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Abstract

Ordinary matter is described by six fundamental parameters: three couplings (gravitational,

electromagnetic and strong) and three masses: the electron’s (me) and those of the up (mu)

and down (md) quarks. An additional mass enters through quantum fluctuations: the strange

quark mass (ms). The three couplings and me are known with an accuracy of better than a

few per mil. Despite their importance, mu, md (their average mud) and ms are relatively poorly

known: e.g. the Particle Data Group quotes them with conservative errors close to 25%. Here

we determine these quantities with a precision below 2% by performing ab initio lattice quantum

chromodynamics (QCD) calculations, in which all systematics are controlled. We use pion and

quark masses down to (and even below) their physical values, lattice sizes of up to 6 fm, and

five lattice spacings to extrapolate to continuum spacetime. All necessary renormalizations are

performed nonperturbatively.
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The masses of the up, down and strange quarks cannot be measured using standard

experimental methods. The strong interaction confines quarks within hadrons (e.g. protons)

in such a way that a single quark cannot be isolated. Moreover, the strength of the interaction

is such that the mass of a hadron is not the simple sum of the masses of the quarks it

contains. Rather it is provided by complicated nonperturbative dynamics (e.g. [2]). This

confinement mechanism is the low energy counterpart of the strong interaction’s asymptotic

freedom [3, 4], by which the interactions between quarks and gluons weaken as their relative

momenta are increased.

Interestingly enough, the experimental data for mu, md and ms has been available for

about sixty years (the pion and kaon were discovered in the late 1940’s and the proton

already 30 years before). Even the theory of the strong interaction, QCD, which–in principle–

completely describes bound states of light quarks, has been known for almost four decades

[5]. The fact that such a fundamental question has remained poorly answered despite the

available experimental and theoretical knowledge is related to the computational difficulties

one encounters when trying to solve the underlying equations in the domain of interest. The

only known systematic technique to solve them is lattice QCD [6, 7]. Several decades of

theoretical, algorithmic and hardware development have been necessary to reach the level

at which the light quark masses can be determined reliably. This determination is the goal

of the present paper.

For many years calculations were done in the quenched approximation. Although this

approach omits the most computationally demanding part of a full QCD calculation –the

quark determinant obtained after integrating over the fermion fields– a controlled determi-

nation of the strange quark mass in this approximation (with mu=md=ms equal to about

half the physical ms) took about 20 years [8]. Moreover, the physics of the u and d quarks

remained inaccessible, because the quenched approximation, an uncontrolled truncation of

QCD, distorts the small quark mass behavior [9, 10].

A very important step was made with the inclusion of u and d sea quark effects (Nf=2)

[11–15]. But even there, physical mud remained elusive, this time for algorithmic reasons.

A first breakthrough was made by the MILC collaboration [16], which used an Nf=2+1

staggered fermion formulation to include strange sea quark effects, pushing calculations to

smaller light quark masses, finer lattices and larger volumes. Updates from calculations

with root-mean-squared masses of the pion taste partners down to 258MeV and on even
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finer lattices are presented in [17, 18]. On a subset of the MILC configurations, an attempt

has also been made by the HPQCD collaboration to indirectly obtain ms and mud via the

mc/ms ratio [19]. Due to their use of quenched and partially quenched charmed and strange

quarks with a non-unitary staggered formalism and their aggressive error estimates on the

derived input quantities that they use (mc and r1), this work does not fulfill the conditions

which are necessary for a controlled ab initio calculation (see below). Recently, also ETMC

(Nf=2) [20] and RBC-UKQCD (Nf=2+1) [21] have presented results with Mπ>∼270MeV

and significantly larger error bars.

The second breakthrough came recently when it was shown that improvements in algo-

rithms [22, 23] allowed the use of theoretically sound Wilson and domain wall fermions for

ab initio calculations (e.g. [2, 24]) and even for reaching for the first time physically light

mud, albeit in small volumes and at a single lattice spacing [25].

All previous lattice results on mud and ms have neglected one or more of the ingredients

required for a full and controlled calculation. The six most important of those are:

1. The inclusion of the up (u), down (d) and strange (s) quarks in the fermion determi-

nant with an exact algorithm and with an action whose universality class is QCD. Rooted

staggered fermions provide a numerically efficient way to investigate nonperturbative QCD.

However, this discretization is neither local nor unitary for a>0, making it difficult to show

that it leads to QCD in the continuum limit [17]. While such a partially quenched approach

is useful, it is debated whether it can lead to a fully controlled ab initio calculation. Here we

use, instead, Nf=2+1 Wilson fermions with local improvement terms which do not affect

the continuum limit.

2. Controlled interpolations and extrapolations of the results to physical quark masses.

Practically, it means reaching pion masses as small as 200 MeV (clearly the value depends

on the problem and on the required accuracy) or most preferably simulating at the physical

mass point itself. At three of our lattice spacings we use physical (or even smaller) light

quark masses.

3. Large volumes to guarantee small finite-size effects. Our finite volume corrections are

tiny (we use volumes up to 6 fm). Nevertheless they are included in the analysis.

4. Controlled extrapolations to the continuum limit. This requires that calculations be

performed at no less than three values of the lattice spacing, to check whether the scaling

region is reached. We use five lattice spacings between 0.116 and 0.054 fm, thereby gaining
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full control on the continuum extrapolation.

5. Nonperturbative treatment in all steps. We obtain our primary results (mud and ms

in the RI scheme at 4 GeV) in a completely nonperturbative manner. In particular, we

eliminate all truncation errors associated with the often used perturbative renormalization.

6. Input parameters. The parameters of the theory (scale and quark masses) should be

fixed with well measured observables whose error bars are undisputed and whose connection

to experiment is transparent and contains no hidden assumptions. To that end we use

Mπ, MK and MΩ exclusively. The influence of their error bars is negligible on our final

uncertainties. Taking instead derived quantities, like mc and r1 as is done in [19], can be

problematic. The error assigned to the input quantity mc in [19] is smaller by a factor 13

than that of the established Particle Data Group value [26]. Similarly, due to the difficulties

in estimating its systematic uncertainty, the continuum value of r1 (and the related r0) is

disputed.

In this paper we determine mud and ms, while fulfilling all of the above conditions. This

determination requires two, apparently straightforward, calculations. First we compute

hadron masses for tuning the quark masses to their physical values. Then we determine

the renormalization constant to convert the bare quark masses to finite quantities in the

continuum limit.

We now list the most important steps of our work:

(i) Production of the Nf=2+1 gauge field ensembles. We use a Symanzik improved gauge

action and 2-level HEX (hypercubic stout-smearing [29–31]) smeared clover fermions, with

ms held close to its physical value, and useMπ≃135MeV, MK≃495MeV andMΩ≃1672MeV

as input parameters [32]. Gauge field configurations for 47 different values of the parameters

(β=6/g2, amud and ams) were produced (c.f. Fig. 1 for our Mπ<400MeV Nf = 2+1 data).

We used five lattice spacings (a≈0.116, 0.093, 0.077, 0.065 and 0.054 fm), which are the

basis for the continuum extrapolation. As we will see, the difference between the results

obtained on the finest lattice and those in the continuum limit is ∼3%, whereas between

those of the coarsest lattice and the continuum limit is ∼10%.

At two pion mass points we carried out detailed finite V analyses, which give us a full

understanding of the finite V corrections, as well as their Mπ dependence. In all of our cal-

culations which enter the quark mass determination, we have taken MπL>∼4 and/or L>∼5 fm,

so that the limit V→∞ can be taken safely. The difference between the results obtained
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FIG. 1. Summary of our simulation points. The pion masses and the spatial sizes of the lattices are

shown for our five lattice spacings. The percentage labels indicate regions, in which the expected

finite volume effect [28] on Mπ is larger than 1%, 0.3% and 0.1%, respectively. This effect is smaller

than about 0.5% for all of our runs and, as described, we corrected for it. Error bars are statistical.

directly on our large lattices and those in the V→∞ limit is below the five per mil level.

Furthermore, for Mπ<200 MeV (which is most relevant for our final result) these corrections

are even smaller, namely on the one per mil level.

In our calculations Mπ ranges from ≈380 down to ≈120MeV (for three of the five lat-

tice spacings we tuned Mπ to the vicinity of 135MeV and for the two finest lattices, the

smallest Mπ are around 180 and 220MeV, respectively). Bracketing the physical mass point

allows us to circumvent potentially troublesome chiral extrapolations. We perform calcula-

tions with ms values slightly below and above the physical mass, allowing a straightforward

interpolation.

(ii) Hadron and bare quark mass calculations. The pion and kaon masses are used to fix

mud and ms respectively, with MΩ providing the overall scale. The calculation of hadron

masses and the “mass independent scale setting” follows that of [2]. All three hadron masses

receive finite volume corrections, falling off exponentially with MπL [33]. Even though these

corrections are tiny, they are included. In addition to the hadron masses, the unrenormalized

partially conserved axial current (PCAC) quark masses are determined.

(iii) Renormalization of the bare quark masses. In addition to the PCAC masses discussed

above, the bare mud and ms in the Lagrangian also provide a measure of the quark masses

used in our simulations. Once suitably renormalized, these two definitions yield quark masses
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which agree in the continuum limit.

While the PCAC masses renormalize multiplicatively, the bare Lagrangian masses require

an additional additive renormalization. In the difference d≡mbare
s − mbare

ud , this additive

renormalization is eliminated. Moreover, the multiplicative renormalization factors cancel in

the ratio r≡mPCAC
s /mPCAC

ud . To obtain fully renormalized quantities, we must still multiply d

by 1/ZS, the inverse of the scalar density renormalization factor. From the renormalized mass

difference d/ZS and the renormalization independent ratio r we obtainmren
ud = (d/ZS)/(r−1)

and mren
s = (rd/ZS)/(r − 1) in the unimproved case. Our final analysis is tree-level O(a)

improved with slightly more complicated formulae (see [32]).

To compute ZS nonperturbatively (RI scheme), we apply the Rome-Southampton method

[34] with tree-level improvement, augmented with nonperturbative running.

Our procedure eliminates the possible difficulties of the Rome-Southampton method on

coarser lattices. Since the RI scheme is defined in the Nf=3 chiral limit, we generate

additional sets of Nf=3 configurations at our five lattice spacings and, for each β, at four

or more values of mq that allow an extrapolation to the massless limit. For each of these

simulations, we fix gluon configurations to Landau gauge and compute numerically the

normalized spin-color trace, ΓS(β, p,mq), of the amputated forward vertex function of the

scalar density between quark states. Here p=
√
p2 is the momentum imparted to the ingoing

and the outgoing quark. The RI renormalization constant ZRI
S (β, µ), at renormalization

scale µ=p, is defined to be limmq→0 ΓVC
(β, µ,mq)/ΓS(β, µ,mq). ΓVC

(β, µ,mq) is the vertex

function of the conserved vector current, which we introduce to eliminate wavefunction

renormalization factors. This defines a valid renormalization scheme as long as p≪π/a.

However, only if p≫ΛQCD can the results be converted perturbatively to other schemes

(including instrinsically perturbative schemes such as MS) or be used in a perturbative

context. On coarser lattices, it is difficult to simultaneously satisfy both constraints on p.

To solve this difficulty we first determine the quark masses at µ = 1.3 and 2.1GeV, then

apply the continuum extrapolated nonperturbative running to µ′ = 4GeV.

(iv) Combined analysis of mass and lattice spacing dependence. For the masses, two

strategies, called “Taylor fit” and “chiral fit” [2] are applied. Clearly, the results of these

fits are dominated by the results at the physical point. In the analysis, two different pion

mass ranges are used, namely Mπ<340, 380MeV.

The strange and average up-down quark masses renormalized in the RI scheme at 4 GeV
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FIG. 2. Continuum extrapolation of the average up/down quark mass, of the strange quark mass

and of the ratio of the two. The errors of the individual points, which are statistical only here, are

smaller than the symbols in most of the cases. The only exceptions are the light quark mass and

its ratio to the strange quark mass at the two finest lattice spacings. These exceptions underline

the importance of using physical quark masses to reach a high accuracy.

are extrapolated to the continuum and interpolated to the physical mass point. In these

fits, we include terms to correct linear (g2a) or quadratic (a2) effects. A combined mass

and lattice spacing fit is carried out. We show the continuum extrapolation for mud and

ms in the RI scheme at 4 GeV, as well as their ratio, in Figure 2. In order to control the

systematic uncertainties we carry out 288 such analyses. The figure depicts results from one

analysis with one of the best fit qualities.

Our procedure yields the RI quark massesmud andms, with statistical and fully controlled

systematic errors. These results do not rely on perturbation theory and from them it is

straightforward to obtain the quark masses in other commonly used frameworks such as

renormalization group invariant (RGI) and MS [35] ones.

The determination of the individual up and down quark masses at the physical point is in

principle possible using exclusively lattice simulations. To that end one should include the

electromagnetic U(1) gauge field into the lattice framework. Such a project goes beyond the

scope of the present paper, which deals with QCD only. Nevertheless our precise ms andmud

values can be combined with model-independent results based on dispersive studies of η→3π

decays to derive the individual up and down quark masses (c.f. Tab. I). In this approach

the relationship between the input parameters and experiments is not as transparent as for

the determination of ms and mud (see condition 6 above).

Our results provide precise and reliable input for phenomenological calculations which

require light quark mass values. They highlight the progress that has been achieved in the
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RI(4GeV) RGI MS(2GeV)

ms 96.4(1.1)(1.5) 127.3(1.5)(1.9) 95.5(1.1)(1.5)

mud 3.503(48)(49) 4.624(63)(64) 3.469(47)(48)

mu 2.17(04)(10) 2.86(05)(13) 2.15(03)(10)

md 4.84(07)(12) 6.39(09)(15) 4.79(07)(12)

TABLE I. Renormalized quark masses in the RI scheme at 4 GeV, and after conversion to RGI

and the MS scheme at 2 GeV. The RI values are fully nonperturbative, so the first column is our

main result. The first two rows emerge directly from our lattice calculation. The last two include

additional dispersive information. The precision of ms and mud is somewhat below the 2% level, for

mu and md it is about 5% and 3%, respectively. The ratio ms/mud=27.53(20)(08) is independent

of the scheme and accurate to better than 1%.

last 30 years [36] by showing that phenomenologically relevant lattice QCD calculations can

now be carried out bracketing the physical values of the light quark masses.

The details of this work can be found in [32].
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