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1. Automated Lattice Perturbation Theory

While the lattice offers a fully nonperturbative regulator for Quantum Field Theory, perturba-
tive calculations still play an important role in renormalising, matching and improving operators,
both those appearing in the action and those used to measure observables. For the highly im-
proved actions now widely used, such as the Highly Improved Staggered Quark (HISQ) action [1]
or moving NRQCD, [2] manual derivation and implementation of the Feynman rules would be
highly impractical. Automated methods are therefore required. A general algorithm to derive the
Feynman rules for arbitrary traced closed Wilson loops was derived by Lüscher and Weisz in [3].
We have generalised this algorithm to include fermionic fields [4] and have implemented it in the
HiPPy/HPsrc packages [5].

1.1 The HiPPy package

HiPPy is an is an automated tool for generating Feynman rules from arbitrary lattice actions,
which is written entirely in Python [6]. Starting from the perturbative expansion Uµ(xxx)= eg0Aµ (xxx+

µ̂

2 )

of the link variables, the action is expanded as

L = Tr(UC )+ψΓUDψ

= ∑
r

gr
0

r!
V a1···ar

µ1···µr
Aa1

µ1
· · ·Aar

µr
+∑

r

gr
0

r!
ψ

bṼ a1···ar,bc
µ1···µr Aa1

µ1
· · ·Aar

µr
ψ

c

with vertex functions

V a1···ar
µ1···µr

(k1, . . . ,kr) = Tr(ta1 · · · tar)×∑
i

fiei∑ j k j·vi, j

Ṽ a1···ar,bc
µ1···µr (k1, . . . ,kr; p,q) = (ta1 · · · tar)bc×∑

i
fiΓαie

i(p·xi+q·yi+∑ j k j·vi, j)

giving the Feynman rules.
The algorithm for achieving this expansion starts from the encoding of individual terms in the

vertex function as so-called entities

Ei = (xxxi,yyyi;vvvi,1, . . . ,vvvi,r;αi)

each of which carries an amplitude fi. The crucial property of entities is the multiplication rule

EE ′ =
(
xxx,yyy′+ ccc;vvv1, . . . ,vvvr,vvv′1 + ccc, . . . ,vvv′s + ccc;αk

)

where ccc = xxx′− yyy and αk is defined via ΓαiΓα j = φαiα j Γαk . Entities differing by only translations
are equivalent by momentum conservation. Additional structure (e.g. a non-trivial colour struc-
ture) can also be encoded by adding additional fields to the entity and amending the entity algebra
accordingly.

A field is then defined as a double mapping

F = {(µ1, . . . ,µr) 7→ {Ei 7→ fi}}
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which encodes a generic Wilson line, and multiplication of field objects is defined accordingly in
terms of entity multiplication by

FF ′ =
{(

µ1, . . . ,µr,µ
′
1, . . . ,µ

′
s
)
7→
{

EE ′ 7→Crsφ f f ′
}}

where Crs = (r+ s)!/(r!s!) is a combinatorial factor and φ is the phase from the multiplication of
the spin matrices belonging to the entities E and E ′, as defined above. Addition of field objects is
defined by the addition of the amplitudes belonging to the individual entities, with the amplitude
in the sum of an entity present in only one of the summands being set to its amplitude in that
summand.

The basic building block from which smeared links, operators and actions are constructed in
an iterative fashion is the simple link encoded as

Uµ(xxx) = eg0Aµ (xxx+
µ̂

2 ) =

{
(µ, . . . ,µ) 7→

{(
000, µ̂;

µ̂

2
, . . . ,

µ̂

2
;0
)
7→ 1

}}
,

and predefined building blocks (e.g. smeared links, covariant derivatives and field strength tensors)
constructed from this are provided as part of HiPPy.

1.2 The HPsrc package

The HPsrc package consists of a suite of Fortran 95 modules complementing HiPPy. While
the output of HiPPy is in principle suitable to being converted directly into an analytic form, this is
not usually necessary or even useful in lattice perturbation theory. We therefore have implemented
routines that read in the HiPPy-generated Feynman rules at runtime and use them to construct the
vertex functions and propagators for given momenta on the fly. This also offers the great advantage
of being able to write Feynman diagrams in an action-blind way, so as to be able to recompute
the same quantities for another action without needing to write new code. HPsrc also provides
facilities for automated differentiation of Feynman diagrams, so that neither analytic manipulations
nor inaccurate numerical derivatives are needed.

2. Incorporating Background Fields

The background field technique has long been known as a valuable tool in field theory. In [7],
Lüscher and Weisz showed that the theorem about dimensional regularisation stating that renor-
malisation of the effective action does not require additional counterterms beyond those needed
for the renormalisation of the action holds also in the case of lattice gauge theory. This makes it
possible to use the background field technique to perform calculations such as relating the bare
lattice coupling to the MS coupling [8]. To determine the coefficient of the σσσ ···BBB term in the (mov-
ing) NRQCD action [9], only the background field technique can guarantee the gauge invariance
of higher-dimensional operators which will necessarily be generated in an effective theory such as
(m)NRQCD. This makes it desirable to incorporate support for the background field method into
the HiPPy/HPsrc packages.
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2.1 Background fields in HiPPy

We decompose our fields into a background field Bµ and quantum fluctuations qµ by parametris-
ing the basic gauge link as

Uµ(xxx) = eg0qµ (xxx+
µ̂

2 )eBµ (xxx+
µ̂

2 )

We note that this does not affect the combinations of xxx, yyy, vvvi, j that are possible, and that hence
the entity algebra remains unaffected. However, the gluon fields living at each lattice point vvv can
now be either quantum or background, with the quantum fields always appearing to the left of the
background fields coming from the same link, and thus the field objects need to keep track of nature
of individual gluon fields.

This leads to a new mapping structure for field objects given now by

F =
{
(µ1, . . . ,µr) 7→

{
Ei 7→ ( f q···q

i , . . . , f B···B
i )

}}
with an order-r entity being mapped to an 2r-tuple of amplitudes.

With this structure, multiplication of fields now assigns

f x1···xry1···ys
k :=Crsφ f x1···xr

i f y1···ys
j

where Crs and φ are defined as before, and the simple link becomes

Uµ(xxx) = eg0Aµ (xxx+
µ̂

2 ) =

{
(µ, . . . ,µ) 7→

{(
000, µ̂;

µ̂

2
, . . . ,

µ̂

2
;0
)
7→ (1, . . . , f q···qB···B, . . . ,1)

}}
,

where
f qsBr−s

=
r!

s!(r− s)!

and all other f x vanish identically. This definition maintains the ordering of the background and
quantum fields throughout the expansion procedure. We note that this precludes performing any
symmetrisation over the gluon fields at this stage, and that in background gauge all symmetrisation
is to be deferred to the evaluation of the Feynman diagrams.

2.2 Background field gauge in HPsrc

In order to support background field calculations, we also need to extend HPsrc so that it
supports fixing to background field gauge.

The gauge fixing term for this is

Lg f =−
1

2ξ
Tr
(
D∗µqµ

)2

with
D∗µ f (x) =

[
f (x)− e−Bµ (x− µ̂

2 ) f (x− µ̂)eBµ (x− µ̂

2 )
]
,

which gives rise to additional terms in all purely gluonic vertices with exactly two quantum fields.
These terms have been implemented in HPsrc for the propagator and three-gluon vertex.

Similarly, the Fadeev-Popov ghost action in background field gauge involves background co-
variant derivatives Dµ instead of finite differences, and Ad(qµ) instead of Ad(Aµ).
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3. Accelerated Automatic Differentiation

In HPsrc, we use TaylUR [10] for the automatic computation of derivatives with respect to
an external momentum PPP. In this way, derivative information is automatically propagated from
vertices and propagators to Feynman diagrams and quantities constructed therefrom, but in order to
save computation time, the derivatives of the vertex functions themselves are constructed explicitly
in the HPsrc code.

For a momentum decomposed as kkk j = k̄kk j + r jPPP, the derivative of the reduced vertex reads

∂
n1
P1
· · ·∂ nD

PD
Y = ∑

i
fi

D

∏
µ=1

(
i∑

j
r jvi, j,µ

)nµ

ei∑ j k j·vi, j

We note that the ∏(. . .) term above is momentum-independent, and needs to be computed only
once in order to compute the derivatives for each momentum in a set of momenta with identical
routings r j; only the exponential needs to be recomputed for each momentum. It is therefore
possible to achieve a significant speed-up by momentum vectorisation, such that the vertex function
is called with a vector of momenta with identical routings r j and returns a vector of values.

4. GPU acceleration of Reduced Vertices

The main work (about 85%) in a perturbative calculation using HPsrc comes from evaluating
the reduced vertex. This function is particularly suitable for parallelisation using a General Purpose
GPU (GPGPU). Data transfer times are small and the momentum vectorisation discussed above
makes the overhead per momentum point negligible (as the monomial data can be reused).

The reduced vertex routine was extracted as a separate kernel for testing. Derivatives of the
reduced vertex were not initially calculated. The kernel consists of a two-level loop nest. The outer
loop (over independent momentum points with loop index n) is trivially parallel. The inner loop
(the sum over monomials with loop index i) contained some dependencies. We fixed the number
of monomials at 8000 (representative of the HISQ action) and varied the number of points.

The kernel was accelerated on an NVIDIA Fermi C2050 GPU in two ways. First, a corre-
sponding CUDA kernel was written and called via a C wrapper. Secondly, the original Fortran90
was accelerated using the directives implemented in the PGI compiler.

Initially, only the outer loop was parallelised, explicitly in the CUDA and automatically by
the PGI compiler. In both cases, GPU performance was significantly increased by reordering the k
array so that index n was the fastest-varying in memory. This allowed “coalescing” of loads from
the GPU global memory.

For a wide range of problem sizes, the CUDA kernel (including data transfers) was around
52 times faster than the best version of the kernel running on a single core of an Intel Nehalem
processor. The PGI directive version was only 20% slower than the CUDA kernel.

Further performance gains were obtained by restructuring the kernel so that loops over both
n and i could be parallelised. When this was done in the PGI directive-accelerated kernel, the
performance matched that of the original CUDA version. The same refactoring in the CUDA is
currently in progress. Our results are summarised in Fig. 1.

This work is now being ported into the main application.
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Figure 1: Comparing the performance of the HPsrc kernel on an NVIDIA Fermi GPU for increasing num-
bers of momentum points.

5. Summary

The HiPPy/HPsrc package has been extended to enable calculations in background field gauge.
The new functionality will be used to calculate to O(αs) corrections to the coefficients of the
(m)NRQCD action.

The re-use of common routing information enables a significant speed-up of calculations in-
volving automatic differentiation of vertices. A further speed-up can be achieved by rewriting the
generic vertex functions as CUDA kernels. An optimised implementation is in preparation.
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