ﬁ(Epl + Ep,) + XC: Vacb (26)
and similarly for the V' B system. In Eq. (28) we have factorized the two P B; — P3;Bs3 and
P3;B; — P, B, transition amplitudes outside the loop integral by taking their values when
the system P3Bj3 is set on-shell. This is a good approximation, exact for the imaginary part
of the diagram, which is our main concern, since we are interested in the contribution of
these diagrams to the width of the resonances. The loop integral only affects then the Pj,
Bs propagators leading to the same G function defined in Eq. (I6]).

Further on, we will include the n.N, n.A channels for PB — PB, and J/¢¥N, J/{¥A for
VB — VB in the calculation.
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FIG. 2: The Feynman diagrams of pseudoscalar-baryon (a) or vector-baryon (b) interaction via a
box diagram. Py, Py, V1, Vo, By, By are the same particles than in Fig. Il P3, V3 and B3 are light
particles belonging to the SU(3) octet of pseudoscalar mesons, vector mesons and stable baryons,

respectively, and V", V5" are D* or Dj.

III. RESULT AND DISCUSSION
A. The pole positions and coupling constants

Here we show the results for the different sectors. By using the two G functions of Egs.
(I6) and (19), the poles appear in both cases below threshold in the first Riemann sheet and
therefore they are bound states. We show the pole positions for different values of a(A) in
Tables [ and [

We find six poles in our calculation. The uncertainties in the pole positions in the case of
the first and third poles for both PB and V' B systems, are of the order of 100 MeV, which
are typical in any hadron model. These two poles are rather stable. However, for the second
state, the uncertainties are much larger and the pole position is very unstable.

For the discussions that follow we choose an intermediate value of «, which we take
a = —2.3, to study the nature of these poles in detail. In Tables [IIl and IVl the values of
the coupling constants are listed by using Eqs. (23) and (24]). From Table [T, we see that
both the N*(4269) and the A*(4403) depend on one channel, DY, and DZ., respectively.
These two states are both stable as we can see in Table[l In contrast, the A*(4213) depend

on two channels, DA} and DZ.. The mass of this state changes appreciably by using

different values of the free parameters (a or A).
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(1,5) a=-220=07 a=-23A=08) a=-24(A=009)

ZR ZR ZR

(1/2,0) 4291(4273) 4269(4236) 4240(4187)

(0,—1) 4247(4120) 4213(4023) 4170(3903)
4422(4394) 4403(4357) 4376(4308)

TABLE I: Pole position from PB — P B using the two different G functions of Eqs. (6] and (I9)).

The units are in MeV.

(1,5) a=-220=07 a=-23A=08) a=-24(A=009)

ZR ZR 2R

(1/2,0) 4438(4410) 4418(4372) 4391(4320)

(0,—-1) 4399(4256) 4370(4155) 4330(4030)
4568(4532) 4550(4493) 4526(4441)

TABLE II: Pole position from VB — VB using the two different G functions of Egs. (I6) and
(I9). The units are in MeV.

B. The decay widths of these states to light meson - light baryon channels

These states decay to two different types of channels, one is the light meson - light
baryon channel, while the other is the c¢¢ meson - baryon channel. For the VB states, there
is another possibility to decay into PB channels, for instance, D*B — DB. The analogous
decay channels in the V'V — V'V hidden charm sector driven by pseudoscalar exchange were
studied in [36] and found to be extremely small because of the small phase space available.
Analogously, the terms involving a vector exchange contains an anomalous VVP vertex and
were also found very small in [35]. Hence, we do not consider them here. In this subsection
we only consider the decay of these states to the light meson - light baryon channel as
depicted in the Feynman diagrams of Fig. [ These diagrams provide a negligible real part
compared to the tree level potentials. The imaginary part gives rise to a width of the states.
Hence, we only consider the effect of this box diagram on the states found before.

In Figs. Bland @ we show the results of | Tj;|? as a function of /s for the different channels,

12



(Z,5) zr (MeV) Ya
(1/2,0) Dy, DAF
4269 2.85 0
(0,—1) DA} DE. DZ!
4213 1.37 3.25 0
4403 0 0 2.64

TABLE III: Pole positions, zr and coupling constants, g, for the states from PB — PB.

(Z,5) zr (MeV) Ya
(1/2,0) D*¥. D*A}
4418 2.75 0
(0,—1) DiAS D*Z, D*=!,
4370 1.23 3.14 0
4550 0 0 2.53

TABLE IV: Pole position and coupling constants for the bound states from VB — V B.

and we list their decay widths to the different channels for all the sectors in Tables [V] and
VI From these pictures and tables, we find that the six states are all above 4200 MeV.
However, their widths are quite small. In principle, one might think that the width of these
massive objects should be large because there are many channels open and there is much
phase space for decay. However, it is difficult for the c¢ components to decay to the uu, dd
and s§ ones, something that within our model is tied to the necessity of the exchange of a
heavy - vector meson. Note that the pole positions are obtained without including the box
diagrams by extrapolating to the complex plane. The inclusion of the box diagram renders
this extrapolation more difficult, and thus we obtain the width of the states by plotting ||
with T obtained in the real axis including the box diagrams. The individual partial decay

widths are obtained including one by one the different box diagrams.
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FIG. 3: |Ty|? for the different channels in the (I = 1/2,S = 0) sector including the box diagrams.
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FIG. 4: |Ty|? for the different channels in the (I = 0,S = —1) sector including the box diagrams.
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(I,5) ZR Real axis Ty

M r

(1/2,0) TN nN n'N KX

4269 4267 34.3 3.8 8.1 3.9 17.0

(0,-1) KN T nA n'A K=
4213 4213 26.4 15.8 2.9 3.2 1.7 2.4

4403 4402 28.2 0 10.6 7.1 3.3 5.8

TABLE V: Pole position (zg), mass (M), total width (T'), and the decay width for each particular

light meson - light baryon channel (T';) for the states from PB — PB. The units are in MeV.

(I,5) ZR Real axis Ty

M r

(1/2,0) pN wN K*%

4418 4416 28.4 3.2 10.4 13.7

(0,—1) K*N 23 wA oA K*E
4370 4371 23.3 13.9 3.1 0.3 4.0 1.8
4550 4549  23.7 0 8.8 9.1 0 5.0

TABLE VI: Pole position (zr), mass (M), total width (I"), and the decay width for each particular

light meson - light baryon channel (T';) for the states from PB — PB. The units are in MeV.

C. Decay width to cc meson - light baryon channels

In this subsection we discuss the decay width of these states to ¢¢ meson and light - baryon
channels. The three states from the V' B system decay to J/¢¥N. The decay of these VB
states to 7.V is also possible by means of a BBP vertex (exchange of a pseudoscalar meson)
but as we will see in the Subsection IV. B this vertex is very small. We could also have
this decay exchanging a vector meson instead of a pseudoscalar one, but then the amplitude
would contain an anomalous VVP vertex, which is also very small [35]. Similarly, the decay

width of the PB states to the VV B channels must be very small because of the same reasons.
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We will consider their decay to J/¢N in Section IV. B and we anticipate that this decay
width is very small. For these reasons, we only consider the J/¢)N, J/iA channels for the
V' B states, and 7.N, n.A channels in the case of states from the PB system. Thus, these
new channels are added to the previous calculation in the Subsections III. A and B.

The pole positions of these states only change a bit compared to those given in the
Subsection III. A, since the potentials from these channels are much smaller. Nevertheless,
these channels provide some extra width because, in spite of the smaller phase space for
the decay, the three momentum transfer in the propogator of the D*(D?) exchange is much
smaller than in the case of transition to light meson - light baryon channels. The transition

potential becomes:

Cw M2
Vab(PB=neB) = TFM(EP +E,.) , (27)
where
ph- =M} + M} —2E, Ep — M} | (28)

and similarly for the V B system but changing pp«, Mp-, Ep and E, by pp, Mp, Ey and
E;,, respectively. Here we also neglect the three-momentum of the final and initial particles
because we consider energies close to the threshold. We list the results in Tables [VII|, [VITI]
I[X] and Xl We observe that the coupling constants change a bit, but what is more relevant
is that these new channels give an extra contribution to the width, smaller, but of the same
order as the one obtained previously. The relatively large decay width to the n.N channel is
a good feature with respect to the possible observation of these resonances since there will
be less background in n.N than in 7N, nN, K3, the observation of the resonance in the
n.N channel could be favoured.

In Tables [VII] and [VIII, the pole positions are obtained without the box diagrams, but
including the n.N, n.A channels. Now the pole positions becomes complex because the
new channels are open. We can see that the partial decay width into these channels is
approximately twice the imaginary part of the pole position. The total widths are again
obtained by looking at the width of |T'|? in the real axis when the box diagrams are included.
We would like to mention that in the approach of [18], which has been corrected in |19, 20],
some hidden charm states are also found, bound by about 1000 MeV. It is not easy to
understand such a large binding on physical grounds, which is not supported in any case by

the strength of the potentials.
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(1,S5) zr (MeV)
(1/2,0) DY, DAS neN
4265 — 11.6 2.96 — 0.21i —0.08 4+ 0.06i  —0.94 + 0.03i
2.97 0.10 0.94
(0,—1) DAF D=, DZ!, N
4210 — 2.9i 1.42 — 0.03i 3.28 — 0.002i —0.15 +0.13i 0.57 4 0.04i
1.42 3.28 0.19 0.57
4398 — 8.0 0.01 4 0.0044 0.06 — 0.02i 2.75 — 0.15i —0.73 — 0.07i
0.01 0.06 2.75 0.74

TABLE VII: Pole position, zg and coupling constants, g,, to various channels for the states from

PB — PB including the n./N and n.A channel.

(1,S5) zr (MeV) Real axis Iy
M T
(1/2,0) 7N
4265 — 11.69 4261 56.9 23.4
(0,-1) nelA
4210 — 2.9¢ 4209 324 5.8
4398 — 8.0¢ 4394 43.3 16.3

TABLE VIII: Pole position (zr), mass (M), total width (I', including the contribution from the

light meson and baryon channel) and the decay widths for the n.N and 7n.A channels (I';).

unit are in MeV

IV. PRODUCTION CROSS SECTION IN pp COLLISIONS

A. Estimate of the pp — N.;7(4265)p cross section

The

We shall estimate the production cross section of these resonances at FAIR. With a p

beam of 15 GeV/c one has /s = 5470 MeV, which allows one to observe resonances in
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(1,5) ZR Ya
(1/2,0) D*%, D*Af J/YN
4415 — 9.5i 2.83 —0.19i —0.07 +0.05s  —0.85+ 0.02i
2.83 0.08 0.85
(0,—1) DiAfF D*E, D*Z!, J/pA
4368 — 2.8i 1.27 — 0.04i 3.16 — 0.02i —0.10 + 0.13i 0.47 4 0.04i
1.27 3.16 0.16 0.47
4547 — 6.4i  0.01 + 0.0044 0.05 — 0.02i 2.61 — 0.13i —0.61 — 0.06i
0.01 0.05 2.61 0.61

TABLE IX: Pole position (zr) and coupling constants (g,) to various channels for the states from

PB — PB including the J/¥)N and J/1A channels.

(1,S5) ZR Real axis Iy
M T
(1/2,0) J/UN
4415 — 9.5¢ 4412 47.3 19.2
(0,-1) J/HA
4368 — 2.8i 4368 28.0 5.4
4547 — 6.4¢ 4544 36.6 13.8

TABLE X: Pole position (zg), mass (M), total width (I', including the contribution from the light

meson and baryon channel) and the decay widths for the J/¢N and J/¢A channels (I';). The unit

are in MeV

pX production up to a mass My ~ 4538 MeV. We shall make some rough estimate of the

cross section for the pp — pNZ" production for the C' = 0,5 = 0 resonances that we have

obtained from the pseudoscalar baryon interaction. Since one important decay channel of

the N} is mN, we evaluate the cross section for the mechanism depicted in the Feynman

diagram of Fig. [5l

The coupling of the N* — 7% is obtained projecting over 7% the isospin state I = 1/2,
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FIG. 5: The pp — N2 p mechanism.

C

which provides the isospin coefficient C; = 1/1/3. The coupling N — 7N we get from the

partial decay width of the N} into this channel, I';y

9 QWMN:EFWN

gN;‘E—MrN - MNpon (29)

with po* = A/2(MZ. ,m2, M}%)/2My- , the value of the on-shell pion momentum from the
N* — 7N decay. By taking the standard 7NN vertex, Vinny = ig-77" (9= =~ 13), we

obtain
Aoy nety g2 M3 DonCh 2p.p — 2M? v
deosd 4 s po (2M2?2 — \/SE(p)) +2p0") p
where p, p’ are the initial, final momenta of the p in the center of mass frame ( of the order of

2570, 620 MeV /c for Mx ~ 4300 MeV). The biggest cross section corresponds to the forward

(30)

p direction, which is the most indicated for the search. If we are interested in searching for
these resonances, looking for p forward is the most recommendable measurement and one
should look for a bump into the do/dcosfdM? magnitude, where M is the invariant mass of
the 7N coming from the decay of the produced N state. Assuming a Lorentzian shape for

this resonance, with total width I" Nty We would obtain at the peak of the 7N distribution

d0ppinzr@zesponng 1 1 Aoy Nep Ty

dcosfdM? M vt Dot dcosf Doy
which leads to the following cross section: 0.13 ub/GeV? for N (4265).

(31)

In the above calculation, we did not consider the form factor for the 7NN vertex. The

form factor is:

AL —m3
Az —pi
with the A, = 1.3GeV. We can multiply by szm the cross section in the Eq. (B1) and we
find about 0.05 ub/GeV?2.

Fpm = (32)

Then we can estimate the cross section of pp — ppn.. The different Feynman diagrams

for this reaction are shown in the Fig.[6l Using Eq. (3II) and I';,, of the resonance instead of
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[,y we can obtain the differential cross section at the peak of the resonance, corresponding
to the resonant mechanism of Fig. fla), and it is about 0.8 ub/GeV? without form factor and
0.3 ub/GeV? with the form factor. This magnitude is of about the same order of magnitude
as typical cross sections measured for do/dcosfdM? in the pd — pdr°7® or pp — drtr"
reaction [33, 34]. In order to see the role played by the hidden charm resonance in this

process we can compare it with the cross section coming from a standard mechanism of Fig.

Bl(c,d). The vertex of ppn. is used by

Lyps = gncpﬁﬂp7u75au¢ncvﬁ> (33)

where g, ,5 can be calculated from the reaction 7. — pp by

WFUcBrncpﬁ
gﬁcpﬁ = on . (34)
\\ lpgrm2

where the pg" = A/2(m2 , M2, MZ2)/2m,, the value of the on-shell p momentum from the
ne — pp decay. And the width I',, = 26.7MeV and the branch ratio Bry,,; = 1.3 x 1073
are both from PDG. The form fact of the vertex NN is also used Eql32l We also add the
form factors for IV}, and p exchange in the Figlok

4
Iy = 5 /;p 2727 (35)
A3+ (p2 —m2)
A4
Fy» = N .
e Ay + (p?vga - m?vgé)z (36)

Here A, = Ay = 0.8GeV.

Through the calculation, the contributions from Fig. [@l (c), (d) are very small, almost
10~*ub, the main contribution comes from the N%. The total cross section is about 0.07ub
to 0.7ub in the Figlll corresponding to the with and without form factors. Note that the
integrated cross section involves finite angles, rather than zero in the forward direction
considered before, where the effect of the form factor is more important. The Dalitz plot,
the invariant mass spectrum of pn., pn. and pp are all shown in Fig. [§] where the peaks of

N*(4269) are very clear.

B. J/V production in pp — ppJ/¥.

Another estimate that we want to do is the cross section for J/W¥ production in the

pp — ppJ /¥ reaction around the energy of the N*(4265) excitation. We use again Eq. (31])
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FIG. 6: The different Feynman diagrams of the reaction pp — ppn.

but we need to evaluate I'j/y,. This requires a different formalism to the one used so far.
The mechanism for R — J/¢p is obtained by analogy to the work done in [35, 137] where
the transition from vector - vector to pseudoscalar - pseudoscalar states is done. Concretely,
given the fact that the N’ (4265) is basically a DY, molecule in our approach, we obtain
the coupling of the resonance N} (4265) to J/vp through the diagram of Fig. [l

This diagram requires the coupling of N/ (2465) to the DY, state in I = 1/2, and the
transition J/¢p — DY, which is mediated by the D meson that comes from the coupling of
J/1 to DD. The diagram also involves the DN, coupling which has been studied in [3§].

The J/¢» — DD coupling can be obtained from the Lagrangian

,Cppv = —ig(V“[P, 8“P]> y (37)
used in Section II, with g = My /2f and f = 93 MeV, which leads to

The vertex DNX. is obtained from [38] and has the form

/0
q D—F
)b
oM 2f

with 8 =1 and ¢, ¢’, the incoming energy, momentum of the D meson and M’ the mass

of the .. For D and F' we take the standard values D = 0.8 and F' = 0.46 [39-41]. Thus,

_iVDopEj — 5q_"(1 _

(39)

, 026,
— ilpoyyt = WU ¢’ (40)
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FIG. 7: The total cross section vs the beam momentum of p for reaction pp — ppn.. The solid line

is calculated with the form facts and the dashed line is obtained without form facts.
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FIG. 8: The Dalitz plot(a), the invariant mass spectrum of pp(b), pn.(c) and pn.(d) for the reaction

pp — ppne at the beam momentum of p being 14.00GeV at lab system.
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FIG. 9: pJ/¥ going to the resonance N (4265).

We need the I = 1/2 state of DX, given with our phase convention by
_ /U R
|DY.;1/2,1/2) = §D X4 ED T (41)

The other possible vertex, the D¥pXF™ vertex, is /2 times the D°pXF one. With all these

ingredients one obtains

dq 026, Ms, 1
¢ 9v/3 / T e |
Mot = 2V39 [ ooy 1 T A nd e
1 1

" Fa) 42
(py—q)> —m% +ie PO — ¢° — Ex_(q) + i€ (q) (42)

where we use a form factor F(¢) = o= with A = 1.05 GeV [38] in the integral of Eq. (42]).

A2+
Upon neglecting the small three momenta pjy/, compared to the J/v mass and performing

the ¢° integral, Eq. ([#2) can be written as

y 1026 _ ﬁ/ Bq , My, 1 1 1
-1 = ——=—F—49g0 €
Y- B )P Ex.(q) 200(q) P + 200(q) 1) — 20n(q)
1 1
X ;
PO —p% —wp(q) — Ex,(q) P°—wp(q) — Ex.(q) + i€
x {2(P° —wp(q) — Es,(q) — p% — 2wp(q)} , (43)

where wp(q) = \/¢*> +m3, and Ex (q) = y/q* +m%_. The width of N;" — J/¢p is now

given by
1 M,
= 5Pl (4

where tJ/WHR means £/, g Omitting the & - € operator. We take P° = Mgz = 4265 MeV
and p = A\/2(M3, Mz,/w, M?)/2Mp, while M, stands for the mass of the proton. By using
the form factor of [38], we get

FR—)J/wp = 0.01 MeV y (45)
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with admitted uncertainties of the order of a factor two. Since I';y of the N (4265) was of
the order of 3.8 MeV, now the cross section is about a factor 400 smaller than before. Yet,
the fact that the background for .J/¢¥p production is also smaller might compensate for it.
But, from what we have said before, the cross section for 7n.p production is much bigger.

On the other hand, for the resonances made out by VB, the J/v¥p production cross
sections are larger. One can repeat the calculations in this case. We sketch the derivation
below.

We shall make the estimate based upon the mechanism of the Feynman diagram of

Fig. [0, and we will consider the resonance N (4418) coming from the interaction of vector

J/P
p p
P P

FIG. 10: The pp — J/vpp mechanism throughout the resonance N

mesons with baryons, one of which channels is J/¥p, which was considered in the Subsection
ITI. C as seen in Table [Xl By adding this new channel we found gx,wny = 0.85. Assuming
the dominant decay channels of N* as pN(For p°N, it should be added C; = 1/4/3) and
dominance of the 4° term in the p’pp vertex, which goes then as g7°/v/2, and g = M, /2f,

we obtain now

(46)

doypsnsunsy 6 MET,WCE  E()E(p) + 5+ M2 p

dcosf) 4 s por (2MZ—/SE(Y) +2p.p" — M2)% p

with p’,p the p outgoing, incoming momenta in the center of mass frame, and p," the
p momentum in the N, (4418) decay into pN. By means of Eq. (46) and the width of
N (4418) — J/¢p, we can calculate the cross section of the reaction pp — J/v¢pp multi-
plying the cross section of Eq. (€] by the branching ratio of the resonance for the decay
into J/1p. As one can see in Fig. [[1l this cross section is of the order of 0.002 - 0.037 ub,

depending on whether one includes or not the form factors. And for the dashed line, we also
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give the form factor for the NNp vertex and N7 (4418) as follows:

A% —m?
Fpe = —2—2. (47)
A -

Ay
AN+ @?\/*(4418) - m?\/*(4418)>

with A, = 1.3GeV and Ay = 0.8GeV.

*_
cc

. (48)

a 041
3 F
b0.01E
1E-3
1E-4§
1E-5:

1E-6

1E-7 -7 —— without form factor]y
- — —with form factor |

1E_8. 2 2
130 135 140 145 15.0
Pp(Gev)

FIG. 11: The total cross section vs the beam momentum of p for the pp — ppJ/¢ reaction. The

solid line is calculated with the form factors and the dashed line without them.

JIP
D ‘\'\|\‘\‘\'4\‘
> N >

FIG. 12: The standard pp — J/1pp mechanism.

This cross section is larger than the one we would obtain from the standard mechanism
of Fig. 12| which can be evaluated in analogy to the case of Fig. [6l Once again, using Eq.
BI) and I';/y, of the resonance instead of I'zy we can obtain the differential cross section
of the peak of the resonance: 0.006 — 0.05ub/GeV?2. From the calculation above, we find

that the cross section of this reaction are smaller than that of the reaction pp — ppn., but
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it could be also appropriate to find N*(4418) because the J/1¢ has a large branching ratio
to decay into lepton channels which are much easier to detect than hadron channels.
Finally let us discuss the possibility of measurement of this reaction in the experiments.
The PANDA (anti-Proton Annihilation at Darmstadt) Collaboration will study the pp reac-
tion at FAIR, with the p beam energy in the range of 1.5 to 15 GeV//c and luminosity of about
103 em™2s71[42]. The range of the beam energy is very suitable to find the N*(4265) and the
N*(4418), with cross sections of about 0.07ub and 0.002ub, which corresponds to an event
production rate of 60000 and 1700 per day at PANDA /FAIR. There is a 47 solid angle de-
tector with good particle identification for charged particles and photons at PANDA /FAIR.
For the pp — ppn. reaction, if p and p are identified, then the 7. can be easily reconstructed
from the missing mass spectrum against p and p. It is the same as the reaction pp — ppJ /1.

So this reaction should be easy accessible at PANDA/FAIR.

V. SUMMARY

In summary, we find six states from PB and VB channels by using the local hidden gauge
Lagrangian in combination with unitary techniques in coupled channels. All of these states
have large cc components, so their masses are all larger than 4200MeV. The width of these
states decaying to light meson and baryon channels without ¢¢ components are all very small.
On the other hand, the ¢¢ meson - light baryon channels are also considered to contribute
to the width to these states. Then 7n.N and n.A are added to the PB channels, while J/¢ N
and J/YA are added in the VB channels. The widths to these channels are not negligible,
in spite of the small phase space for the decay, because the exchange D*(orD*) mesons were
less off-shell than the corresponding one in the decay to light meson - light baryon channels.
The total width of these states are still very small. We made some estimates of cross sections
for production of these resonances at the upcoming FAIR facility. The cross section of the
reaction pp — ppn. and pp — ppJ /1 are about 0.07—0.7ub and 0.002—0.037ub, in which the
main contribution comes from the predicted N7 (4265) and N7, (4418) states, respectively.
With this theoretical results, one can estimate about 60000 and 1700 events per day at the
PANDA/FAIR facility.

The predicted N; and A}, can be also looked for by many other processes, such as

ep — eN at JLab’s 12 GeV upgrade, Kp — A%, at JPARC, pp collisions, etc.
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Appendix A: The C,;, coefficients

In this Appendix we give the coefficients Cy;, in Eqs. (13| [[4], 2BI27) for the several (1,.5)

sectors studied in this work.

TABLE XI: Coefficients Cy, in the Eq. (I3} 25]) for the PB system in the sector I =3/2, S = 0.

‘DZC TN KX

TABLE XII: Coefficients Cy; in the Eq. (I3 25l 27) for the PB system in the sector I = 1/2,
S=0.

DY, DA 5. N aN N 9N K¥ KA

DS.| -1 0 —/3/2-1/2-1/¥V2 1/2 1 0
DAF 1 VB2 =3/2 1/v2 —1/2 0 1
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TABLE XIII: Coefficients Cy, in the Eq. (I3] 25]) for the PB system in the sector I = 1/2, S = —2.

D= D,E.DQ, 72 KX 92 92 KA

DE. 1 0 V2 0 +3/2 1/V/6 1/V3 —V/3/2
D,E. 1 0 0 =3/2 1/V2 1 1/2
DQ, 0 3/2 0 —-1/V/31/V/6 0

TABLE XIV: Coefficients Cy in the Eq. (I3l 25) for the PB system in the sector I =1, S = —1.

D,¥. D=, DE. 7% A ¥ Y KN KE

DX 0 V2 0 0 0 —1/V/3 2/3 -1 0

D=, 10 1/vV/2 —V3/2 1/v/6 1/2/3 0 1/V2
D=, 1 —/3/2 1/2 —1/v2 —-1/2 0 /3/2

TABLE XV: Coefficients Cqp in the Eq. (3| 25, 27) for the PB system in the sector I = 0,
S=-1.

DAY D=. D=, n.A 72 nA n”A KN KE

DAY 0 —vV2 0 1 0 1/V3 2/3 —V3 0

D=, -1 0 1/vV2 =3/2 1/v/6 —1/2/3 0 /32
D=, —1 —/3/2V3/2 -1/v2 1/2 0 1/V2
neA 0 0 0 0 0 0

TABLE XVI: Coefficients Cyy in the Eq. (I3l 25) for the PB system in the sector I =0, S = —3.
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TABLE XVII: Coefficients Cy in the Eq. (4] 25]) for the V B system in the sector I = 3/2, S = 0.

‘D*zc pN K*¥

D*¥.| 2 -1 1

TABLE XVIIL: Coefficients Cyp, in the Eq. (14}, 25) for the VB system in the sector I = 1/2,
S=0.

D*Y. D*AY pN wN ¢N K*¥ K*A

D*¥.| =1 0 —1/2 v/3/2 0 1 0

D*AS 1 -3/2-v3/2 0 0 1

TABLE XIX: Coefficients Cyy, in the Eq. (I4] 25) for the V B system in the sector I =1/2, S = —2.

=, D*Q. p= K*S wE  ¢=  K*A

DIEl 1 0 V2 0 V3/2 0 —1/vV2 —/3/2
D=, 1 0 0 -3/2 0 —4/3/2 1/2

s

D*Q, 0 /3/2 0 V3/2 0 0

TABLE XX: Coefficients Cy, in the Eq. (I4l 25]) for the V B system in the sector I =1, S = —1.

DY, D*E, D*E. pX% pA WY ¢¥ K*N K*Z
DYl 0 V2 0 0 0 0 -1 -1 0
D*E 10 1//2 —V3/2-1/2 0 0 1/V2
D*Z, 1 —/3/2 1/2 V3/2 0 0 3/2
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TABLE XXI: Coefficients Cyp, in the Eq. (I4] 28]) for the V B system in the sector I =0, S = —1.

pY  wA oA K*N K*Z

DIAFl 0 —V/2 0 0 0 —-1-V3 0

D*E, -1 0 =3/2-1/2 0 0 3/2

D*=,, -1 V3/2vV3/2 0 0 1/V2

TABLE XXII: Coefficients Cyp in the Eq. (I4], 28) for the V B system in the sector I =0, S = —3.
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