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Light-meson properties from the Bethe-Salpeter equation
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Abstract. We discuss how to extract observables from an inhomogeneousvertex Bethe-Salpeter equation without resorting
to the corresponding homogeneous equation. As an example wepresent a prediction for thee+e− decay width of theρ(1450)
or ρ ′ meson. We also attempt to identify the momentum range contributing to a vector meson’s decay constant.
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INTRODUCTION

Due to their quantum numbers, vector-meson resonances
are easily produced ine+e− scattering. In addition, the
ρ is among the lightest mesons and thus object of nu-
merous studies and a prime target for theoretical in-
vestigation. In QCD, the Dyson-Schwinger-equation ap-
proach offers a nonperturbative continuum method to
study mesons as bound states of quarks and gluons via
the Bethe-Salpeter equation. Herein we present some
new results in the light of recent progress regarding the
methods used to approach such a bound-state problem.

THE VERTEX BSE

A general vertexΓ(q,P), the inhomogeneous Bethe-
Salpeter amplitude (iBSA), that connects quark and anti-
quark to a color-singlet current satisfies the equation

Γ(p,P) = Γ0+

∫

d4q
(2π)4K(P, p,q)Sa(q+)Γ(q,P)Sb(q−)

(1)
(inhomogeneous or vertex BSE), whereK is the quark-
antiquark scattering kernel, andΓ0 a current which de-
fines the channel under investigation by spin, parity
and charge-conjugation parity. In this work, we investi-
gate vector quantum numbers,JPC = 1−−, such that we
choose (cf. [1])

Γ0 = Z2γµ , (2)

where the renormalization constantZ2 is calculated from
the gap equation, cf. [2].

The iBSA has poles at the positions of the respective
bound states, and it can be decomposed as

Γµ(q,P) = ∑
i

Ni

Γµ
[h](q,Pi)

P2−P2
i

+ regular terms, (3)

whereΓ[h] is the homogeneous BSA of the meson under
investigation,P2

i =−M2
i the total momentum squared of

the excitationi in the respective channel, andNi denotes
a normalization constant.

We work in the well-established setup of the rainbow-
ladder truncation and the effective interaction proposed
by Maris and Tandy [3], with light-quark masses and the
parameterω = 0.4 GeV (except where noted), as given
in [4].

MASSES AND DECAY CONSTANTS

According to Eq. (3), each bound state results in a pole
in the iBSAΓµ(P,q). As described in [5], the amplitude
is decomposed into componentsFi(P2,q2,P ·q) and co-
variantsT i

µ(P,q,γ) according to

Γµ(P2,q2,P·q) = ∑
i

Fi(P
2,q2,P ·q)T i

µ(P,q,γ) , (4)

where the standard vector covariants [4] are orthonor-
malized according to Tr[T i

µ(P,q,γ)T
j

µ (P,q,γ)] = δi j . It is
well-known how to obtain meson masses and decay con-
stants using the corresponding homogeneous BSE. Here,
however, we explore a different approach.

We calculate the bound state masses by fitting the
inverse of the first componentF1(P2,0,0), as shown in
Fig. 1. We obtain

mρ = 0.774 GeV mρ ′ = 1.034 GeV (5)

which is in agreement with [4] and [6].
The decay constant for a vector meson is given by [3]

Mi fv(P
2
i ) =

Z2

3

∫

d4q
(2π)4Tr[γµSa(q+)Γµ

[h](q,Pi)Sb(q−)] ,

(6)
where the trace runs over color and Dirac-indices. To
extract the same information from the iBSA, we first
consider the general case of a projectionf (ih)Γ̃ (P2) of the
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FIGURE 1. The inverse of the first component of the inho-
mogeneous vector amplitude 1/F1(P2,0,0), as a function of the
square of the total momentumP2. The zero-crossings give the
masses of the ground state and the first excitation.

iBSA Γ(q,P) on a current̃Γ,

f (ih)Γ̃ (P2) =

∫

d4q
(2π)4Tr[Γ̃ Sa(q+)Γ(q,P)Sb(q−)] . (7)

The poles inΓ(q,P) translate into poles off (ih)Γ̃ (P2). In
order to calculate the corresponding on-shell projection
fΓ̃(P

2) (which ultimately gives the decay constant), the
inhomogeneous BSE is rewritten as [1]

Γ(p,P) = Γ0+

∫

d4q
(2π)4M(P, p,q)Sa(q+)Γ0Sb(q−).

(8)
M(P, p,q) denotes the fully amputated quark-antiquark
scattering matrix which contains the bound state poles
and may therefore be written as [1, 7]

M(P, p,q) = ∑
i

Γ[h](p,Pi)Γ̄[h](q,−Pi)

P2−P2
i

+ reg. terms,

(9)
with the indexi labeling the bound states in this channel,
andΓ̄[h] denoting the charge conjugation ofΓ[h] (see, e.g.,
[2]). Inserting Eqs. (8) and (9) in Eq. (7), we find

f (ih)Γ̃ (P2) =

∑
i

∫

d4p d4q
(2π)8 Tr[Γ̃Sa(p+)Γ[h](p,Pi)Sb(p−)]

×
Tr[Γ̄[h](q,−Pi)Sa(q+)Γ0Sb(q−)]

P2−P2
i

+ reg. terms. (10)

Thus, in order to obtainfΓ̃(P
2
i ), one has to divide the

residue off (ih)Γ̃ (P2) by the square root of the correspond-
ing residue of the projection on the inhomogeneous term,

f (ih)Γ0
(P2).
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FIGURE 2. The projectionf (ih)γµ (P2) defined in Eq. (7). The
line represents a pole fit to the data points, where the pole
positions were taken from the fit of Fig. 1.

In the case offv(P2
i ) the inhomogeneous term and the

current are identical,Γ0 ≡ Γ̃=Z2γµ . The decay constants
can therefore be calculated using only the residuesr i of

f (ih)γµ (P2), which are extracted from the pole fit shown in
Fig. 2, where the masses (5) are used as input. Compar-
ing Eqs. (10) and (6), we find

fv(P
2
i ) =

√

r i

3(−P2
i )

. (11)

PREDICTION FOR fρ ′

The resulting decay constants of theρ-meson and its first
radial excitation corresponding to the masses in (5) are

fρ = 0.213 GeV fρ ′ = 0.079 GeV, (12)

which perfectly agrees with the results from the corre-
sponding homogeneous BSE. To arrive at a concrete pre-
diction for the decay width of theρ ′ into e+e− we need
to investigate the sensitivity of these results to the char-
acteristic parameter of the model of Ref. [3]. Indeed, the
excited-state result exhibits a considerable dependence,
while for the ground state the results for bothm and f
are rather solid, i.e., a dependence is observed but small
(of the order of 2% form and 7% forf , see [4, 8, 9] for
in-depth information and a thorough discussion)

Here the important point is that one can use the sys-
tematic behavior of this dependence to determine both a
preferred parameter value or range for an ideal descrip-
tion in a phenomenological sense as well as to provide an
estimate of the systematic effects in the calculation. As
‘best parameter’ in our case we extractω = 0.5 GeV and
obtain

mρ = 0.762 GeV fρ = 0.218 GeV, (13)



for the ground state, which translates into a widthΓe+e−

of 6.92 keV. The PDG [10] quotes an experimental value
of 7.04±0.06 keV. For theρ ′ the experimental situation
is less clear: The PDG quote but don’t use two results of
the order of and smaller than 0.1 keV. Our excited-state
result corresponding to (13) lies in a range accessible to
us only via extrapolation techniques due to the analytic
structure of the quark propagator (see, e.g., [11] for
a discussion). However, we use extrapolations both in
model-parameter and momentum space to reduce the
uncertainty. We find forρ ′

fρ ′ = 0.095±0.039 GeV Γe+e− = 0.94±0.66 keV.
(14)

DISASSEMBLING fρ

To obtain further information on the structure of the
ρ-meson and its radial excitation, the contributions to
the decay constants from the different momentum scales
are investigated. Therefore, we solve in addition to the
inhomogeneous also the homogeneous BSE, from which
the decay constant can be calculated according to Eq. (6),
and define the densitydfv(p

2) via

fv(P
2
i ) =

(

1/
√

−P2
i

)

∫

dp2 dfv(p
2) . (15)

dfv(p
2) is plotted in Fig. 3 for the ground state and first

radial excitation of theρ-meson. The main contribu-
tions are centered in the mid-momentum regime around
p2 = 0.1 GeV2, and neither the UV nor the IR have a
strong influence. This supports [12], where it was shown
that fρ (among other quantities) is insensitive to the be-
havior of the effective interaction in the far infrared. The
same is true for the (perturbatively determined) UV do-
main. Therefore, an effective interaction, which neglects
this, quite naturally gives reliable results for the decay
constant as well, cf. [13].

We further note that the scale dependence of anal-
ogous projections has also been investigated in lattice
QCD [14].

CONCLUSIONS

We have demonstrated how the masses and decay con-
stants of theρ meson and its radial excitation can be cal-
culated from the inhomogeneous (vertex) Bethe-Salpeter
equation without using any information from the corre-
sponding homogeneous solutions, which is in contrast to
a previous study [15]. We have exemplified our method
via a reasonable result forfρ ′ .

Furthermore, we have investigated the contributions to
fρ and fρ ′ from different momentum scales, and found
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FIGURE 3. Plot of the densitydfv(p
2) for the vector ground

and excited states.

significant contributions from neither the far IR nor the
UV domain.
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