
ar
X

iv
:1

01
1.

36
91

v1
  [

nu
cl

-t
h]

  1
6 

N
ov

 2
01

0

The Tamm-Dancoff Approximation as the boson

limit of the Richardson-Gaudin equations for pairing

Stijn De Baerdemacker

Ghent University, Department of Physics and Astronomy, Proeftuinstraat 86, 9000 Gent,
Belgium
Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
Department of Physics, University of Notre Dame, Notre Dame, IN 46556-5670, USA

E-mail: stijn.debaerdemacker@ugent.be

Abstract. A connection is made between the exact eigen states of the BCS Hamiltonian and
the predictions made by the Tamm-Dancoff Approximation. This connection is made by means
of a parametrised algebra, which gives the exact quasi-spin algebra in one limit of the parameter
and the Heisenberg-Weyl algebra in the other. Using this algebra to construct the Bethe Ansatz
solution of the BCS Hamiltonian, we obtain parametrised Richardson-Gaudin equations, leading
to the secular equation of the Tamm-Dancoff Approximation in the bosonic limit. An example
is discussed in depth.

1. Introduction

The description of superconductive properties in many-particle systems such as metals [1] or
atomic nuclei [2] involves the process of pairing. Particles in time-reversed single-particle states
will lower their energy by forming a pair, constituting a condensate in the ground state of the
system. This ground state is very-well approximated by the Bardeen-Cooper-Schrieffer (BCS)
wavefunction [1], which is a variational solution of the BCS Hamiltonian in the grand canonical
ensemble. While this solution is essentially sufficient for the thermodynamic limit, N → ∞, it
is not fit for the description of finite-size systems. This is due to the increasing relevance of the
pair fluctuations with decreasing number of particles, which cannot be taken into account in the
BCS approximation [3]. This is not of paramount importance for modestly small systems, such
as e.g. single-species nucleon pairing within a single major nuclear shell [4], because these can
be diagonalised numerically on a modern computer with relative ease. However, for mesoscopic
systems, such as metallic nanograins [5], or nucleons in multiple open shells, the dimension of the
Hilbert space is huge, such that straightforward numerical diagonalisation becomes practically
intractable.

Fortunately, alternative methods to extract the spectroscopy of the model (BCS) Hamiltonian
exist. Richardson and Sherman [6, 7] have shown that the reduced BCS Hamiltonian, with a
level-independent interaction, is exactly solvable by means of a Bethe Ansatz product wave
function, provided the variables in the Ansatz wavefunction provide a solution of the set of non-
linear Richardson-Gaudin (RG) equations. As a result, the problem of finding the eigenvalues
and eigenstates of the BCS Hamiltonian is reduced from diagonalising a matrix that scales
factorial with the size of the system to solving a set of algebraic equations that scales linear
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with the system size. However, the RG equations are highly non-linear in the variables, and
proved to be very challenging to solve [8, 9], due to the occurrence of singularities at the critical
interaction values. It was only recently that this obstacle has been sufficiently removed [10]
by means of a change of variables method, canceling the singularities at the critical points.
Alongside the numerical usefulness, the method also contributed to a better understanding of
the critical points [11], which finds its place among other recent studies of the structure of the
eigenstates of the exactly solvable and integrable models [12, 13]. For an extensive review on
the subject, I would like to refer to the recent colloquium [14].

The purpose of the present manuscript is to contribute to the understanding of the Bethe
Ansatz eigenstates of the BCS Hamiltonian and the associated RG equations by making a
connection with the Tamm-Dancoff Approximation (TDA) [15]. In the next section, the BCS
model and its algebraic properties will be introduced. In section 3, the TDA is introduced and
its relation with RG is made. Conclusions are presented in section 4

2. The reduced BCS model, an exactly solvable model

Consider a fermionic system with n single-particle energy levels εi (1 ≤ i ≤ n) with degeneracy
Ωi. For condensed matter physics the levels are two-fold degenerate (Ωi = 2), corresponding
to the two projections of the electron spin. In the context of nuclear structure physics, we can
assign a half-integer total angular momentum ji with degeneracy Ωi = 2ji +1 to every level [4].
Naturally, and in order to make the discussion as general as possible, we will treat the case of
condensed matter as ji =

1
2 systems. The reduced BCS Hamiltonian for such a general system

is given by

Ĥ =

n
∑

i=1

εin̂i + g

n
∑

i,k=1

Ŝ†
i Ŝk, (1)

with the operators in the Hamiltonian given by

n̂i =

ji
∑

mi=−ji

â†jimi
âjimi

, Ŝ†
i = 1

2

ji
∑

mi=−ji

(−)ji+mi â†jimi
â†ji−mi

, Ŝi = (Ŝ†
i )

†, (2)

which are known respectively as the particle counting, pair creation and pair annihilation
operator. The underlying algebraic structure of these operators is the su(2) quasi-spin algebra.
This algebra is spanned by the pair creation/annihilation operators, completed with the operator

Ŝ0
i = 1

2 n̂i −
1
4Ωi. We obtain

[Ŝ0
i , Ŝ

†
k] = δikŜ

†
i , [Ŝ0

i , Ŝk] = −δikŜi, [Ŝ†
i , Ŝk] = 2δikŜ

0
i . (3)

So, the spectrum generating algebra of the pairing problem is
⊕n

i=1 su(2)i, with su(2)i the quasi-
spin algebra for the level i. The associated Hilbert space is constructed from the direct product
of the physically allowed su(2)i representations |si,msi〉, with the quantum numbers1 defined

by the eigenvalues of the quadratic Casimir operator Ĉ2
i of SU(2)i and its SO(2)i projection Ŝ

0
i

Ĉ2
i |si,msi〉 = si(si + 1)|si,msi〉 (4)

Ŝ0
i |si,msi〉 = msi |si,msi〉. (5)

The physically allowed representations are those for which the following relations hold

msi =
1
2ni −

1
4Ωi, si =

1
4Ωi −

1
2vi, (6)

1 I will denote the quasi-spin projection quantum number m of the quasi-spin si explicitly by msi
to rule out

any confusion with the total angular momentum projection mi of ji.



with ni the number of particles in a level i and vi the seniority of the level i, which is the number
of particles in a level i not pairwise coupled [16]. Obviously, for systems with a definite total
number of particles N , we require the extra condition

∑

i ni = N . For simplicity, we will assume
that there are no unpaired particles present in the system (vi = 0,∀i), so the total number of
pairs is given by N/2.

The key ingredient of the Richardson-Gaudin treatment of the pairing model is that the
Hamiltonian (1) can be diagonalised by means of a Bethe Ansatz wavefunction [7, 8]

|ψ〉 =

N/2
∏

α=1

(

n
∑

i=1

S†
i

2εi − Eα

)

|θ〉, (7)

provided the Richardson variables, given as the free parameters Eα, are a solution of the RG
equations

1 + 2g
n
∑

i=1

si
2εi − Eα

− 2g

N/2
∑

β 6=α

1

Eβ − Eα
= 0, (1 ≤ α ≤ N/2). (8)

The energy of the eigen state is then given by E =
∑N/2

α=1Eα. In the next section, it
will be discussed how the Richardson-Gaudin treatment can be related to the Tamm-Dancoff
Approximation, which is a well-studied method in many-body physics.

3. Richardson-Gaudin and the Tamm-Dancoff Approximation

3.1. The Tamm-Dancoff Approximation

Most commonly, the Tamm-Dancoff Approximation is used in the context of particle-hole
excitations across a closed Hartree-Fock vacuum [15, 4], but we can interprete it here somewhat
larger as the description of elementary excitations which are also related to the Random Phase
Approximation or Equations of Motion methods [17]. The basic idea behind the approximation
is that we can treat all the excited states of the Hamiltonian as harmonic excitations or
multiphonon states of the elementary eigen modes or phonons of the system. In the case of
the BCS Hamiltonian (1), the elementary excitations can be found by solving the eigen value

equation for the 1-pair excitations b̂†k =
∑

i YkiŜ
†
i

Ĥb̂†k|θ〉 = ~ωkb̂
†
k|θ〉. (9)

Once this is solved, the excited states are approximated by the following multiphonon states

|ψ〉 ≈ |φ[νk]〉 =

n
∏

k=1

(b̂†k)
νk |θ〉, (10)

with
∑

k νk = N/2 and the notation [νk] is short-hand for the array [ν1, ν2, . . . , νn]. Similarly,
the energy of this state is equal to

ETDA
[νk]

=

n
∑

k=1

~ωkνk. (11)

Obviously, this is a gross simplification compared to the exact Bethe Ansatz wave function
(7). However, it is worthwhile to scrutinise the differences. For a 1-pair system, the RG and

TDA approach are identical because the action of the elementary phonons b̂†k on the vacuum is
equivalent to the Bethe Ansatz wavefunction (7) for a single pair (N/2 = 1). Moreover, it is



Table 1. The parameters of a simple 3-level pairing system that serves as an example throughout
the text.

i ji Ωi εi

1 5
2 6 0.0000

2 3
2 4 0.7796

3 9
2 10 2.1024

well-known that the TDA eigen modes (~ωk) for the reduced BCS Hamiltonian can be identified
as the solutions of the secular TDA equation [4, 15].

1 + 2g

n
∑

i=1

si
2εji − ~ω

= 0, (12)

which is identical to the RG equation for a single pair (8). Naturally, the situation is different
for multi-pair excitations. It is instructive to continue with an example. Consider a system of
4 pairs in 3 levels with the parameters given in Table 1. The left-hand side of the secular TDA
equation (12) for the parameter set of Table 1 is plotted in Figure 1, revealing quite a bit of
information at a glance. It is readily understood that there are as many eigen modes as there
are levels and one eigen mode is structurally different from the others in the sense that it is not
bound in a domain between two single-particle poles. This solution is unbound below and is
generally referred to as the collective solution.
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Figure 1. The TDA secular equation (eq. (12)) for the parameters given in Table 1 and an
interaction strength g = −0.5. The poles at the single-particle energies are accentuated by
vertical lines and the 3 solutions of the equation are marked graphically by open circles.

So, we gather that there are 3 eigen modes for the example under discussion. Since we are
accommodating 4 pairs in the system, we can construct a total of 15 distinct TDA multiphonon
states [ν1, ν2, ν3] with ν1 + ν2 + ν3 = 4. Comparing this with the real dimension of the Hilbert
space, which is 11, we immediately realise that TDA overestimates the total number of physically
allowed states. The question arises which ones are physical and which are not. To investigate



this question, it is instructive to plot the exact excitation spectrum of the system against the
predictions made by TDA, which is done in Figure 2. We can roughly divide the Figure in 2
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Figure 2. The exact spectrum of the BCS Hamiltonian (1) in (black) solid lines and the
predictions of the TDA in (blue) dashed lines are plotted for a range of interaction strength g.
In the inset, we find a zoom of the plot for small values of g.

different domains, i.e. the small-interaction domain |g| ∼ 0 and the large-interaction domain
|g| ≫ 0. The former domain is enlarged and depicted in the inset of the Figure. From this inset,
it is clear which TDA states are unphysical for the small-interaction domain. We see that for
|g| → 0, the exact ground-state energy is given by approximately 6ε1 + 2ε2 = 1.5592, whereas
the TDA predicts the ground state at 8ε1 = 0.0000. This is because the TDA can put all 4
elementary excitations in the lowest level, [ν1, ν2, ν2] = [4, 0, 0], whereas this is fundamentally
forbidden in the Hilbert space because of the Pauli principle. The degeneracy of the lowest level
Ω1 = 6 only allows for 3 pairs, so one pair needs to be promoted to the 2nd level. As a result,
we can identify [4, 0, 0] as physically forbidden in this domain. Further investigation reveals that
[1, 3, 0], [0, 4, 0] and [0, 3, 1] are also forbidden on similar grounds. The situation is less clear for
the large-interaction domain because we cannot rely on pure combinatorial arguments. However,
we can draw qualitative conclusions by noticing that the excitation spectrum tends to reorganise
in small clusters around |g| = 1. We count clusters of 1, 2 and 3 states from the bottom up and 5
more states that have no cluster characterisation. Inspecting the predictions by TDA, we notice a
similar pattern where every cluster can be associated with a distinct number of collective phonons
([4, 0, 0] for the ground state, [3, 1, 0] and [3, 0, 1] for the next cluster, etc.). Nevertheless, we
also notice that TDA systematically underestimates the excitation energy of the corresponding
states. Again, this is a manifestation of the Pauli exclusion principle, however in a different
way. The correct clustering for the lowest states reveals that TDA gives a correct idea about
the collective structure of the lowest states, but TDA allows Pauli-forbidden configurations to
contribute to the energy of the eigen state. Anyhow, these qualitative arguments do not answer
the question which TDA states are related to which exact eigenstates and which TDA states are
not physical. In the next subsection, I will present a construction for this particular purpose.



3.2. An algebraic approach to go from Tamm-Dancoff to Richardson-Gaudin

We may conclude from the previous subsection that the difference between TDA and the exact
solution are due to the Pauli principle. In algebraic phrasing, the fundamental algebra of the
exact pairing model is quasi-spin su(2) whereas TDA is characterised by the bosonic Heisenberg-
Weyl algebra hw(1), given by [3].

[b̂k, b̂
†
l ] = δkl1̂, [b̂k, 1̂] = [b̂†k, 1̂] = 0. (13)

From a physical point of view, one can conclude that the fermion pairs Ŝ†
i (eq. (2)) have been

replaced by genuine bosons b̂k in the TDA. This substitution is rather abrupt, so it would be
interesting to have a more adiabatic means to bosonise the fermion pairs. This can be realised
by introducing the following parametrised algebra

[Ŝ0
i , Ŝ

†
k] = δikŜ

†
i , [Ŝ0

i , Ŝk] = −δikŜi, [Ŝ†
i , Ŝk] = δik(ξ2Ŝ

0
i + (ξ − 1)12Ωi1̂), (14)

with ξ a real-valued parameter between 0 and 1. On the one hand, we retain the quasi-spin
algebra for ξ = 1, and on the other hand, we get the Heisenberg-Weyl algebra in the ξ = 0 limit,
if we scale the boson creation- and annihilation operators with a factor

√

2/Ωi, and interprete the

operator Ŝ0
i as a boson counting operator. In the intermediate region, we can use the parameter

ξ as a continuous switch to transform the fermion pairs into bosons and the other way around.
This construction is closely related to the contraction of u(2) to hw(1), as defined by Arecchi
et. al. [18, 19]. The question is now whether this functionality is also transferred to the pairing
system. Remarkably, if we use the parametrised algebra (14) instead of the original quasi-spin
algebra (3), we observe that the system remains exactly solvable by means of a Bethe Ansatz
wavefunction, provided the free variables in the wavefunction are a solution of the following
parametrised RG equations

1 + g

n
∑

i=1

1
2Ωi − ξvi

2εi − Eα
− 2gξ

N/2
∑

β 6=α

1

Eβ − Eα
= 0, (1 ≤ α ≤ N/2). (15)

It is readily verified that this set of equations reduces to the correct corresponding expressions
in the limits for ξ. For ξ = 1, we retain the set of RG equations (eq. (8)), and for ξ = 0, we
obtain N/2 identical copies of a (seniority zero (vi = 0, ∀i)) secular TDA equation. This means
in the latter case, that every individual pair in the Bethe Ansatz wavefunction needs to satisfy
the TDA secular equation, independent from the other pairs because the coupling term between
the variables Eα in the eqs. (15) has disappeared at ξ = 0. More details on the technical aspects
of these results, as well as on the nature of the algebra (14) will be given in a forthcoming paper.

Once we have the ξ-parametrised RG equations, we can investigate how the exact eigen states
of the pairing problem are related to the solutions of the TDA. For this purpose, we can start
from a known solution of the pairing problem [10] and see which TDA solution corresponds to
this solution, or vice versa, we can start from a particular multiphonon solution of TDA and
reconstruct the corresponding exact solution, if it exists. This can be done in both cases by
adiabatically switching off/on the ξ parameter in the eqs. (15) and solving numerically along
the trajectory. One particular result for the present example (with parameters from Table 1
and g = −0.5) can be found in Figure 3. We start from the [4, 0, 0] multiphonon TDA solution
of the system (see also Figure 1 for the TDA eigen modes) and, by adiabatically switching on
the parameter ξ, obtain the solution of the RG equations. In the Figure, the ξ-trajectory of the
solution in the complex plane is depicted.

Finally, we can use this method to make a one-to-one connection between the exact eigen
states and the predicted states by TDA, plotted in Figure 2. This is done extensively in Figure 4
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Figure 3. The ξ-trajectory of a solution of the parametrised RG equations (15) in the complex
plane. We start from the [4, 0, 0] TDA solution and adiabatically go to the corresponding solution
of the RG equations (8) for ξ = 1 (denoted by Eα, α = 1 . . . 4). The parameters for the model
are given in Table 1 and g = −0.5.

and 5. Each row of panels corresponds to a particular TDA state, denoted by [ν1, ν2, ν3]. In the
first panel, the energy of the elementary TDA eigen modes (blue dashed line) and the real part
of the corresponding RG variables (black full line) are plotted as a function of the interaction
strength |g|. The second panel shows the imaginary part of the RG variables, and the third
panel shows the total energy of the exact eigenstate

∑4
α=1Eα (black full line) as well as the

TDA prediction of the total energy (eq. (11)) (blue dashed line) as a function of |g|. For every
TDA state [ν1, ν2, ν3], the interaction strengths g is scanned and the corresponding RG variables
are given if they exist. In some cases, such as e.g. for the low-interaction domain of [4, 0, 0] (first
row of Figure 4), the TDA state did not produce an exact solution and it is only for values larger
than |g| ∼ 0.190 that it leads to an exact state (the ground state). It is readily seen from the
second row that the ground state below this value |g| ∼ 0.190 is connected to the [3, 1, 0] TDA
state. Dotted lines are added to the figures to guide the eye at those transitional points where
the TDA origin of the exact states changes from one state to another. In addition, a label |i)
is added in the third panel of every row to denote the corresponding exact state. We can draw
multiple conclusions from these figures. It can be observed that the TDA states [4, 0, 0], [1, 3, 0],
[0, 3, 1] (not depicted because it does not lead to any exact solution for |g| ∈ [0, 1]) and [0, 4, 0]
do not correspond to an exact solution in the small-interaction domain, which is consistent with
what we derived earlier. Some states are clearly connected to a given state for the whole domain
of |g| ∈ [0, 1] (such as e.g. [3, 0, 1] with the 3rd excited state), whereas other TDA states have
no corresponding exact solution over the domain (such as e.g. [0, 3, 1]). It can also occur that
one TDA state can connect to different exact states, however for different domains of |g| (such
as e.g. [3, 1, 0], which gives rise to the ground state for small |g| as well as to the 2nd excited
state for larger |g|). In addition, we can verify that the observed clustering around |g| ∼ 1
is indeed related to the number of collective TDA eigen modes ν1, consistent with the earlier
observations.

4. Conclusions

In conclusion, an algebraic technique to connect the exact eigen states of the BCS Hamiltonian
with the predictions of Tamm-Dancoff Approximation is presented. The connection is made
via a parametrised algebra, giving rise to the quasi-spin su(2) algebra and the Heisenberg-Weyl
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Figure 4. The TDA eigen modes and corresponding RG variables for given TDA multiphonon
states as a function of the interaction |g|. More information is discussed in the text.
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Figure 5. The TDA eigen modes and corresponding RG variables for given TDA multiphonon
states as a function of the interaction |g|. More information is discussed in the text.



hw(1) in the two limits of the parameter. Using this parametrised algebra for the Bethe Ansatz
wavefunction, we obtain the corresponding parametrised Richardson-Gaudin equations, which
reduce to the exact Richardson-Gaudin equations in the quasi-spin limit and the Tamm-Dancoff
secular equation in the Heisenberg-Weyl limit. These parametrised RG equations allow us to
make a clear-cut connection between the exact states of the BCS Hamiltonian and the TDA
predictions.
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