
ar
X

iv
:1

01
1.

18
50

v1
  [

nu
cl

-t
h]

  8
 N

ov
 2

01
0

Noname manuscript No.

(will be inserted by the editor)

Projecting the Bethe-Salpeter Equation onto the

Light-Front and back: A Short Review

Tobias Frederico · Giovanni Salmè
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Abstract The technique of projecting the four-dimensional two-body Bethe-Salpeter

equation onto the three-dimensional Light-Front hypersurface, combined with the quasi-

potential approach, is briefly illustrated, by placing a particular emphasis on the re-

lation between the projection method and the effective dynamics of the valence com-

ponent of the Light-Front wave function. Some details on how to construct the Fock

expansion of both i) the Light-Front effective interaction and ii) the electromagnetic

current operator, satisfying the proper Ward-Takahashi identity, will be presented, ad-

dressing the relevance of the Fock content in the operators living onto the Light-Front

hypersurface. Finally, the generalization of the formalism to the three-particle case will

be outlined.

Keywords Light-Front Field Theory · Bethe-Salpeter equation · Few-body systems ·
Electromagnetic structure

1 Introduction

In his 1949 seminal paper [1], P.A.M. Dirac proposed three peculiar representations of

the Poincaré group, in strict relation with the choice of possible space-time hypersur-

faces without a time-like direction, (see also, e.g., [2]): the Instant form, the Light-Front

(LF) form and the Point form (cf [3] for a recent review). Each hypersurface leads to

a specific, but equivalent, description of the dynamics of a relativistic interacting sys-

tem. As a matter of fact, the choice of an initial hypersurface, in which the points
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are separated by space-like distances and therefore no causal connections are allowed,

suggests the set of dynamically independent variables, suited for implementing a de-

scription of the initial state of an interacting system. In conclusion, Dirac indicated

the potentially fruitful role of the Hamiltonian approach for relativistically describing

interacting systems, within a field theoretical framework, as well (see, e.g., [2]).

In the Instant form, corresponding to the choice of a constant-time hypersurface

in the Minkowski space (x0 = 0), translations and rotations, being the generators

in the stability set of the chosen hypersurface, commute with the Hamiltonian. The

eigenstates of the Hamiltonian, constructed in terms of the Fock-space basis (in this

basis the free Hamiltonian is diagonal), have both the eigenvalues of the total three-

momentum and the total angular moment as good quantum numbers. Translations and

rotations do not mix different Fock-components of the wave function and therefore a

truncation in the Fock-space, that is required for practical applications, is stable under

those transformations. Differently, the Instant-form boosts have dynamical nature and

therefore they mix the Fock components. The shortcoming of a truncated Instant-form

Fock basis is made manifest by the lack of Lorentz invariance, e.g. when we evaluate

the expectation value of observables involving initial and final rest-frames, having a

relative non zero velocity.

In the LF form, where the hypersurface x+ = t + z = 0 is chosen for quantizing

the theory, one has a kinematical subgroup of the Poincaré group, built by seven

generators (see e.g. [2,4,5,6]). Such operators, keeping invariant the LF hypersurface,

do not contain the interaction and they correspond to i) three LF translations, ii)

a longitudinal LF boost along the z-direction, iii) a rotation around z, and iv) two

transverse LF boosts, suitable linear combinations of transverse Instant-form boosts

and rotations. The remaining three generators have a dynamical nature: i) two LF

transverse rotations, like the LF boosts but with different sign combinations, and ii)

the Hamiltonian P− = P 0 + P 3, i.e., the generator of LF-time x+ translations. From

this classification, immediately an important feature stems out: the stability under

LF boosts of any truncated Fock expansion of the physical states (eigenstates of the

squared mass Fock-space operator, see, e.g., [6]), since the LF boosts are diagonal in the

Fock space [7]. This property is fundamental for a consistent treatment of the boosts

when a truncated Fock basis is adopted. For example, if one calculates electromagnetic

form factors for momentum transfers along the z−direction ( q+ > 0 and q⊥ = 0 [8]),

the initial and final rest-frames are related simply by a kinematical transformation,

and therefore one could use a truncated description of the initial and final states. As a

last remark, it is worth noting that the change to LF variables allows one to linearize

the dependence upon the dynamical variable (conjugated to the LF time), with a

simplification in the analysis of the poles in the propagators (i.e., k20−(m2+|k|2)+iǫ →
k+ [k− − (m2 + |k⊥|2)/k+] + iǫ).

The physical outcome of a quantum theory does not depend on the particular

space-time hypersurface adopted for quantizing, and therefore the theory has to have

an equivalent four-dimensional (4D) formulation, where explicit covariance is built

in. In this respect, the Bethe-Salpeter equation (BSE) is a 4D field-theoretical tool

[9] to explore the non perturbative physics of bound and scattering states of few-

particle systems. Within a LF framework, it can be easily shown that the projection

onto the LF hyperplane of the BS amplitude is proportional to the valence component

of the physical state (see, e.g., [5]). This suggests to take the BSE as the starting

point for an investigation of the internal dynamics, alternative to the one where a

coupled-equation system, generated by the Hamiltonian acting on the full Fock space,
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is considered. In order to pave the way from the BSE to the eigenequation for the

3D valence component and back, another important suggestion is offered by the idea

of ”iterated resolvents” of Refs. [10,11], where it is proposed that the complexity of

the Fock-space LF Hamiltonian builds an effective dynamics for the 3D valence state.

Indeed, it should be pointed out that the mass operator for the 3D valence component

can be exactly obtained from the BSE by a quasi-potential (QP) expansion [12], as

investigated in Refs. [13,14] and [15] (where the associated set of coupled equations for

LF Green’s functions was derived).

The QP approach makes feasible to single out the ”trivial” global propagation

of the interacting system by means of a well-defined auxiliary Green’s function (see

Eqs. (9) and (13), below). This fundamental goal, in turn, allows one to reconstruct

the BS amplitude from the 3D valence component, with a one-to-one correspondence,

and moreover, to obtain the expansion of the 3D effective interaction, entering the

eigenequation for the valence component. Each contribution to the expansion immedi-

ately acquaints a transparent physical interpretation (given the strong analogy between

the LF evolution and the non relativistic one) that produces a straightforward guidance

in evaluating the relative importance of the associated diagrams. The same analysis

seems more involved in the studies of the Hamiltonian in a truncated Fock-space, i.e. in

the analysis of the generated system of coupled equations. Noteworthy, the convergence

of the expansion, that has a direct impact on the lost of covariance with respect to

the subset of the dynamical transformations, has been investigated in a simple bosonic

Yukawa model in Ref. [13], where the Fock content of each contribution has been recog-

nized as the ordering ”parameter”. In closing, the QP technique appears so appealing

within the LF framework, that it could be very interesting to implement comparisons

between actual calculations performed in other relativistic QP approaches, like the Co-

variant Spectator Theory (see e.g. [22]) applied in many relevant few-nucleon problems.

The LF projection of the BSE for few-particle systems, and the consequent trunca-

tion of the physical state in the Fock space, can be useful if there is a dominant valence

state, or if the normalization can be saturated at large extent by including only few

Fock components. In Nuclear Physics, the nucleonic component is largely dominant,

as in the deuteron case, while in applications to hadrons, Fock components beyond

the valence one have been recognized to be relevant, in particular in the description of

physical quantities pertaining to inelastic channels, like structure functions and gen-

eralized parton distributions (from deeply virtual Compton scattering [16]). Recently,

a signature of the the relevance of the components beyond the valence one has been

singled out in the evaluation of the nucleon electromagnetic form factors by using con-

stituent quark degrees of freedom in the q⊥ = 0 frame [8]. As a matter of fact, a zero in

the proton electric form factor has been associated with a cancellation between valence

and nonvalence contributions to the electromagnetic current (see e.g. [17] and [18] for

the experimental overview).

Aim of the present review is to yield some insights on i) the technique for projecting

the 4D BSE onto the three-dimensional (3D) LF hypersurface using the quasi-potential

approach and ii) the construction of the effective dynamics of the valence component of

the LF wave function for both two- [13,14] and three-particle systems [19]. Moreover,

some details on how to obtain an effective electromagnetic current operator i) acting

on the valence component of composite two-boson and two-fermion systems, and ii)

fulfilling the Ward-Takahashi identity (WTI) [20] and [21], are given.

The review is organized as follows. In Sec. 2 the QP reduction is presented as a

tool to eliminate the relative LF-time. In Sec. 3, the relation one-to-one between the
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BS amplitude and the LF valence wave-function is illustrated. In Sec. 4, a hierarchy

of coupled equations for LF Green’s functions is discussed in order to show the Fock

content of the projection of the BS equation onto the LF hyperplane. In Sec. 5 the

projection technique for three-body BS equations is briefly discussed, along with the

role of induced three-body forces. In Sect. 6, the electromagnetic current operator,

acting on the valence component and fulfilling the LF Ward-Takahashi identity is

introduced, with some remarks on both structure and covariance of the truncated (in

the Fock space) current. In Sec. 7, a summary and some perspectives are presented.

2 The Quasi-Potential reduction: a tool for eliminating the relative

LF-time

The 4D BSE (see, e.g. [9]) is the starting point of many studies of few-body systems

which aim to account for relativity. The BSE requires a relativistic field-theoretical

approach, based on an interacting Lagrangian able to model the system under investi-

gation. In the particular case of a two-body scattering, the 4D scattering equation for

the transition matrix, T (K), with total four-momentum K is written as follows

T (K) = V (K) + V (K)G0(K)T (K) , (1)

where the interaction V (K) contains, in principle, all the possible two-body irreducible

diagrams. The two-body disconnected Green’s function, G0(K), should include self-

energy terms, but they are neglected in the approach developed so far. Therefore, in

the case of two bosons, G0(K) becomes

G0(K) =
ı2

2π

1

k̂21 −m2
1 + iε

1

k̂22 −m2
2 + iε

, (2)

where k̂µi is the four-momentum operator and the factor 2π is introduced for conve-

nience. For two fermions one has G0(K) → GF
0 (K) =

(
/̂k1 +m1

)(
/̂k2 +m2

)
G0(K).

The two-particle bound-state with total 4-momentum KB , K2
B = M2

B , corresponds

to a T-matrix pole. The residue is associated with the vertex function, namely the non-

trivial of part the BS amplitude, ΨB , solution of the following homogeneous equation

|ΨB〉 = G0(KB)V (KB) |ΨB〉 . (3)

The normalization condition [9] has to be satisfied in order to fully determine |ΨB〉 .
For scattering states with total 4-momentum K, the BS amplitude is a solution of the

following inhomogeneous equation

∣∣Ψ+〉 = |Ψ0〉 + G0(K)V (K)
∣∣Ψ+〉 , (4)

while the T-matrix, solution of Eq.(1), corresponds to the connected four-point function

which brings information on both the scattering and bound states. In Eqs. (3) and (4)

the four-momentum conserving δ-function is factorized out.
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Since in the LF projection method a central role is played by the on-minus-shell

propagation, as it will be emphasized below, let us write the relevant matrix elements

of the free two-boson Green’s function, viz

〈
k′−1

∣∣G0(K)
∣∣k−1

〉
=

=
ı2

2π

δ
(
k′−1 − k−1

)

k̂+1 (K+ − k̂+1 )

(
k−1 − k̂−1on + iε

k̂
+

1

)(
K− − k−1 − k̂−2on + iε

K+−k̂
+

1

) , (5)

where the LF four-momenta are ki = (k−i := k0i − k3i , k+i := k0i + k3i , ki⊥),

k̂−ion = (k̂
2
i⊥+m2)/k̂+i (i = 1, 2) is the on-minus-shell momentum operator, with eigen-

functions given by the LF plane waves, 〈x−i xi⊥

∣∣k+i ki⊥

〉
= N e−ı( 1

2
k
+

i
x
−

i
−ki⊥.xi⊥).

The completeness relation and the normalization are

∫
dk+d2k⊥
2(2π)3

|k+k⊥〉〈k+k⊥ | = 1, (6)

and 〈k′+k′
⊥|k+k⊥〉 = 2(2π)3δ(k′+ − k+)δ(k′

⊥ − k⊥), respectively.

The free two-fermion propagator, GF
0 (K), can be decomposed in an on-minus-shell

term, G0(K), and a part that contains the so-called instantaneous (in the LF-time)

contribution, since the Dirac propagator can be separated in two terms as follows

/k +m

k2 −m2 + iε
=

/kon +m

k+(k− − k−on + iε
k+ )

+
γ+

2k+
. (7)

where the first term yields the on-minus-shell propagation, while the second one the

LF-time instantaneous term of the Dirac propagator. For the fermion case, we will be

interested in the analogous of Eq. (5), written in terms of G0(K), namely

〈
k′−1

∣∣G0(K)
∣∣k−1

〉
=
(
/̂k1on +m1

)(
/̂k2on +m2

)〈
k′−1

∣∣G0(K)
∣∣k−1

〉
, (8)

For the sake of a unified formal treatment of two-boson and two-fermion systems, in

what follows we put G0(K) ≡ G0(K).

One could easily extend the present analysis to systems composed by particle-

antiparticle or by other mixtures, like a fermion and a boson (see e.g. [23]).

The first step for projecting the BSE onto the LF surface is the introduction of the

free-resolvent, i.e., the Fourier transform in K− of the global x+-time free propagator

of the two-particle system. This amounts to integrate the matrix elements, Eq. (5) (or

Eq. (8)), of the 4D G0(K) over k−1 and k′−1 , so that the relative LF time between the

particles is eliminated, and one remains with a dependence upon K−, i.e.

|G0(K)| :=

∫
dk′−1 dk−1

〈
k′−1

∣∣G0(K)
∣∣k−1

〉
≡ g0(K) (9)

where g0(K), called the free-global LF propagator, is a 3D operator depending upon

the LF momenta (k+i ,ki⊥) only, and it is explicitly given by

g0(K) =
P̂

k̂+1 (K+ − k̂+1 )
(
K− − k̂−1on − k̂−2on + iε

) , (10)
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where P̂ = iθ(K+ − k̂+1 )θ(k̂+1 ) for two-bosons and

P̂ = iθ(K+ − k̂+1 )θ(k̂+1 )(2m1)(2m2)Λ+(k̂1on)Λ+(k̂2on)

for two-fermions. The projector Λ+(k̂on) =
(
/̂kon +m

)
/2m is the positive energy

spinor projector. A positive value for K+ is used without any loss of generality.

In Eq. (9), the vertical bars ”| ”on the right side and on the left one indicate that

the minus components in |k−〉 and 〈k′−| have to be integrated out [13,14], respectively.

Notice that, for two fermions, the inverse of g0(K) exists only in the valence sector,

since the projectors, Λ+, single out only positive energy states.

Within the QP approach [12], where an auxiliary interaction, W (K), is introduced,

the full T-matrix is solution of the following coupled equations

T (K) = W (K) +W (K)G̃0(K)T (K), (11)

W (K) = V (K) + V (K)∆0(K)W (K) , (12)

where ∆0(K) = G0(K) − G̃0(K) for bosons and ∆0(K) = GF
0 (K) − G̃0(K) for

fermions. The auxiliary Green’s function G̃0(K) is a 4D operator, depending upon

the four-momenta of the two constituents, and it represents the key quantity of the LF

projection. It is the 4D image of the 3D dimensional g0(K), that, we strongly stress,

does not contain the relative-time propagation of the system. Therefore ∆0(K) just

takes into account such a propagation in the 4D space, namely it will be an essential

ingredient in the description of the internal dynamics of the systems. The 4D operator

G̃0(K) is defined by

G̃0(K) = Π0(K)g0(K)Π0(K) , (13)

where

Π0(K) = G0(K)| g−1
0 (K) , Π0(K) = g−1

0 (K) |G0(K). (14)

These operators, the free reverse LF-projection operators, connect three and four di-

mensional quantities. In the next section the corresponding interacting operators will

be introduced. It is worth noting that the choice of G̃0(K) and the corresponding

integral equation for W (K), Eq. (12), allows only for LF two-body irreducible terms.

The solution by iteration of Eq. (12) is given by

W (K) =

∞∑

n=1

Wn(K), (15)

with W (K)n = V (K) (∆0(K) V (K))n−1. The diagrammatic analysis of the series (15)

shows that for each term one has a specific Fock content, associated to the propagation

of the virtual intermediate states, as discussed to some extent in Sect. 4. Of course,

a truncation of the sum in Eq. (15) puts a bound on the number of the Fock compo-

nents involved in the actual calculation. Moreover, the same holds for the 3D effective

interaction w(K) := Π0(K)W (K)Π0(K) that determines the valence component, as

shown in the following Section. In particular, the 3D effective interaction, since it is

non diagonal in the Fock space, makes possible the coupling of the valence sector to

the higher Fock components of the wave function (formal details are given in Sec. 4

and [15]).
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It is worth noting that, in model studies (see [13,24,25,26,27,28]), the expansion

(15) is rapidly converging, since the probability of higher Fock states is quickly de-

creasing [29,30].

In fermionic models, with point-like couplings, the LF BSE was investigated by

retaining the lowest order kernel and subtle problems, related to the divergences pro-

duced by the dependence upon the transverse momentum, were found [31,32,33]. Part

of the difficulties can be ascribed to the absence of the instantaneous terms as analyzed

in Refs. [14,34].

Following Refs. [13,14,20,21], one can construct a 3D LF T-matrix, t(K), from the

4D one. In particular, one has

t(K) = Π0(K)T (K)Π0(K) = w(K) + w(K)g0(K)t(K) = w(K) + w(K)g(K)w(K)

(16)

where g(K) is the interacting LF Green’s function, fulfilling the integral equation

g(K) = g0(K) + g0(K)w(K)g(K), (17)

Notice that it also holds g(k) = g0(k)+ g0(k)t(K)g0(k). The 3D operator, g(K), is the

Fourier transform in K− of the global LF-time propagator, viz

g(K) = |G0(K)|+ |G0(K)T (K)G0(K)|, (18)

and evolves the system from an initial state, defined on a given LF hypersurface, to

another one, after a LF-time interval x+
f

− x+i > 0. By iterating once the integral

equation (11), and using Eqs.(13) and (16), one has

T (K) = W (K) +W (K)
[
G̃0(K) + G̃0(K)T (K)G̃0(K)

]
W (K) =

= W (K) +W (K)Π0(K)g(K)Π0(K)W (K) , (19)

This relation allows one to map the 3D dynamics into the 4D space.

It turns out that the on-mass-shell matrix elements of T (K), which define the

two-constituent scattering amplitude, are identical to the ones obtained from the on-

minus-energy-shell matrix elements of t(K) (see discussion in [13,14]). Unless otherwise

indicated, the operators g0(K) and w(K) have to be evaluated with a ”+ıε” prescrip-

tion.

3 The BS amplitude and the LF valence component

The relation between the BS amplitude |ΨB〉 and the valence component of the LF

wave function, |ΦB〉, for a bound state with total momentum KB is given by [14] (let

us recall that we formally put G0(K) ≡ G0(K))

|ΨB〉 = G0(KB)W (KB)G0(KB)| g−1
0 (KB) |ΦB〉 , (20)

where the valence component is the solution of the following eigenequation

|ΦB〉 = g0(KB)w(KB) |ΦB〉 , (21)

It should be pointed out that, in the case of fermions, the instantaneous terms from

the Dirac propagators appear in i) G0 ≡ GF
0 , ii) W and iii) the effective interaction w.
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The identity G0(KB)|
(
g−1
0 (KB)−w(KB)

)
|ΦB〉 = 0 can be added to Eq. (20) in

order to get

|ΨB〉 = [1 +∆0(KB)W (KB)]G0(KB)| g−1
0 (KB) |ΦB〉 , (22)

This expression holds not only for bound states but also for scattering states (see e.g.

[21]), viz

∣∣Ψ+
〉
= Π(K)

∣∣Φ+
〉

(23)

where Π(K), the interacting reverse LF-projection operator, is given by

Π(K) := [1 +∆0(K)W (K)]G0(K)| g−1
0 (K) = GR(K)| g−1(K) . (24)

with

GR(K) := G0(K) + G(K)V (K)G0(K) = G(K)G−1
0 (K)G0(K) , (25)

Notice that in GR(K) the on-minus-shell-Green’s function G0(K) appears on the right-

most position, and this leads to apply the ”|” operation on the right.

The operator Π(K) acts on the valence component of the LF wave function in

Eqs. (22) and (23) and it allows one to fully reconstruct the 4D BS amplitude for

both bound and scattering states, starting from the valence wave function. The LF-

conjugated operator, Π(K) is given by

Π(K) := g−1(K) |GL(K) (26)

with GL(K) := G0(K)+G0(K)V (K)G(K) = G0(K)G−1
0 (K)G(K) , that allows the ”|”

operation on the left. The reverse LF projectors make compact the relations between

operators and states living onto a 3D hypersurface and the full 4D counterparts. For

instance the relation between the BS amplitude and the valence component can be

written as |Ψ〉 = Π(K)|Φ〉 and 〈Ψ | = 〈Φ|Π(K). These relations can be applied to both

two-boson [13,14] and two-fermion systems [20,21] with the proper choice of G, G0 and

the on-minus-shell G0(K). Reversely, the valence component of the LF wave function

can be obtained directly from the BS amplitude by using Eqs. (24) and (25) [13,14,20,

21]

|G0(K)G−1
0 (K) |Ψ〉 = |G0(K)G−1

0 (K)G(K)G−1
0 (K)G0(K)| g−1(K) |Φ〉 =

= |Φ〉 . (27)

To conclude this section, it is worth noting that the 3D valence LF wave functions are

solutions of the squared mass eigenvalue equation:

g−1(K) |Φ〉 = 0 , (28)

with suitable boundary conditions for bound and scattering states, respectively. In

particular, the LF scattering state is the solution of the inhomogeneous equation,

∣∣Φ+
〉
= |Φ0〉+ g0(K)w(K)

∣∣Φ+
〉
, (29)

with outgoing boundary condition.
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4 Hierarchy equations for LF Green’s functions

In order to gain deep insights in the Fock content of the dynamical quantities involved

in the approach presented in the previous Sections, one can combine the investigation

of the Fock structure of a Hamiltonian (actually a hadronic Hamiltonian) performed in

Refs. [10,11], with the LF projection technique [15]. For that purpose, the free resolvent

is rewritten as

g0(K) = |G0(K)| :=

∫
dk′−1 dk−1

〈
k′−1

∣∣G0(K)
∣∣k−1

〉
= iΩ̂−1g

(2)
0 (K)Ω̂−1 , (30)

where the phase space operator is conveniently defined by Ω̂ :=

√
k̂+1 (K+ − k̂+1 ). It

should be pointed out that Ω̂ makes the LF projection ”|” invariant with respect to the

kinematical subgroup of the Poincaré group. For spinless particles, the free two-body

LF Green’s function is a particular case of the N-body LF Green’s function given by

g
(N)
0 (K) =




N∏

j=1

θ(k̂+j )θ(K+ − k̂+j )



(
K− − K̂

(N)−
0 + iε

)−1

, (31)

where K̂
(N)−
0 =

∑N

j=1 k̂
−
jon is the free LF Hamiltonian.

Let us consider a two-boson system. By introducing the operator Ω̂, the interacting

LF Green’s function, Eq. (17), can be rewritten as follows

g(2)(K) = g
(2)
0 (K) + g

(2)
0 (K)ν(K)g(2)(K) , (32)

where g(2) ≡ −iΩ̂g(K)Ω̂, ν(K) = iΩ̂−1w(K)Ω̂−1. From Eq. (15), the leading and

next-to-leading order contributions to ν(K) are given by

ν(2)(K) = i
[
Ω̂g0(K)

]−1

|G0(K)V (K)G0(K)|
[
g0(K)Ω̂

]−1

, (33)

ν(4)(K) = i
[
Ω̂g0(K)

]−1

|G0(K)V (K)G0(K)V (K)G0(K)|
[
g0(K)Ω̂

]−1

−i
[
Ω̂g0(K)

]−1

|G0(K)V (K)G̃0(K)V (K)G0(K)|
[
g0(K)Ω̂

]−1

. (34)

Notice that ν(4)(K) is two-body irreducible, due to the subtraction of the last term

in Eq. (34). The content of the operator ν(n) in the LF Fock-space can be investi-

gated, within a ladder approximation, in a Yukawa bosonic Lagrangian model, LB
I =

gSφ
†
1φ1σ + gSφ

†
2φ2σ with φ1, φ2 and σ bosonic fields. Then, the interaction vertex

operator, acting between Fock states differing by one quantum σ, has matrix element

given by e.g.,

〈qkσ |v|k〉 = −2(2π)3δ3(q̃ + k̃σ − k̃)
gS√

q+k+σ k+
θ(k+σ ) , (35)

where the LF momenta are indicated by the convention: q̃ ≡ {q+,q⊥}. The states

are normalized according to (6). The effective interaction ν(K), up to next-to-leading

order in v can be obtained from the suitable LF-time ordered diagrams, since the LF
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projections, ”|”, allows one to play a game analogous to the case of the non relativistic

perturbation theory in the Fock space. Then, one gets [10,11,15]

ν(K) ≈ ν(2)(K) + ν(4)(K) = vg
(3)
0 (K)v + vg

(3)
0 (K)vg

(4)
0 (K)vg

(3)
0 (K)v . (36)

By reminding that in the Yukawa model, the BSE kernel V (K) contains two interac-

tion vertexes, v, according to Eqs. (33) and Eq. (34) one can perform the following

identifications: i) ν(2) ≡ vg
(3)
0 (K)v and ii) ν(4) ≡ vg

(3)
0 (K)vg

(4)
0 (K)vg

(3)
0 (K)v. Such

expressions straightforwardly show the Fock content of each term. In particular, the

presence of g
(3)
0 and g

(4)
0 points to an intermediate propagation of three and four

bosons, respectively. Once the previous analysis is performed at any order, it turns out

that in general

ν(K) = vg(3)(K)v .

In turn, from Eq. (36), one sees that g(3) is coupled to the four-body Green’s function,

which should be coupled to the five-body one, and so on. By an obvious generalization,

one can construct a hierarchy of coupled equations for the interacting bosonic Green’s

functions, viz

g(2)(K) = g
(2)
0 (K) + g

(2)
0 (K)vg(3)(K)vg(2)(K) . . .

g(N)(K) = g
(N)
0 (K) + g

(N)
0 (K)vg(N+1)(K)vg(N)(K) . . . (37)

Those coupled equations encode the full Fock-space content of the QP expansion,

within the LF projection framework.

An analogous study can be carried out for the two-fermion system, by adopting

the Yukawa model given by LF
I = gSΨ1Ψ1σ + gSΨ2Ψ2σ, with Ψ1 and Ψ2 being the

fermionic fields. The interaction vertex operator, acting between Fock states differing

by zero, one and two σ’s, has matrix elements given by

〈(q, s′)kσ|v|(k, s)〉 = −2m(2π)3δ3(q̃ + k̃σ − k̃)
gS√

q+k+σ k+
θ(k+σ )u(q, s′)u(k, s) (38)

〈(q, s′)k′σ|v|(k, s)kσ〉 = −2(2π)3δ3(q̃ + k̃′σ − k̃ − k̃σ)δs′s
g2S√
k′+σ k+σ

θ(k′+σ )θ(k+σ )

k+ + k+σ
(39)

〈(q, s′)k′σkσ |v|(k, s)〉 = −2(2π)3δ3(q̃ + k̃′σ + k̃σ − k̃)δs′s
g2S√
k′+σ k+σ

θ(k′+σ )θ(k+σ )

k+ − k+σ
(40)

for fermion states properly normalized. The instantaneous terms in the two-fermion

propagator give origin to Eqs. (39) and (40). Since ν(K) has terms that couple sectors

of the Fock space that differ at most by two sigma’s [14], then one gets the following

expression for the coupled set of Green’s functions

g(2)(K) = g
(2)
0 (K) + g

(2)
0 (K)v

[
g(3)(K) + g(4)(K) + g(3)(K)vg(4)(K)

+ g(4)(K)vg(3)(K)
]
vg(2)(K) , . . .

g(N)(K) = g
(N)
0 (K) + g

(N)
0 (K)v

[
g(N+1)(K) + g(N+2)(K) + g(N+1)(K)vg(N+2)(K)

+ g(N+2)(K)vg(N+1)(K)
]
vg(N)(K) , . . . (41)
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It is important to notice that truncating in the Fock space the effective interaction

ν is different from truncating the coupled set of Eqs. (37) or (41). This can be easily un-

derstood by considering the two-boson case and restricting the intermediate-state prop-

agation up to four-particles, namely retaining up to g
(4)
0 (K). Then, one gets g(2)(K) ≃

g
(2)
0 (K)+g

(2)
0 (K)vg(3)(K)vg(2)(K) with g(3)(K) ≃ g

(3)
0 (K)+g

(3)
0 (K)vg

(4)
0 (K)vg(3)(K),

where one has propagations up to four particles, given the presence of g(3)(K). On the

other side, from Eq. (36), one has vg
(3)
0 (K)v, without higher Fock propagations.

5 LF projection of three-body BS equations

The approach briefly revised in Sects. 2 and 3 has been extended to three-particle

systems in Ref. [19]. In the last years, within a LF framework, 3-body systems have

been i) investigated within zero-range models [35,36], ii) applied to the description of

the nucleon [37] and iii) adopted for analyzing the quark mass effects in heavy baryons

[38]. It is very important to notice that the QP expansion allows one to systematically

deal with higher Fock-state contributions to the dynamics of the three-body valence

component, in fully analogy with the two-body case.

The starting point of the investigation performed in Ref. [19] is the three-body

Bethe-Salpeter equation for the transition-matrix, within the ladder approximation,

viz

T = V + V G0T ; V =
∑

Vi ; Vi = V
(2)
jk

S−1
i , (42)

where V
(2)
jk

stands for an interaction between particles j and k corresponding to 2-body

irreducible diagrams. Si is the individual particle propagator and G0 = S1S2S3. The

complexities produced by the spin degrees of freedom are omitted in what follows.

The same QP formalism shown in Eqs. (11) and (12) can be applied to the three-

body BSE, but with the obvious extension to the three-body case of the free Green’s

function, namely G0 = S1S2 → G0 = S1S2S3. In order to get the three-body LF

Green’s function g0(K), one has to project onto the LF hyperplane by integrating

over two independent minus momentum components, i.e. G̃0 := G0||g
−1
0 ||G0 with

g0 := ||G0|| and G0 the generalization to the three-particle case of the on-minus-shell

two-body propagators (see Eq. (5) for bosons and Eq. (8) for fermions). The double

bar ”|| ”operation on the right or on the left means

||G0 :=

∫
dk−1 dk−2 〈k−1 , k−2 | G0, G0|| :=

∫
dp−1 dp−2 G0 |p−1 , p−2 〉. (43)

The Faddeev decomposition of the QP as Wi = Vi + Vi∆0
∑

j
Wj , leads to the

components of the effective interaction wi := Π0WiΠ0 := g−1
0 ||G0WiG0||g

−1
0 . The

free reverse LF time operators for the three-body system, Π0 and Π0, are introduced

in analogy to the two-body case, with the difference that they now contain a double

integration. Finally three-body LF transition matrix reads as follows

t := Π0TΠ0 =

3∑

i=1

wi +

3∑

i=1

wig0t , (44)

where the standard Faddeev decomposition, t =
∑3

i=1 ti, leads to a couple set of

equations ti = ti + tig0(tj + tk) with ti = (1−wig0)
−1wi.
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One is tempted to identify ti with the two-body subsystem 3D transition matrix,

however this is not possible. It contains irreducible three-body terms from the point

of view of the LF global propagation. To clarify this point, let us consider an example

with the interaction Lagrangian density: LI =
∑3

i=1 gφ
†
iφiσ, where three different

spin zero bosons exchange a scalar quantum σ Moreover, let us simplify our discussion

assuming that Vi corresponds to the 4D ladder one-boson exchange. The expansion of

Wi, e.g., up to next-to-leading order is given by

wi = Π0ViΠ0 +Π0Vi∆0ViΠ0 +Π0Vi∆0(Vj + Vk)Π0 + · · · , (45)

The leading-order Π0ViΠ0 corresponds to a LF two-particle interaction in the presence

of the i-th boson, and it is built through the coupling of three- and four-particle Fock

sectors. Pictorially, one has an intermediate propagation of a a four-particle state,

i.e. three φi bosons and an exchanged quantum σ, between an initial and final three-

boson free propagations. The term Π0Vi∆0ViΠ0 corresponds to two-body stretched

boxes involving two boson out three, with the third one, the i-th boson, acts as a

spectator. The term Π0Vi∆0VjΠ0 corresponds to an induced three-body force due to

the elimination of the relative LF-time between the particles. It should be pointed out

that the induced three-body forces, from the 4D point of view, are quite different from

the intrinsic three-body forces, and play a very important role in the determination

of the three-body dynamics, as shown by Karmanov and Maris in [39], where the

calculation of the three-boson bound-state mass has been presented.

6 Electromagnetic Current and LF Ward-Takahashi Identity

The electromagnetic current operator plays a central role for the phenomenology, and

therefore it deserves a detailed analysis within any relativistic framework. In particular,

one should pay attention to the fulfillment of the Ward-Takahashi identity (WTI) [40],

as well. For a system of two charged particles 1 and 2, in the Minkowski space, the

WTI reads as follows

QµJ
µ(Q) =

[
G−1, ê1

]
+ (1 ↔ 2), (46)

where the charge operator for particle i has matrix elements given by 〈ki|êi|pi〉 =

eiδ
4 (ki − pi −Q) . The full Green’s function of the interacting two-particle system is

a solution of G(K) = G0(K) + G0(K)V (K)G(K). The current operator may contain

two terms, a free contribution and an interacting part, viz

J µ(Q) = J µ
0 (Q) + J µ

I
(Q) , (47)

It is worth noting that the free term, J µ
0 (Q), leads to the impulse approximation

derived by Mandelstam [41], where self-energy insertions/vertex corrections were dis-

regarded.

Once the relation between the BS amplitude and the 3D LF valence component (see

Sect. 3) has been established, the LF em current operator can be constructed from the

matrix element of the 4D current (see [20,21]). For both scattering and bound states

one has

〈
Ψf

∣∣J µ(Q) |Ψi〉 = 〈φf |j
µ(Kf ,Ki)|φi〉 , (48)
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where jµ(Kf ,Ki) is the 3D LF current, that acts on the valence wave functions and

includes two-body operators. It is given by

jµ(Kf ,Ki) := Π(Kf )J
µ(Q)Π(Ki) . (49)

A 3D LF electromagnetic current operator for two-boson interacting systems, acting

on the valence state and fulfilling a WTI, has been also obtained by using the method

of gauging equations [42]. The achieved result is in agreement with Eq. (49).

In order to implement the WTI for the 3D current one starts with the corresponding

relation for the 4D current, Eq. (46), and then one applies the reverse LF projector, as

suggested by Eq. (49). The WTI satisfied by jµ(Kf ,Ki) is given by

Qµj
µ(Kf ,Ki) = Π(Kf )

[
G−1(Kf )ê− êG−1(Ki)

]
Π(Ki) , (50)

with ê = ê1 + ê2. After applying some formal manipulations, illustrated in great detail

in [21], one gets

Qµj
µ(Kf ,Ki) = g−1(Kf ) Q̂

L
LF − Q̂R

LF g−1(Ki) (51)

where there are the fully interacting 3D LF Green’s functions, labeled by the total initial

and final momenta, and the left and right LF charge operators have been introduced,

according to the following definition

Q̂L
LF = |G0(Kf ) G

−1
0 (Kf ) ê Π(Ki) = |G0(Kf ) G

−1
0 (Kf ) ê Π0(Ki) , (52)

Q̂R
LF = Π(Kf ) ê G−1

0 (Ki) G0(Ki)| = Π0(Kf ) ê G−1
0 (Ki) G0(Ki)| . (53)

with the same formal assumption indicated below Eq. (8). In the case of fermions, the

explicit expression, e.g. for particle 1, is given by

Q̂L
1LF = Λ+(k̂1on)

m1

k̂+1

γ+1 ê1LFΛ+(k̂1on)Λ+(k̂2on) , (54)

Q̂R
1LF = Λ+(k̂1on) ê1LF

m1

k̂+1

γ+1 Λ+(k̂1on)Λ+(k̂2on) , (55)

where the notation ê1LF indicates the 3D LF counterpart of the 4D operator ê, with

matrix elements given by

〈k′+1 ,k′
1⊥|ê1LF |k+1 ,k1j⊥〉 := e1δ

3
(
k̃′1 − k̃1 − Q̃

)
. (56)

The normalization condition can be obtained sandwiching the operator γ+m/k+ be-

tween LF spinors.

In the case of a spin-zero boson system, one simply has Q̂R
1LF ≡ Q̂L

1LF = ê1LF .

It is very important to stress that the LF charge operator are interaction free,

within the approach of Refs. [20,21], where no self-energy corrections were included.

From Eq. (51), current conservation straightforwardly follows by taking the matrix

elements between 3D LF valence components, solutions of the wave equation (28) and

noting that the left and right charge operators do not contain any ıε dependence.

By multiplying both the left and right hand sides of Eq. (51) by g(Kf ) and g(Ki),

respectively, one gets

Qµg(Kf )j
µ(Kf ,Ki)g(Ki) = Q̂L

LF g(Ki)− g(Kf )Q̂
R
LF , (57)
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which corresponds to the LF projection of the 5-point function without instantaneous

terms in the external legs in the case of fermions. For bosons this identity was also

derived in [42].

Within a field theoretical approach, the Poincaré covariance of Jµ is ensured. There-

fore, the covariance properties of the matrix elements of the operator jµ, are fulfilled,

since all the matrix elements of the lhs of Eq. (48) are properly related through the

Lorentz transformations. But for a truncated QP expansion, see Eq. (15), it is expected

that the full covariance of the description will be lost, at some extent. A quantitative

analysis of such a Poincaré covariance breaking can be systematically carried out by

considering more and more terms in the QP expansion. In any case, even after introduc-

ing a proper truncation, the corresponding LF current fulfills a WTI, where truncated

LF Green’s functions appear [20,21]. The corresponding current conservation can be

retrieved by using the valence wave functions obtained from eigenequations with the

inverse of the truncated LF Green’s function. Although the explicit expression of the

truncated LF current is rather involved, the physical picture that arises is quite sen-

sible: the truncated LF two-body current, that fulfills the proper WTI, is generated

by attaching the photon in all the possible ways to the truncated effective interaction

operators, that are present in the truncated reverse LF projectors (see Eq. (49)) and

are irreducible with respect to LF two-body propagation.

Within a framework kinematically Poincaré invariant, the rich phenomenology of

the electromagnetic processes can be addressed by adopting the approach presented

in this Section. It is interesting just to remind few issues. In the fermionic case, the

instantaneous contributions play an essential role at the formal level, and therefore

one should be eager to investigate possible signatures of those terms. Furthermore, for

both bosonic and fermionic systems, the choice of a frame different from the celebrated

Drell-Yan one, namely a frame where the plus component of the momentum transfer

is not vanishing, allows one to study the Fock content of the system state, by coupling

small components to large components (for an analysis of the physical impact on actual

cases in Hadronic Physics see, e.g., Refs. [17], [43] and [44]).

7 Summary and perspectives

In this review, we have given a short presentation of the LF projection method, based

on a combination of the integration on the minus component of the constituent four-

momenta and the quasi-potential formalism [12]. This approach allows one to formally

establish a one-to-one relation between the Bethe-Salpeter amplitude and the 3D LF

valence component of a bosonic or fermionic system, and it makes natural to address

the issue of the Fock content of the dynamics governing the system under investigation.

In particular, in Sect. 4, it has been shown that by using the quasi-potential approach,

in the spirit of the ”iterated resolvents” suggested by H.C. Pauli [10,11], one can

construct a set of coupled equations for the LF resolvents, that allows one to arrange

a sort of tomography in the Fock space of the Bethe-Salpeter equation. Finally, the

extension of the LF projection method to the three-particle case has been outlined.

From the phenomenological point of view, the last Section contained the most

relevant topic. There, we briefly presented the derivation of the conserved 3D LF elec-

tromagnetic current operator and the associated Ward-Takahashi identity. The issue

of the truncation in the Fock space of the LF current, and the consequent elaboration

for obtaining a truncated Ward-Takahashi identity has been discussed. In particular,
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it has been pointed out that in order to fulfill the current conservation, the valence

wave functions have to be solutions of the suitable eigenequation, obtained from the

truncated Green’s function.

In conclusion, we would mention that, within the framework of the LF projection

method, the calculation of the deuteron electromagnetic form factors, with two-body

currents obtained from a pion exchange interaction, and the investigation of the re-

lation between the analytic properties of the Nakanishi representation and the Fock

decomposition of the BS amplitude (see e.g. [27,28]) are in progress.
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