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                                         Abstract 

Haag`s theorem states that if a quantum field theory is Lorentz invariant and irreducible, there 

is no interaction picture. But if we construct quantum field theory on a discrete lattice space-

time, it's representation will be reducible and the interaction picture will be restored again. 
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1 Introduction 

Quantum field theory deals with systems that have infinite degrees of freedom. This 

theory is a frame work for relativistic quantum mechanical models of field-like or many-

body systems and has much success in solving problems concerning elementary particles. 

But it encounters some difficulties caused by the nonlinear field structure, occurring in 

coupled equations and Green's functions, products of distributions, etc…which have no 

precise mathematical and physical solutions [1]. 

 There are various approaches to the study of quantum fields. One method is stated by 

Haag and Kastler that introduces axiomatic quantum field theory [2]. The problem in this 

approach is called Haag`s theorem which states that there is no interaction picture. It is 

proved by this theorem that non-equivalent canonical commutation relations are posed 

and different vacuums appear that aren’t meaningful. With the result that one can show 

that every interacting quantum field theory (QFT) is equivalent to a free field theory, i.e., 

there are no interactions in elementary particle physics. This is shown by the non-existent 

of the interaction picture. On the other side, since the only way to calculate cross sections 

is by using perturbation theory via the interaction picture and these cross sections actually 

can be and are measured and observed, we come in conflict with the foundations of QFT. 

In short:  Haag`s theorem states that there is not any interaction as a start for perturbation 

theory in QFT. Van Hove, Segal, Araki, Wightman and Guenin have circumvented this 

theorem in different ways [3, 4]. 

Here we introduce the approach of lattice gauge theory. This theory examines quantum 

fields in discrete space-time and was introduced by K.Wilson in 1974 being very 

successful in solving problems of quantum fields in recent years [5, 6]. In this article 

Haag`s theorem is circumvented by using lattice gauge theory. 

2 Haag’s theorem and its rejections 

The axiomatic quantum field theory used by Haag is as follows: 

If ϑ  is an open region in Minkowski space and the algebra of observables in this region 

is )(ϑA , we have the following correspondence: 

)(ϑϑ A→��

This mathematical frame should have the following properties (for a more detailed 

outline see the appendix): 
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 1-ϑ  Regions for which the correspondence )(ϑϑ A→ is defined are the open sets with 

compact closure in Minkowski space (compact closure means finite extension of sets). 

2-Isotony: If 1ϑ  includes 2ϑ , then the )( 1ϑA algebra also includes the )( 2ϑA algebra, i.e., 

)()( 2121 ϑϑϑϑ AA ⊃�⊃ . )( 1ϑA  and )( 2ϑA have a common unit element or neither of 

them has a unit element. 

3-Local commutatively: If 1ϑ and 2ϑ are completely space-like, then )( 1ϑA and )( 2ϑA  

commute. In other words open space-like regions have independent observables in 

Minkowski space. 

4-The union of all )(ϑA  is a normed *-algebra. 

5-Lorentz invariance: The inhomogeneous Lorentz group is represented by the      

following    authomorphisms: 

)()(, ϑϑ LAAAaAa
LL →∈�∈  

 Where ϑL  is the image of ϑ  under Lorentz transformations L.  

6-A is primitive� i.e., it accepts a faithful irreducible representation, i.e., or for any 

operator only one representation [2]. 

In axioms (5) and (6) only one-to-one images are relevant. But a one-to-one property is 

not established in interacting fields. Interaction terms have powers greater than one and 

are not linear� so by working with single states, they result in other states and then 

nonequivalent or strange representations appear. If this is adopted, the theory gains much 

in richness, but simultaneously, the mathematical structure becomes more involved. Each 

particular representation will be associated with a particular Hilbert space. The 

uniqueness of the vacuum is, of course, valid only in one particular representation. In 

other words, when the states of the system are not invariant, nonequivalent 

representations and therefore canonical and non-simultaneous commutation relations 

appear [1, p.388-394]. 

One of the basic assumptions used by Haag to prove his theorem is that "equal time 

commutation relations are established for physical fields and there are no nonequivalent 

representations of the system" [1, p.388]. An appropriate solution to this problem is that 

if we consider the theory on a space time lattice, explicit answers are found because the 

theory is automaticaly renormalized, therefore a natural cut off appears in measuring 

energy, position, etc. 

Van Hove found that Hamiltonians will be well-defined if they are expressed in the form 

of Hermitian operators which operate only under very tiny subsets which are orthogonal 
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vectors of non-separable Hilbert space. Segal showed that special classes of interacting 

Hamiltonians can be mathematically meaningful in appropriate strange representations 

.Araki considered that the Hamiltonian of field theory is unique under special conditions 

and can satisfy canonical commutation relations. Wightman stated that there is a 

difference between adjoint and hermitian operators. An adjoint operator concludes unique 

dynamics but hermitian operator may conclude none or some dynamics (strange and 

nonequivalent representations). His purpose was that interaction operators should be 

defined in the adjoint form to give a unique and hence a real  interaction representation 

[3]. 

Guenin rejected Haag`s theorem by presenting a new picture (very similar to Dirac`s). As 

mentioned, Haag`s theorem states that if Lorentz invariance is established in the theory, 

Hamiltonian interaction isn’t unique, but Guenin showed that this subject couldn’t prove 

the lack of a map from *-algebra to operator rings at different times. He showed that 

there is an isomorphic map and it is unique, localized and meaningful in the Hilbert 

space. The advantage of the Guenin interaction picture is that it operates in Fock space. 

In the Guenin method it is possible to solve Haag`s theorem by violating Lorentz 

invariance and by limiting the system in a finite box [4]. 

3 Rejecting Haag’s theorem on discrete space-time lattice 

QFT on the lattice in the framework of non-perturbative theory is very successful in 

describing QED, QCD and weak interactions to a relative high precession, from first 

principles. An apparent mathematical inconsistency in QED is the existence of the so-

called triviality problem (first discovered by L.D.Landau and collaborators [10]) in the 

perturbative behavior of the renormalized coupling constant at high energy [11]. The 

renormalization group provides useful insight in this case. The Callan-Symanzik �-

function is defined as [6]: 

( )
µ

µ
β

µ

µ
d

dg
g =             (1) 

Here 'g' is the coupling constant and '�' is an arbitrary mass providing a renormalization 

scale. In the 1-loop approximation for Landauµ  we have: 

( )�
�
�

�
��
�

�
=

0

2

1

0

4
exp

µβ

π
µµ

R

Landau
e

              (2) 



 5 

Substituting here the physical value of the renormalized coupling constant ( ( )
137

4
0

2 π
µ =Re  

and
π

β
3

2
1 = ), one obtains a very very high scale ( Landauµ ∝  exp (645.27)). Therefore, in 

QED the physical inconsistent energy range is very far away from any reasonable scale.  

To avoid Haag's theorem, a four corners of the lattice fields are set up and there are gauge 

fields between them causing transformation from one point of the lattice to the other 

point. These fields are members of the SU (N) group [7]. According to the theorem 

(3.2.2) in [8]: "any representation of finite group, is equivalent to a representation by 

unitary services"; so any finite representation of groups on Wilson lattice are unitary and 

reducible. 

As mentioned above Haag's theorem has shown that the transformation between 

interacting and free field operators cannot be unitary. Now if the Haag-Kastler net is 

spread over a finite lattice of space-time, it has finite representations of unitary groups. 

For finite lattice spacing the theory involves interaction, because g�0. In particular, long 

before we reach the energies where QED becomes trivial, it seems necessary to take also 

gravitation into account, and yet no one knows how to calculate the effects of strong 

gravitational forces at such energies! That Haag's theorem will not work on the lattice is 

expected, because Lorentz invariance is broken on a discrete space-time.  

 

4 Conclusions 

The success of relativistic quantum field theory in calculating physical quantities in the 

experimental and theoretical domain led physicist to a logical puzzle: is QFT 

mathematically consistent? Can one give a mathematically complete example of any non-

linear theory relevant for the description of interacting particles whose solutions 

incorporate relativistic covariance, positive energy and causality?  

There is today a view that interacting QFTs are factually trivial and hence not 

mathematically consistent. There are theorems [9, 11] showing that in general this theory 

does not have an interacting continuum limit unless the theory is asymptotically free. But 

before we reach such extreme high energies, we should know how to calculate the effects 

of strong gravitational fields. 

In this paper we considered Haag's theorem and it was rejected by constructing QFT on 

discrete lattice space time. There must be a relation between Haag's theorem, non-
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interaction, Lorentz invariance, lattice gauge theory and continuum limit, which is not 

clarified yet. Further investigations on this problem are on the way.  

 

Appendix 

In the early 1960s, an alternative version of the foundations of relativistic quantum field 

theory was developed by Haag and Kastler, based on the use of algebras of bounded 

operators [2]. The basic objects of the local algebraic formalism is a C*-algebra and 

operators associated with bounded open sets in space-time. 

 The set A is named an *-algebra if for any member Aa ∈  there is a conjugate member 

a* as follows: 

aa =*)*(:1  ; **)*(:2 abab =  ; Caa ∈= λλλ *,)*(:3  ; **)*(:4 baba +=+  

If for any member "a" there exist a real number a  by the following conditions, the set A 

is named a normed algebra: 

00,01 =⇔=≥− aaa   ; aa λλ =−2    ; baabbaba ≤+≤+− ,3  

If the algebra on a vector space H has members with complete norm, it is named a 

Banach algebra and if Banach *-algebra has the condition 
2

* aaa =  too, the algebra is 

a C*-algebra. 

For the computational purposes of quantum theory it is sufficient to consider only those 

representations of a C*-algebra (which in quantum theory is the algebra generated by the 

observables) that are irreducible and form a complete set of operators i.e. a ring. Segal 

pointed out that many questions of  physical interest (e.g. the determination of spectral 

values) can be answered without reference to the Hilbert space if one chooses the algebra 

of observables to be a C*-algebra
1
. Von Neumann's theorem is an important theorem in 

quantum field theory concerning Haag's theorem. This theorem is as follows: 

Suppose (a) a field )(xϕ obeys the ETCR
2
 : 

[ ] 0)(),( =′xx ϕϕ      ; [ ] 0)(),( =′xx ϕϕ ��     ; [ ] )()(),( xxxx
��

� ′−=′ δϕϕ                                and 

(b) this algebra has no inequivalent representations, then the field system )(x
�

ϕ  (at any 

fixed time tx =0 ) is an irreducible operator ring. The converse theorem also holds true: if 

                                                 
1- Segal, I. E., Bulletin of the American Mathematical Society, 73, (1947) 53. 

2- Equal Time Commutation Relations.� 
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(a) the ETCR applies and if (b) the operator ring is irreducible, then all representations of 

the algebra are unitary equivalent [1, page 330]. 

The C*-algebra defined by Haag and Kastler could not determine how the phenomena 

associated with unitary inequivalent representations of the algebras of observables would 

appear in concrete Lagrangian field theories
1
 .  
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