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ABSTRACT

Non-linear nature of Einstein equation introduces genuétativistic higher order corrections to the usual
Newtonian fluid equations describing the evolution of cokmizal perturbations. We study the effect of such
novel non-linearities on the next-to-leading order madted velocity power spectra for the case of pressureless,
irrotational fluid in a flat Friedmann background. We find thatte general relativistic corrections are negligibly
small over all scales. Our result guarantees that, in theentiparadigm of standard cosmology, one can safely
use Newtonian cosmology even in non-linear regimes.

Subject headings: cosmology: theory —large-scale structure of universe

1. INTRODUCTION nian hydrodynamic equations which are closed at second or-
Large scale structure (LSS) of the universe is a powerful der, any higher order contributions are originated fromepur

probe to study the nature of cosmological density perturba-9€neral relativistic effects (Hwang & Noh 2005b). A consis-
tions and to extract cosmological parametzrs (Peébleg)1980 €Nt éxpansion of density fluctuation tells us that the leadi
Combined with the anisotropy of the cosmic microwave back- N°n-linear contributions to the power spectrum includecthi
ground (CMB), most of the cosmological parameters are cur-2rder perturbations (Noh & Hwang 2008; Noh etial. 2009).
rently constrained within a few percent accuracy or even bet 11US non-linear density power spectrum naturally include
ter (Komatsu et al. 2010). To continue our success in cosmol-Puré general relativistic effects, which may have impartan
ogy with CMB and LSS, itis crucial to predict the power spec- implications as N-body simulations are becoming larger and

tra from theory accurately. While the temperature fluchrati  |2r9€r to reach the horizon scale (Kim et al. 2009).
In this note, we examine the general relativistic effects on

in the CMB is as small a§T /T ~ 107 (Smoot et all ' 1992) ; X .
; : : : the power spectra of matter density fluctuations and peculia
S0 that linear pﬁrturblatmn tt&eory N afble to Iprowc_it_e na_myisss velo?:ity by iﬁcluding leading non-vi;mishing non-linearl)neo
accuracy, we have larger degree of non-linearities in e I .
: : P tributions. Our aim is to answer the question whether pure
We must take into account non-linearities of LSS properly general relativistic effects can give riseqto any cosmaﬂaty{yp
0 predllct the polwerlspeqltrum aﬁcurate e(nough for PrECISION ), servable consequences. To our surprise, we find that the
ggg?;oz%%)é)at a level similar 10 the CMB (Jeong & Komatsu Newtonian terms in these power spectra are absolutely domi-
Most studies on LSS. however. have been based on NeW_nating overall relevant cosmological scales, even outside the
: : TN A . horizon. Although the result sounds simple and pleasaist, th
t-omanf g_ra;}w'gy, espeE!aIIy th;se lnlcludlng nonk-_llnea}rtpldcla- . isstilla non-trivgiJaI result, because in ther) contex? of cosm
233519\&? gleal:ﬁ;?fgél? ggl- gt()'(:)ké)%gég'ﬁi.sMa?opl?c?aec}:thaﬁalsgtgozbq:gy Newtonian gravity isncomplete: there is no concept of
justified a posteriori by comparing the result against fgky- in?irrl]zit%nétnhdesgrgﬁagatlon speed of an action at one point is
eral relativistic one. For example,lin Noh & Hwang (2004), it - . . .
: : ' - ey i This note is outlined as follows. In Sectibh 2, we present
Is shown that the Newtonian hydrodynamic equations up tothe formalism to set up the equations to sgl\jle and %ive the
second ordecoincide exactly with the relativistic ones in the solutions up to third order. In Sectigh 3, we com,pute the mat-
zero prlessqreblcasez r?fter appropriately |detr)1.t|fy|.ng mmyllo ter and velocity power spectra including next-to-leadingn
namical variables with gauge-invariant combinations ¢-re linear corrections which include genuine general relstii
tivistic perturbation variables. Thus, compared to the tdew effects. In Sectiofl4 we conclude
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moving gauge wher&? = 0 to all perturbation orders, with

In relativistic perturbation theory, the dimensionlessuatity

i being a spatial index. As this temporal gauge condition, ¢ is proportional to the spatial curvature perturbation ie th
together with our unique spatial gauge condition (Bardeencomoving gauge. All the perturbation variablgsu and¢
1988) gi; = a(1+ 2p)dij, fixes the gauge degrees of free- can be regarded as equivalently gauge-invariant combimsti

dom completely, all the resulting perturbation variablas be
equivalently regarded as fully gauge invariant, both stigti
and temporally. This statement is valid in all perturbation
ders|(Noh & Hwang 2004).

The Arnowitt-Deser-Misner formulation__(Arnowitt etal.

to non-linear order. Proper choice of variables and gauge
conditions are important to have these equations. Note that
the relativistic continuity and Euler equations coincidighw
those from Newtonian fluid approximation up to the second
order in perturbations (Peebles 1980; Noh & Hwang 2004).

2008) is convenient in our case (Bardeen 1980). The comov-Therefore, the perturbative solutions are also the same up t
ing gauge condition imply the momentum density vanishes, the second order, and pure general relativistic effecteapp
i.e.J = NTY =0, withN being the lapse function. The pres- from third order. We emphasize that the above equations are

sureless condition implie§; = Ti; = 0. Therefore the mo-
mentum conservation equation gividg = O, thus the lapse

functionN is uniform. The energy and momentum conserva-

valid in the presence of the cosmological constant in th&-bac
ground world model.
An examination of the third order terms in Equationk (4)

tion equations and the trace part of the propagation equatio and [$) shows that the pure third order terms are simple con-

then become (Bardeen 1980)

Eo—-NE; =NKE, (1)
i 2
K]i|j_§K\i:0a 2)

Ko-NK; =N <%K2+Kinii+4wGE—A) )

whereN; is the shift vectorK = K, is the trace of the ex-
trinsic curvature tenso;j, A is the cosmological constant,

volutions of the linear ordep with the second-order com-
binations of fluid variable$ andu. Note that to the linear
order, ¢ is a well-known conserved quantity whose ampli-
tude of the growing mode solution is conserved on the super-
horizon scales, independent of the changing equation t&f sta
or even changing underlying gravity theories (Hwang & Noh
2005a). In a flat background without cosmological constant
the amplitude ofp near horizon scale is directly related to the
amplitude of relative temperature fluctuations of the CMB as
o0T/T =¢/5.

The linear solutions of EquationEl (4) arld (5) are easily

E = N2T%s the energy density, an overbar denotes the trace-found to be

less part, and a vertical bar denotes a covariant derivatihe

respect toy;;. These are the complete equations we need in

our non-linear perturbations, and are valid in fully nometar
situation.

We introduce the density and the velocity fluctuations as

E = p(t) +6p(t,x) andK = 3H - 4(t,x) with (t,x) = a1V -

u(t,x), with a being the cosmic scale factor. We can iden-
tify dp(t,x) andu(t,x) as the Newtonian density and veloc-

ity perturbation variables respectively, because theivéstic
equations coincide exactly with the corresponding Nevetoni
hydrodynamic equations up to second order.

d1(k, 1) =D(1)01(k; o), (8)
01(k,t) =—aHD(t)d1(K, to), 9)

whereD(t) is the linear growth factor so that(k,tp) is the
present linear density fluctuation. With these linear sohs,
we can perturbatively expand the density contrig&tt) =

From the above equations we can derive the hydrody-d; +d,+d3+---, wheredy is an-th order quantity in linear

namic equations of density fluctuatiagt,x) = dp(t,x)/p(t)
and velocity gradiem(t, x) to the third order (Hwang & Noh

density contrasti(k,to), and similarly foré(k,t). With this
expansion, we can find the full non-linear solutions of Equa-

2005h). The relativistic continuity and Euler equations ar tions [4) and[(b) by using momentum dependent symmetric

found to be
05 1

1 1 .
TR A GO R [20u=-V (A™X;)] - (V6),

(4)

1 ou 1
av (E‘FHU) +47TGP§__¥V'[(U'V)U]

+§V- {cp [(u~V)u—%(V~u)u] } —%w(u-V)(VU)

- %A [(u-V)A™X] + a—lz(u V)Xo + %xz(v -u), (5)

wherep andX; are the linear and the second order quantity

respectively, and are defined as

A 1 H
QQO:? (“47TGp6+EVU) s (6)

Xo = 2ng~u—(u~V)<p+gA‘1V-[uA<p+u-V(Vgp)] )

kernels as

5= D”(t)/ Po S50 (-3

R~ (@nyT) =
« F,gs)(%a < 0n)01(ay) - - 01(qy)

. . ad°qr---d%h (3 (| _ .

o(k,t) =—aH ; D (t)/ (273D ok ; G

x GO(ay, - Gn)d1(0ly) - 01(y) -
(11)

(10)

Then, Equation${4) andl(5) become simple differential equa
tions of F® andG{. Especially, the general relativistic terms
which explicitly includeky = aH, the comoving wavenumber
corresponding to the comoving horizon, are reduced to the al
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gebraic equations

0:-G3
9705

5
2F3 Einstein— G3,Einstein= — 2 kﬁ { 2

+q12-q3{_3+q1-q2_§q12-q1_§q12-q2q1-q2}}
9 | % a®% 29,9 2 o 9%
(12)
3 5 5 2 g K2
§F3,Einstein_ éGS,Einstein: _Eka { {g + —qlqus <1— q7> ]
1 23
X[_3+Q2'Q3_§Q23'Q2_§QZ3'Q3QZ'QS}
B B9 2 0% 2 G 0503
172q;-0, (%'QZ 1> k'Ql]}
+ — | = -4 - = ’ 13
q%{f% o5 % 3/ q 13)

where we have introduces},.., = Y.L, ¢. The second and
third order Newtonian kernels can be found in e.g. Equations
[(2.32), (2.33)] and [(2.34), (2.35)] in_Jeohg (2010), resp
tively.

3. MATTER AND VELOCITY POWER SPECTRA

From Equation[(7l0), we can find the non-linear power spec-
trum, which is defined as

(3(ke, )3 (ko 1)) = (2m)36P (ky +ko)P(ke,t) . (14)

If we assume perfect Gaussianity &f, which is a very
good approximation consistent with current observatiang,
higher order correlation function beyond the linear power
spectrumPyy(k) disappears anfh1(K) is all that we need to
specify the statistics of density fluctuation as we will see
shortly, all the non-linear corrections to the power speutr
can be written in terms dP;;. Then, from Equatior {14) we
can write, beyond the linear density power specti®jm

P=P11+Py+Pi3+---, (15)

with (5i(k1)dj(k2)) = (2m)35®) (ks +ko)sjPij(ki). Here,s; is
a symmetric factor which is 1 for= j and 1/2 otherwise.
The leading non-linear correctidh, includes bispectrum and

3

wherer andx are the magnitude of dummy integration mo-
mentumg and the cosine betweerandk, respectively, intro-
duced agzj=rk (0<r < oo) andk-q=Krx (-1 < x < 1).
We have dividedP;3 into the Newtonian parPi3newton and
the general relativistic contributid® 3 ginstein Compared with
P13 newtonthe general relativistic contributid® 3 ginsteiniS mul-
tiplied by a factor k4 /k)?, whereky /K is the ratio between a
scale of interest and the horizon scale, and is thus highdy su
pressed far inside the horizon.

In Figure[1 we present the total power spectrum of Equa-
tion (18) along with its componentBii, P2, Pisnewton
and Pisginstein When our Universe is dominated by mat-
ter, atz=6. The linear power spectrum is calculated by
CAMB (Lewis et al.| 2000) code with the maximum like-
lihood cosmological parameters given in the Table 1 of
Komatsu et dl[(2009) (“WMAP+BAO+SN"). Figufé 1 shows
that the general relativistic contributid®sginstein IS sSmaller
than the linear power spectruPiy onall cosmological scales.

o o = =
| | (@] o
i ~ ° ~

IS)
&

Matter power spectrum Pﬁé(k) [Mpc/h]?

IS)
&

el
0.0001

0.0010 0.0100 0.1000

wavenumber [h/Mpc]

Figurel. Non-linear matter power spectrum (solid blue line) and the-c

.. tribution from each component of Equatién}16¥at6. The black, red, and

thus disappears according to our assumption of Gaussianityrange lines show the contributions from the Newtonianupbation the-

of §;. Py +Py3 denotes the next-to-leading order non-linear
correction to the power spectrum. As mentioned abéye,
includes general relativistic terms.

The density power spectrum up to next-to-leading order
non-linear corrections is

1 K

P(k,t) = Pry(k,t) + 9_8W

</

1 kK
+_ [
252 (27)2

/ drPyy(kr,t)
0

(3r+7x-10rx?) 2

1
dxPyq (kv 1+r2-2rxt
ll( ) (1+r2—2rx)2

1

Puk.b) / drPu(kr, )
0

1+r

12 3 3
x [—42r4+100rz—158+r—2+r—3 (r*=1)" (7r*+2) log =

|

5 [ ky 2 K3 00
56 (?) an(k,t)/o drPyy(kr,t)
72 1 1+r
2 2 4 6
X [86r _130_ﬁ+r_3(36+53r —46r*-43r°) log T }

=P11+Poo+PigNewtont Pi3Einstein- (16)

ory: Py, Pop, andPi3newton respectively. The green line shows the general
relativistic effect,P13ginstei(K). Note that we take the absolute value for neg-
ative terms, and show with dashed liné®, andPy3 are positive and neg-
ative,respectively, in all scales. Vertical dotted lin@wshk the wavenumber
correspond to the comoving horizén atz= 6. Over all scales, the general
relativistic termPy3ginstein (green) is negligibly small compare to the linear
power spectruniPy; (black).

Let us examind; 3 ginsteinmore closely. For notational sim-
plicity, we shall abbreviate the integration Pi3ginstein as

drPyy(kr,t)f(r). Then, scale dependence R ginstein Can

e understood as follows. First, settikg= g, we find that
P13 einstein~ P11(K) f (9/k). On small scalesk(>> 0.01h/Mpc),
g/k is also small, and by using Taylor expansionfdf) =
—(656/15)2+O(r*) we find Pr3ginstein~ K 2P11. On the other
hands, in large scale limik(< 0.01h/Mpc) whereq/k takes
larger value f (r) = =752/3+O(r?) andPyzinsteinhas a scale
dependenc®i3ginstein~ P11. Numerical calculation reveals
that Pz ginstein IS Smaller tharPy, by a factor 10° on large
scales. Our result shows that the leading order non-linear
pow%r spectrum is finite in both infrared and ultraviolet re-
giongl.

2 The previous result reporting infrared divergenc®igiginstein (Noh et al.
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We can proceed in the same way to compute the powerrigyre2. Same as Figuig 1, but for the velocity power spectRig(K).
spectrum of the peculiar velocity. As Equation(14), we can

define

(0(k1,1)0(kz, 1)) = (2m)30®) (ky +k2)Pyg(ky,t), (17)

and we can find

kHngg(k t) = Pry(k,t) + 98 @r )2/ drPy(kr,t)

1 2\2

(r —7x+6rx°)

+r2- A,

x[ldell(k 1+r 2I'X,t) (L+12-2rx)2

1 Kk >
+8—4WP11(kat)/ drPyy(kr,t)
I +
x | -6rd+ar? 82+12 3 (12-1)° (2+2)log u]
L r 1-r
5 (kq\®
5_6< ) @r )2/ drPyq(kr,t)
+
x |a6r2- 50—&1 1( 23°-50r* +12+72)log| r}.

(18)

Figure[2 shows the non-linear velocity power spectrum o

Equation [[IB) for exactly the same cosmology as Figire 1.
As in the case of the total matter power spectrum, the non-

linear general relativistic correction is negligibly sintdr
all scales.

5|ty Fa einstein i both large { — 0) and small { — oo) scale
limit: lim,_og(r) = =(368/15)2+O(r%) and lim ., g(r) =
-496/3+ O(r~2) when denoting the last integration in Equa-
tion (I8) as/ drPy1(kr)g(r).

N
\
13 Newton u‘

13,Einstein

Velocity power spectrum P, (k) [Mpc/n]?

P )

0.0100 0.1000 1.0000
wavenumber [h/Mpc]

4. CONCLUSION

It is because the third order kernel for velocity
Gz einsteinbehaves in the same way as that for the matter den-

To conclude, in this note we have examined the general rel-
ativistic non-linear contributions to the density and \aitlp
power spectra. We have found that, with pleasant surprise,
the pure general relativistic effects are completely rygiglke
on all cosmologically relevant scales, even outside the hori-
zon. It is interesting to see that the linear power spectmum i
totally dominating even outside the horizon. Our conclasio
has the following important implication. As the general rel
ativistic effect is very small, Newtonian theory can be safe
applied to the non-linear evolution of cosmic structure thn a
cosmologically relevant scales. In the literature it hasrbe
common to use Newtonian gravity to study the non-linear
clustering properties of large scale structure withoutfyiag
that approach. The result we present in this note provides a
confirmation of using Newtonian gravity to handle non-linea
clustering in cosmology.
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