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Abstract

Lowest-order cumulants provide important information on the shape of the emission
source in femtoscopy. For the simple case of noninteracting identical particles, we show how
the fourth-order source cumulant can be determined from measured cumulants in momen-
tum space. The textbook Gram-Charlier series is found to be highly inaccurate, while the
related Edgeworth series provides increasingly accurate estimates. Ordering of terms com-
patible with the Central Limit Theorem appears to play a crucial role even for nongaussian
distributions.
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1 Introduction

The large experimental statistics which are now available permit measurement of the HBT effect
in femtoscopy [1] as a function of the full three-dimensional momentum difference q = p1−p2 and
often also of the average pair momentum K = (p1 + p2)/2. Increasing attention has therefore
been paid to the detailed description in these higher-dimensional spaces of the second-order
correlation function

1 +R(q,K) = C(q,K) =
ρ(q,K)

ρref(q,K)
, (1)

with ρ the density of like-sign pairs in sibling events and ρref the reference pair density usually
determined by a combination of event mixing and Monte Carlo simulation. After removing
non-HBT effects [2], the correlation function can yield information on the spacetime statistical
properties of particle emission embodied in the emission function S(x,K) of relative coordinates
x, where S itself can be expressed alternatively in terms of source densities [3] or Wigner
functions [4]. The momentum- and coordinate-space correlations are related via a transform
with the square of the two-particle final-state wave function ψ(q,x) as kernel,

R(q,K) =

∫

d3xS(x,K)
[

|ψ(q,x)|2 − 1
]

, (2)

which for noninteracting final states becomes the Fourier transform

R(q,K) =

∫

d3xS(x,K) eiq·x . (3)
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Suppressing the K dependence, the two-particle correlation in both spaces can in this case be
written as a normalised probability density function (pdf) f(q) in q-space and a pdf g(x) in
x-space, related by

f(q) =
R(q)

∫

d3q R(q)
= f(0)

∫

d3x eiq·xg(x), (4)

g(x) =
S(x)

f(0)
=

∫

d3q e−iq·x f(q)

(2π)3f(0)
. (5)

A gaussian f(q) immediately yields a gaussian g(x) in any dimension. Experimental data,
however, is often nongaussian, sometimes strongly so. This raises two problems: first, to sys-
tematically describe the nongaussian shape of R (or f) in momentum space, and second, to
determine parameters of S (or g) in coordinate space, given only the kernel transform and
measurements in q-space.

Approaches towards systematic description of nongaussian shapes in q-space can be found
in e.g. Refs. [5] [6] [7], while the emission function S is reconstructed by means of higher-order
coefficients in x-space using imaging techniques [8] [9] [10] and cartesian harmonics [2] [11].

In this paper, we wish to address the second problem of a systematic description of g(x)
in terms of given measurements in q-space, based on the fundamental statistical properties of
cumulants; the corresponding approach treating the first problem of measurements in q-space
has been treated in part in the literature [12] [13] and will be more fully elaborated elsewhere.

2 Cumulants in dual spaces

While fully three-dimensional formulations have been in part set out in e.g. Ref. [13], we shall here
work in one dimension using so that the above expressions become g(x) = 1

2π f(0)

∫

dq e−iqxf(q)
and so on, our purpose being first to test and improve the convergence properties of series
expansions in a simpler environment.

Given a measured normalised correlation function f(q), its q-moments µ(q)
r =

∫

dq f(q) qr

and q-cumulants κ(q)
r of lowest orders r = 1, 2, 3, . . . provide fundamental information on its

properties: the ordinary mean µ(q)

1 = κ(q)

1 =
∫

dq f(q) q is a measure of the location of the
peak of f(q), while the variance κ(q)

2 = µ(q)

2 − (µ(q)

1 )2 measures the dispersion and σ = (κ(q)

2 )1/2

the width or scale of the pdf, the skewness γ(q)

3 = κ(q)

3 /σ
3 measures its asymmetry and the

kurtosis γ(q)

4 = κ(q)

4 /σ
4 is a first description of the pdf tail’s decay rate. Higher-order “generalised

kurtoses” γ(q)
r = κ(q)

r /σr would provide successively more detail. Kurtoses γ(q)
r can also be

generally viewed as cumulants of the pdf f(q′) of the standardised variable q′ = (q − µ(q)

1 )/σ.
Equivalent relations hold in coordinate space between x-moments, x-cumulants and g(x),

e.g. µ(x)
r =

∫

dx g(x)xr , κ(x)

2 = µ(x)

2 − (µ(x)

1 )2 and so on.
q-moments are derivatives of the generating function Φ(x) = 2πf(0)g(−x) =

∫

dq eiqxf(q),

µ(q)
r = (−i)rDr

xΦ(x)
∣

∣

x=0
, (6)

writing Dr
x = (d/dx)r for short, while the related derivation of q-cumulants from

κ(q)
r = (−i)rDr

x ln Φ(x)
∣

∣

x=0
(7)
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fixes relations between moments and cumulants to all orders. For identical particles, both
C(q) = C(−q) and g(x) are symmetric, so that moments and cumulants of odd order vanish
and the even-order relations in both q-space and x-space become

κ2 = µ2, (8)

κ4 = µ4 − 3µ22, (9)

κ6 = µ6 − 15µ4µ2 + 30µ32 etc. (10)

Cumulants form a natural basis for near-gaussian expansions since a gaussian pdf is fully deter-
mined once κ1 and κ2 are known: all its κr≥3 are identically zero. They also have important
properties such as invariance under translation and a null result for uncorrelated variables.

While for purely gaussian sources, the second-order cumulants are related by κ(x)

2 = 1/κ(q)

2

and all higher-order cumulants are identically zero, neither of these statements is true in general.
We will therefore consider both the modification of κ(x)

2 resulting from nonzero γ(q)
r as well as

the x-kurtosis γ(x)

4 = κ(x)

4 /(κ(x)

2 )2. Since x-moments are found from the generating function

Φ(q) = f(q) / f(0) (11)

through
µ(x)
r = (−i)rDr

qΦ(q)
∣

∣

q=0
, (12)

we can through Eqs. (8)–(10) obtain x-cumulants as combinations of measured q-moments.

3 Gram-Charlier expansions

3.1 Expressing γ
(x)
r in terms of γ(q)

r

While experimental measurement of derivatives of Φ(q) is of course impossible, these expressions
can nevertheless be evaluated since Gram-Charlier and Edgeworth series expansions probe also
q 6= 0 regions. Both expansions start with choosing a reference pdf f0(q) which, given the close
relation between cumulants and gaussians, is almost invariably chosen by textbooks [14] [15] to
be a gaussian

f0(q) =
e−q2/2σ2

σ
√
2π

i.e. f0(q
′) =

e−q′2/2

√
2π

(13)

with the free parameter σ2 fixed to the experimentally measured κ(q)

2 . The resulting “Gauss
Gram-Charlier” (GGC) series, also known as the “Gram-Charlier Type A” series, and the cor-
responding Gauss Edgeworth (GEW) series are closely related, being mere re-orderings of one
another, and are therefore commonly considered to be one and the same. As we will show,
however, the GEW far outperforms the GGC series at any order of the partial sums.

As shown elsewhere [16], the GGC series results from expanding the generating function for
the nongaussian f(q′) in powers of x′

Φ(x′) = e−x′2/2 exp

[ ∞
∑

j=3

ζj(ix
′)j

]

= e−x′2/2
∞
∑

m=0

cm(ζ)

m!
(ix′)m (14)
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where each cm(ζ) is a polynomial in the set of q-kurtoses ζ = {ζr = γ(q)
r /r!}mr=4. Taking the

inverse Fourier transform term by term, one obtains an expansion in terms of Chebychev-Hermite
polynomials Hr(q

′),

f(q′) = f0(q
′)

[

1 +
∞
∑

j=2

c2j(ζ)

(2j)!
H2j(q

′)

]

, (15)

Hr(q
′) = f−1

0 (q′) (−Dq′)
rf0(q

′) , (16)

with lowest-order terms (writing Hr(q
′) = Hr for short)

f(q′) = f0(q
′)

[

1 + ζ4H4 + ζ6H6 +
(

ζ8 +
1
2ζ

2
4

)

H8 +
(

ζ10 + ζ6 ζ4
)

H10

+
(

ζ12 + ζ8 ζ4 +
1
2ζ

2
6 + 1

6ζ
3
4

)

H12 + . . .

]

. (17)

Using (−Dq′)
rf0(q

′)H2j(q
′) = f0(q

′)H2j+r(q
′), the r-th derivative of the x-moment generating

function is, for even r,

Φ(r)(q′) = e−q′2/2
[

Hr(q
′) + ζ4H4+r(q

′) + ζ6H6+4(q
′) + . . .

]

,

from which the x-cumulants follow as ratios of generating functions at q′ = 0 in terms of
generalised q-kurtoses γr = κ(q)

r /σr and using H2r(0) = (−1)r(2r − 1)!!

κ(x)

2 =
(−i)2
κ(q)

2

Φ(2)(q′)

Φ(0)(q′)

∣

∣

∣

∣

q′=0

=
1

κ(q)

2

[

1 + 5
8γ4 − 7

48γ6 +
3

128 (γ8 + 35γ24 ) + . . .

1 + 1
8γ4 − 1

48γ6 +
1

384 (γ8 + 35γ24 ) + . . .

]

(18)

while the x-kurtosis in fourth order is

γ(x)

4 =
Φ(4)Φ(0) − 3Φ(2) Φ(2)

Φ(2)Φ(2)

∣

∣

∣

∣

q′=0

=

[

γ4 − 1
2γ6 +

1
8γ8 +

15
4 γ

2
4 + . . .

1 + 5
4γ4 − 7

24γ6 +
3
64γ8 +

65
32γ

2
4 + . . .

]

(19)

with a similar expression for κ(x)

4 .
Note firstly that γ(x)

4 depends only on γ(q)
r but not directly on σ2 = κ(q)

2 ; this is true also for
higher-order γ(x)

r . Secondly, the above relations reduce to the gaussian relation κ(x)

2 = 1/κ(q)

2 and
γ(x)

4 = 0 if and when the measured correlation function is gaussian since as mentioned all γ(q)

r≥3

are then identically zero. In general, however, the “radius” [2κ(x)

2 ]1/2 of the source distribution
is a function also of higher-order q-cumulants, with both increasing orders γ(q)

r and increasing
powers of lower-order γ(q)

r entering the expansions.
Given the symmetry between x and q, the corresponding expansions for κ(q)

2 and γ(q)
r in terms

of κ(x)

2 and γ(x)
r would have the same form as the above, apart from some changes in sign. Any

measured κ(q)

2 is therefore itself the result of contributions from higher-order cumulants of g(x)
or, in physics terms, the nongaussian shape of the emission region.

3.2 Truncation and the GGC disaster

Statistical errors on q-cumulants rise with increasing order so that those lower-order ones ac-
cessible to available experimental statistics can be included. Series expansions such as (15) are
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known to be asymptotic, so that the question arises: how accurately can a series truncated at
some maximum order γr,max and/or a maximum power γkmax

r estimate the γ(x)
r ?

To consider this issue, we make use of the Normal Inverse Gaussian (NIG) probability density
[17] as a solvable toy model for f(q′) which yields exact expressions for both coordinate- and
momentum-space cumulants. While the NIG has four parameters α, β, µ and δ, in the present
symmetric case β = µ = 0, so that we need only the two-parameter Symmetric Normal Inverse
Gaussian (SNIG),

f(q |α, δ) = αδ eαδK1(α
√

δ2 + q2)

π
√

δ2 + q2
, (20)

where K1 is the modified Bessel function. The SNIG reverts to a gaussian in the limit α → ∞
and has q-moment generating function Φ(x |α, δ) = exp[δα − δ

√
α2 + x2]. Measuring κ(q)

2 and
γ(q)

4 fixes the parameters: writing σ = [κ(q)

2 ]1/2 and g = γ(q)

4 for short, α = [3/gσ2]1/2 and δ =
[3σ2/g]1/2, so that higher-order cumulants and kurtoses can be expressed in terms of measured
quantities σ and g as

κ(q)
r,SNIG = (r − 1)!! (r − 3)!! σr [13 g]

r
2−1 , (21)

γ(q)
r,SNIG = (r − 1)!! (r − 3)!! [13 g]

r
2−1. (22)

Using the SNIG pdf as x-moment generating function in the form (11)

Φ(q |α, δ) = K1(α
√

q2 + δ2)

K1(αδ)
· δ
√

q2 + δ2
,

we obtain exact expressions for x-cumulants via (12) and the moment-cumulant relations. Omit-
ting the argument of the Bessel functions, which is αδ = 3/g in every case, these “exact”
x-cumulants are

κ(x)

2,SNIG
=

1

κ(q)

2

K2

K1
, (23)

κ(x)

4,SNIG
=

1

κ(q) 2
2

3K3K1 − 3K2
2

K2
1

, (24)

γ(x)

4,SNIG
=

3K3K1 − 3K2
2

K2
2

. (25)

With these exact x-cumulants as reference, we test the accuracy of various truncations of
Eqs. (18)–(19) as a function of the Gram-Charlier order m = 2j of Eq. (15).

The results are disastrous. In Fig. 1, we show respectively the percentage deviation of
GGC expansions (18) and (19) to mth order from the exact answers (23) and (25), in the form
100(κ(x)

2,m/κ
(x)

2,SNIG
− 1) and 100(γ(x)

4,m/γ
(x)

4,SNIG
− 1). At γ(q)

4 = 0, of course, all series reduce to a

gaussian and all approximations become exact. Even small values of γ(q)

4 lead to large deviations,
however, and the size of the deviations increases with order m. GGC series fail completely to
approximate the exact x-cumulants.
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Figure 1: Gauss Gram-Charlier series fail badly: Percentage deviations of Gram-Charlier ap-
proximations of κ(x)

2 found by Eq. (18) vs. (23) and of γ(x)

4 found by (19) vs. (25), as a function
of the measured q-kurtosis γ(q)

4 for various Gram-Charlier orders m.

4 Edgeworth series

4.1 Derivation and properties

In his 1946 treatise on statistics, Cramér [18] derived the Gauss-Edgeworth (GEW) series by
considering the random variable (q′ in our case) to be a convolution of n identical independent
random variables qi each with pdf f1(qi), a corresponding generating function Φ1(xi) and second-
order cumulant κ(q)

2 (n=1) = σ21, in terms of which the generating function for x′, the dual to
standardised variable q′, is

Φ(x′) =

[

Φ1

(

xi
σ1

√
n

)]n

. (26)

Expanding the exponential in powers of ℓ = 1/
√
n, rather than x′ as in Eq. (14)

Φ(x′) = e−x′2/2 exp

[ ∞
∑

j=3

ζj (ix
′)j ℓj−2

]

= e−x′2/2
∞
∑

w=0

pw(ζ, ix
′) ℓw , (27)
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and again inverting term by term, one obtains the Gauss-Edgeworth series (again writing Hr =
Hr(q

′) for short),

f(q′) = f0(q
′)

[

1 + ℓ2ζ4H4 + ℓ4
(

ζ24
2!
H8 + ζ6H6

)

+ ℓ6
(

ζ34
3!
H12 + ζ4ζ6H10 + ζ8H8

)

+ℓ8
(

ζ44
4!
H16 +

ζ24ζ6
2!

H14 +
ζ26
2!
H12 + ζ4ζ8H12 + ζ10H10

)

+ . . .

]

. (28)

Unlike the equivalent GGC expansion of Eq. (17), in which the order of the expansion was
determined by the order of Hm, a given term of order w in the GEW series contains linear
combinations of Hermite polynomials.

series Edgeworth Gram-Charlier

term {rk} order w order m

ζ4 {4} 2 4

ζ6 {6} 4 6

ζ24 {4, 4} 4 8

ζ8 {8} 6 8

ζ6ζ4 {6, 4} 6 10

ζ34 {4, 4, 4} 6 12

ζ10 {10} 8 10

ζ26 {6, 6} 8 12

ζ8ζ4 {8, 4} 8 12

ζ6ζ
2
4 {6, 4, 4} 8 14

ζ44 {4, 4, 4, 4} 8 16

Table 1: Re-ordering of terms between Gram-Charlier (GC) and Edgeworth (EW) series

The relation between Gram-Charlier and Edgeworth ordering is summarised in Table 1, with
terms listed in ascending order for w. A given term ζr1ζr2 · · · is characterised by the set of
partition coefficients rk = 4, 6, 8, . . . which are constrained to the Gram-Charlier and Edgeworth
orders by

∑

k

rk = m, (29)

∑

k

(rk − 2) = w . (30)
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4.2 Test using SNIG

Edgeworth re-ordering of terms in the derivatives Φ(r)(q′) leads to expressions for the x-cumulants
as ratios of power series1 in ℓ. For the SNIG test case, these series simplify to

κ(x)

2 =
1

κ(q)

2

[

1 + 5
8γ4ℓ

2 + 35
384γ

2
4ℓ

4 − 35
3072γ

3
4ℓ

6 + 385
98304γ

4
4ℓ

8 + . . .

1 + 1
8γ4ℓ

2 − 5
384γ

2
4ℓ

4 + 35
9216γ

3
4ℓ

6 − 175
98304γ

4
4ℓ

8 + . . .

]

, (31)

γ(x)

4 =

[

γ4ℓ
2 + 5

4γ
2
4ℓ

4 + 35
96γ

3
4ℓ

6 − 35
1152γ

4
4ℓ

8 + . . .

1 + 5
4γ4ℓ

2 + 55
96γ

2
4ℓ

4 + 35
384γ

3
4ℓ

6 + 35
18432γ

4
4ℓ

8 + . . .

]

. (32)

The algebraic simplicity of the above compared to the equivalent GGC relations (18)–(19) and
the general GEW relation (28) results from the fact that

γ(q)
r = Fr [γ

(q)

4 ]
r
2−1 (33)

where for the SNIG the constants are {F4, F6, F8, . . .}SNIG = {1, 5, 1753 , . . .}. While true for the
SNIG case at hand, this turns out to be true for all n-divisible distributions as discussed more
fully below.

In Fig. 2, we show the percentage deviations of the Edgeworth-truncated approximations
(31)–(32) from their respective exact SNIG values as a function of the measured q-kurtosis γ(q)

4 .
The improvement in accuracy over the GGC ordering is dramatic. Unlike the GGC series, the
GEW approximation also continues to improve with inclusion higher orders of w.

4.3 n-divisibility and the Central Limit Theorem

What structure or principle underlies the strong superiority of GEW over GGC ordering?
Clearly, the expansion parameter n = ℓ−2 must be playing a crucial role. Eq. (26) charac-
terises the generating function Φ as “n-divisible”, implying that f(q′) can be thought of as
a convolution of underlying independent variables qi. The GEW method might therefore be
expected to work well if n-divisibility could be established for a given experimental data set.
However, it is usually not possible to directly establish whether the f(q′) of an experimental
data set is n-divisible, and there is no physics reason to believe that a momentum difference
q′ between two particles is the result of an underlying summation: rather, the physics will be
contained in the deviation of f(q) from a gaussian shape.

The reason for the success of GEW relies not on physics assumptions, but on a better
description of nongaussian systems. In statistics terms, any deviation from gaussian is captured
in the rate of approach of higher-order cumulants to zero as n increases. Indeed, many proofs of
the Central Limit Theorem rely on the fact that cumulants of the sum of n independent random
variables obey κr(n) = nκr(n=1) and that the rate of approach to zero of generalised kurtoses
is therefore

γr(n) =
γr(1)

n
r
2−1

, (34)

1Since κ
(x)

4 and γ
(x)

4 contain products of generating functions, terms of order higher than ℓw are generated.
Such terms must of course be omitted in a consistent O(ℓw) calculation.
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Figure 2: Gauss Edgeworth series: Percentage deviations of GEW approximations of κ(x)

2 found
by Eq. (31) vs. (23) and of γ(x)

4 found by (32) vs. (25), as a function of the measured q-kurtosis
γ(q)

4 for various Edgeworth orders w. The dashed line at zero indicates perfect agreement between
the truncated expansion and the exact SNIG answer.

from which follows immediately that

Fr =
γr(n)

(γ4(n))
r
2−1

=
γr(1)

(γ4(1))
r
2−1

(35)

is indeed constant in n for any n-divisible f(q′). The SNIG happens to be n-divisible, which
explains post facto the simplicity of the formulae (31)–(32), but it is by no means unique in
satisfying this property.

The success of GEW ordering is therefore based on the fact that all contributing terms in a
given order of ℓ = n−1/2 have the same rate of convergence to the gaussian limit. Furthermore,
due to the alternating sign of H2r(0) = (−1)r(2r− 1)!!, the sum of contributions within a given
O(ℓw) term tends to be substantially smaller than the individual contributions; for example the
w = 4 term for the SNIG test case is made up of 1

2ζ
2
4H8(0) = 0.091γ24 and ζ6F6H6(0) = −0.104γ24 ,

adding up to −0.013γ24 .
Eq. (35) shows that it is not necessary to know the value of n to make use of the GEW

ordering: once the ordering has been established, we can set n = 1 and use the experimental

9



q-cumulants in their GEW ordering independently of n. It is not even necessary to require
n-divisibility either: For the GEW ordering to work we require only that f(q) is reasonably
close to a gaussian, where “reasonable” is typically quantified by the errors shown in Fig. 2.
The derivation does not rely on a particular form of f1(qi) other than requiring existence of its
cumulants, or on the size or even existence of a convolution or its parameter n.

5 Conclusions

We have calculated x-cumulants of second and fourth order for the emission region based on
measurements of q-cumulants. On using a nongaussian test function to quantify accuracy of
expansions, we have shown that the textbook Gram-Charlier series is unsuitable at any level
of approximation. By contrast, the Gauss-Edgeworth expansion, based on the rate of approach
to a gaussian, does give results which become increasingly accurate as more terms are added.
The GEW results do not require n-divisibility as such but only that f(q) be close enough to a
gaussian to justify a perturbative expansion.

The present one-dimensional calculation can clearly not be applied immediately to exper-
imental data, but is meant to show that even on the fundamental level of expansions, there
are major questions which must be addressed first. In sorting out the fundamental issue of
re-ordering, the present results represent an important step towards a consistent framework for
shape description.

Application to experimental data will require generalisation to three dimensions using the
existing 3D machinery of Refs [13] [16]. Furthermore, sampling fluctuations of experimental
cumulants will have to be taken into account. Fortunately, experimental sample sizes are now
large enough to warrant some optimism in this regard. In this connection, we also note that
the GEW ordering has the additional advantage of placing terms with higher powers of γ(q)

4 into
low orders of w, making it unnecessary to measure higher-order kurtoses. Based on slightly
different arguments, Cramér [18] also concluded that GEW was superior to GGC ordering; this
has also been verified GGC vs GEW comparisons of the nongaussian pdf itself [19] [20]. The
Gram-Charlier series can therefore be considered to be inferior to the Edgeworth equivalent in
all aspects.

Note that it is not necessary to measure the correlation function f(q) at q = 0, despite the
fact that x-cumulants rely formally on the generating function (12) at zero. The q-cumulants
themselves are functions of f(q) over the whole range of q, while the chaoticity parameter λ
cancels in the normalisation (4).

Our final comment pertains to the usual practice of obtaining information on the correla-
tion function through fits of nongaussian parametrisations. Fits rely on an a priori choice of
parametrisation, guided only by the minimisation of χ2, and suffer from increasing ambiguity
in higher dimensions. By relying on direct measurement of coefficients, the present method and
those of Refs [9] [10] etc leave less room for arbitrary choices and put the uncertainty where it
belongs: in the sampling fluctuations of measured experimental quantities.
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