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On the dangers of Boolean networks:

Activity dependent criticality and threshold networks not faithful to biology

Matthias Rybarsch and Stefan Bornholdt
Institute for Theoretical Physics, University of Bremen, D-28359 Bremen, Germany

Spin models of neural networks and genetic networks are considered elegant as they are accessible
to statistical mechanics tools for spin glasses and magnetic systems. However, the conventional
choice of variables in spin systems may cause problems in some models when parameter choices
are unrealistic from the biological perspective. Obviously, this may limit the role of a model as a
template model for biological systems. Perhaps less obviously, also ensembles of random networks
are affected and may exhibit different critical properties. We here consider a prototypical network
model that is biologically plausible in its local mechanisms. We study a discrete dynamical network
with two characteristic properties: Nodes with binary states 0 and 1, and a modified threshold
function with Θ0(0) = 0. We explore the critical properties of random networks of such nodes and
find a critical connectivity Kc = 2.0 with activity vanishing at the critical point.

PACS numbers: 64.60.De, 87.18.-h, 05.50.+q, 89.75.-k

We currently experience a revived interest in dynami-
cal networks of nodes with binary states, driven by two
active fields of research: modeling of molecular informa-
tion processing networks (as, e.g., genetic networks or
protein networks) [1], as well as modeling of adaptive
networks [2]. These network models with binary states
are reminiscent of artificial neural networks as studied in
the statistical mechanics community about two decades
ago.

An early motivation of networks with binary node
states σi ∈ {0, 1} was given by McCulloch and Pitts in
1943 [3] as a model for neural information processing.
A model for associative memory constructed from such
nodes by Hopfield in 1982 [4] attracted considerable in-
terest among physicists as it is conveniently accessible to
equilibrium statistical mechanics methods [5–7]. A sim-
ple redefinition of weights and thresholds maps the model
onto the mathematical representation of a spin glass with
states σi ∈ {−1, 1}, which has become the usual form of
the Hopfield model in the physics literature. The corre-
sponding redefinition of weights and thresholds does not
affect the functioning of the model, as its mechanism of
an associative memory works on the redefined weights as
well.

In some circumstances, however, when faithful repre-
sentation of certain biological details is important, the
exact definition matters. In the spin version of a neural
network model, for example, a node with negative spin
state σj = −1 will transmit non-zero signals through
its outgoing weights cij , despite representing an inactive
(!) biological node. In the model, such signals arrive
at target nodes i, e.g., as a sum of incoming signals
hi =

∑N

j=1 cijσj . However, biological nodes, as genes
or neurons, usually do not transmit signals when inac-
tive. In biochemical network models each node repre-
sents whether a specific chemical component is present
(σ = 1) or absent (σ = 0). Thus the network itself is
mostly in a state of being partially absent as, e.g., in a

protein network where for every absent protein all of its
outgoing links are absent as well [25]. In the spin state
convention, this fact is not faithfully represented.
Another example for an inaccurate detail is the com-

mon practice to use the standard convention of the Heavi-
side step function as an activation function in discrete dy-
namical networks (or the sign function in the spin model
context). The convention Θ(0) = 1 is not a careful rep-
resentation of biological circumstances. Both, for genes
and neurons, a silent input frequently maps to a silent
output. Therefore, we use a redefined threshold function
defined as

Θ0(x) =

{

1, x > 0
0, x ≤ 0.

(1)

When studying statistical properties of ensembles of
threshold networks with random links, these details have
a considerable influence on the network’s dynamics and
critical properties. When simulating ensembles via net-
works of spins σi ∈ {−1, 1}, care should be taken to prop-
erly renormalize weights and activation thresholds to en-
sure faithful implementation of the original model with
states σi ∈ {0, 1}. However, this is frequently omitted,
resulting in the statistics of a system of limited biological
plausibility [8–12].
Another example where normalization and the defini-

tion of the nodes’ thresholds matters are adaptive net-
works, currently discussed in the context of neural net-
works [2, 13–16]. When defining local adaptive mecha-
nisms, it is particularly important to base it on biolog-
ically plausible definitions of nodes and circuits. While
these mechanisms work also for spin type networks [13],
such an implementation is not realizable in a biological
context, as it would require signals over links which are
in fact silent, due to the inactivity of their source nodes.
An adaptive algorithm based on such correlations of non-
activity is therefore not plausible.
In this paper, we first define a binary threshold network
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that does not include explicitly forbidden states in the
context of biological examples. Then we study its critical
properties which we find to be distinctly different from
those of random Boolean networks [17–21] and random
threshold networks [8, 22, 23]. In particular, activity of
the network now influences criticality in a non-trivial way,
as recently observed for random threshold networks with
bistable nodes [24].
Let us consider randomly wired threshold networks of

N nodes σi ∈ {0, 1}. At each discrete time step, all nodes
are updated in parallel according to

σi(t+ 1) = Θ0(fi(t)) (2)

using the input function

fi(t) =

N
∑

j=1

cijσj(t) + θi. (3)

In particular we choose Θ0(0) := 0 for plausibility reasons
(zero input signal will produce zero output). While the
weights take discrete values cij = ±1 with equal proba-
bility for connected nodes, we select the thresholds θi = 0
for the following discussion. For any node i, the number
of incoming links cij 6= 0 is called the in-degree ki of that
specific node. K denotes the average connectivity of the
whole network. With randomly placed links, the prob-
ability for each node to actually have ki = k incoming
links follows a Poissonian distribution:

p(ki = k) =
Kk

k!
· exp(−K). (4)

To analytically derive the critical connectivity of this
type of network model, we first study damage spreading
on a local basis and calculate the probability ps(k) for
a single node to propagate a small perturbation, i.e. to
change its output from 0 to 1 or vice versa after chang-
ing a single input state. The calculation can be done
closely following the derivation for spin-type threshold
networks in ref. [23], but one has to account for the
possible occurrence of ‘0’ input signals also via non-zero
links. The combinatorial approach yields a result that di-
rectly corresponds to the spin-type network calculation
via pbools (k) = pspins (2k). However, this approach does
not hold true for our Boolean model in combination with
the defined Theta function Θ0(0) := 0 as it assumes a
statistically equal distribution of all possible input con-
figurations for a single node. In the Boolean model, this
would involve an average node activity of b = 0.5 over
the whole network. Instead we find (Fig. 1) that the av-
erage activity on the network is significantly below 0.5.
At K = 4 (which will turn out to be already far in the
supercritical regime), less than 30 percent of all nodes
are active on average. Around K ≈ 2 (where we usu-
ally expect the critical connectivity for such networks),
the average activity is in fact below 10 percent. Thus,
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FIG. 1: Average node activity b as function of connectivity K

measured on attractors of 10000 sample networks each, 200
nodes.

random input configurations will more likely consist of
a higher number of ‘0’ signal contributions than of ±1
inputs.
Therefore, when counting input configurations for the

combinatorial derivation of ps(k), we need to weight
all relevant configurations according to their realization
probability as given by the average activity b. For the
first k = 1, 2, 3 . . . this yields
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ps(5) = . . .

which generalizes to

ps(k) =
1

2
+

(

k
∑

i=1

(−1)i
(

k − 1

i

)

Xib
i

)

(5)

using Xi = Xi−1 ·
(

2i−1
i+1

)

and X1 = 1
4
.

As the in-degree k is not equal for all nodes, the expec-
tation value of ps(K) is essential to determine the critical
connectivity of the whole network. This will yield the
average probability for damage spreading for a certain
average connectivity K.
Consider a network of size N − 1. For large N , the

problem studied in the above section is equivalent to con-
necting a new node j with state σj to an arbitrary node
i, increasing ki to ki + 1. If now σj is changed, this
will result in a state change of node i with a probability
ps(k + 1). As mentioned above, the link distribution fol-
lows a Poissonian; thus we can calculate the expectation
value 〈ps〉(K) for the thermodynamical limit N −→ ∞
as

〈ps〉(K) = exp(−K)

∞
∑

k=0

Kk

k!
ps(k + 1) (6)
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FIG. 2: Average activity b on attractors of different network
sizes (right to left: N = 50, 200, 800, ensemble averages were
taken over 10000 networks each). Squares indicate activity
on infinite system determined by finite size scaling, which is
in good agreement with the analytic result (solid line). The
dashed line shows the analytic result for Kc(b) from eq. (7).
The intersections represent the value of Kc for the given net-
work size.

N 50 100 200 400 800 → ∞

Kc(±0.005) 2.285 2.225 2.180 2.145 2.115 2.000

TABLE I: Critical Connectivity Kc for different sizes as de-
termined from curve intersections in Figure 2.

which can be computed numerically using ps(k) as given
in eq. (5).
The actual calculation of the critical connectivity Kc

for the network model presented above is now done by
applying the annealed approximation as introduced by
Derrida and Pomeau [18]. The application of this method
on threshold networks is discussed in detail in [23], which
can be directly transferred on the network model dis-
cussed in the present work. The critical connectivity can
thus be obtained by solving

〈ps〉(Kc) ·Kc = 1. (7)

However, Kc now depends on the average network activ-
ity, which in turn is a function of the average connectivity
K itself as shown in Fig. 1. From the combined plot in
Fig. 2 we find that both curves intersect at a point where
the network dynamics – due to the current connectivity
K – exhibit an average activity which in turn yields a
critical connectivity Kc that exactly matches the given
connectivity. This intersection thus corresponds to the
critical connectivity of the present network model.
However, the average activity still varies with different

network sizes, which is obvious from Figure 2. Therefore,
also the critical connectivity is a function of N . Table I
lists results for different values of N . For an analytic ap-
proach to the infinite size limit, we can now calculate the

probability for a node at given in-degree k and average
network activity bt at time t to exhibit output state 1.
This probability equals the average activity for the next
time step bt+1. By examining all relevant input configu-
rations, we find that for given constant k this generalizes
to

bt+1(k) =

k
∑

i=1

(−1)i+1 1

2i

(

2i− 1

i− 1

)(

k

i

)

bit. (8)

Again, we have to account for the Poissonian distribution
of links in our network model, so the average evolution
of network activity is obtained by

〈bt+1〉(K) = exp(−K)

∞
∑

k=1

Kk

k!
bt+1(k). (9)

It is now possible to distinguish between the different dy-
namical regimes by solving 〈bt+1〉 = bt(K) for the critical
line. The solid line in Figure 2 depicts the evolved ac-
tivity in the long time limit. We find that for infinite
system size, the critical connectivity is at

Kc(N → ∞) = 2.000± 0.001

while up to this value all network activity vanishes in
the long time limit (b∞ = 0). For any average connec-
tivity K > 2, a certain fraction of nodes remains active.
In finite size systems, both network activity evolution
and damage propagation probabilities are subject to fi-
nite size effects, thus increasing Kc to a higher value.
As a numerical verification, we can also derive the crit-

ical connectivity for infinite system size Kc(N → ∞)
using finite size scaling of the above simulation results
(Table I). The optimum fit is shown in Figure 3 and
yields

Kc(N → ∞) = 2.00± 0.01

which perfectly supports the analytical calculation. The
same consideration is also possible to obtain the average
activity b(N) for increasing network size. This can be
done both at constant values of K as well as along the
critical line in Figure 2 using the values of Kc(N) from
Table I. For the critical line, we indeed find vanishing
network activity (inset of Figure 3):

bc(N → ∞) = 0.00± 0.01.

This does also hold true for any connectivity below the
critical line. For supercritical networks at K > Kc, the
numerical simulation yields a non-zero fraction of nodes
which remains active on average in good agreement with
the analytic computation (see squares in Figure 2).
In additional numerical simulations using the stan-

dard step function, we obtain a critical connectivity of
Kc ≈ 3.7, which is analytically supported by a com-
binatorial calculation following ref. [23] where we find
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FIG. 3: Finite size scaling of Kc(N), optimum fit shown here
for Kc(N → ∞) = 2.00. Inset: Finite size scaling of b(N)
along the critical line, the optimum fit is obtained for vanish-
ing activity bc(N → ∞) = 0.
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FIG. 4: Average attractor length at different network sizes.
Ensemble averages were taken over 10000 networks each at
(A) K = 2.4, (B) K = 2.0, (C) K = 1.6. Inset figure shows
the scaling behavior of the corresponding transient lengths.

pbools (k) = pspins (2k). The networks exhibit significantly
higher average activity, while most of the active nodes are
frozen in the active state. On a side note, if we chose to
calculate the critical connectivity based on an assumed
average activity of 0.5, the activity-dependent calcula-
tion via (5) and (7) would effectively reproduce the same
result (Kc ≈ 3.7) as the original combinatiorial approach
from [23] would yield for the new Boolean model. As
the assumption does not hold true here, this result can
only be viewed as an additional plausibility check for the
correspondence between both approaches. In passing we
note that also for the spin type threshold network stud-
ied in [23] we find activity levels different from 0.5, such
that conditions for a valid combinatorial approach might
not be met in that case, as well.

Finally, let us have a closer look on the average length
of attractor cycles and transients. As shown in Fig. 4, the

behavior is strongly dependent of the dynamical regime
of the network. As expected and in accordance with
early works on random threshold networks [8] as well
as random Boolean networks [20], we find an exponen-
tial increase of the average attractor lengths with net-
work size N in the chaotic regime (K > Kc), whereas
we can observe a sub-linear increase in the frozen phase
(K < Kc). We find similar behavior for the scaling of
transient lengths (inset of Figure 4).

In summary we studied threshold networks with
Boolean node states that are biologically more plausible
than current Boolean and threshold networks and which
are simpler than the recently introduced networks with
bistable threshold nodes [26, 27]. A major observation is
that activity of the nodes depends on connectivity which
also renders critical properties of the networks activity-
dependent, as found earlier for random threshold net-
works with bistable nodes [24]. We extend the annealed
approximation to correct for these effects and find con-
nectivity Kc = 2.0 and vanishing activity at the critical
point in the thermodynamic limit.

Going beyond the statistics of random network ensem-
bles, also real biological circuits can be implemented with
great ease using the threshold networks defined here. We
successfully reproduced the dynamical trajectory of the
budding yeast cell cycle network as implemented with
bistable threshold functions in [26], as well as for the
corresponding network in fission yeast [27]. [28]

To conclude, let us remind ourselves of the original idea
of using random Boolean networks for characterizing typ-
ical properties of biological networks [17]. In 1969, using
random Boolean networks as a null model for genetic
networks was a logical approach, given our complete ig-
norance of the circuitry of genetic networks at that time.
Thus the best guess was to treat all possible Boolean rules
as equally probable. Today, however, we have much more
details knowledge about certain properties of genetic net-
works and, therefore, about more realistic ensembles of
random networks. A biologically motivated and carefully
defined threshold network, as attempted in this paper,
may provide a more suited null model for the particular
properties of biological networks than random Boolean
networks with equally distributed Boolean functions.
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