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Abstract. During the final moments of a binary black hole (BH) merger, the
gravitational wave (GW) luminosity of the system is greater than the combined
electromagnetic output of the entire observable universe. However, the extremely
weak coupling between GWs and ordinary matter makes these waves very difficult
to detect directly. Fortunately, the inspiraling BH system will interact strongly–on
a purely Newtonian level–with any surrounding material in the host galaxy, and
this matter can in turn produce unique electromagnetic (EM) signals detectable
at Earth. By identifying EM counterparts to GW sources, we will be able to
study the host environments of the merging BHs, in turn greatly expanding the
scientific yield of a mission like LISA.
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1. INTRODUCTION

Prompted by recent advances in numerical relativity (NR), there has been an increased
interest in the astrophysical implications of black hole (BH) mergers (see [1] for a
sample of related White Papers submitted to the recent Astro2010 Decadal Report).
Of particular interest is the possibility of a distinct, luminous electromagnetic (EM)
counterpart to a gravitational-wave (GW) signal. If such an EM counterpart could be

identified with a LISA‡ detection of a supermassive BH binary in the merging process,
then the host galaxy could likely be determined [2, 3, 4, 5]. Like the cosmological
beacons of gamma-ray bursts and quasars, merging BHs can teach us about relativity,
high-energy astrophysics, radiation hydrodynamics, dark energy, galaxy formation
and evolution, and even dark matter. A large variety of potential EM signatures have
recently been proposed, almost all of which require some significant amount of gas in
the near vicinity of the merging BHs. In this paper, we review the recent literature
on EM signatures, and propose a rough outline of the future work, both observational
and theoretical, that will be needed to fully realize the potential of GW astronomy.

2. DIVERSITY OF SOURCES

From a theoretical point of view, EM signatures can be categorized by the
physical mechanism responsible for the emission, namely stars, hot diffuse gas, or
circumbinary/accretion disks. In Figure 1, we show the diversity of these sources,
arranged according the spatial and time scales on which they occur.

It is important to note that, while the black holes themselves are of course
extremely relativistic objects, most of the observable effects occur on distance and
time scales that are solidly in the Newtonian regime. While one of the most interesting
NR results in recent years has been the prediction of large recoil velocities originating
from the final merger and ringdown of binary BHs [6], the astrophysical implications
of these large kicks are for the most part entirely Newtonian.

2.1. Stellar Signatures

On the largest scales, we have strong circumstantial evidence of supermassive BH
mergers at the centers of merging galaxies. From large optical surveys of interacting
galaxies out to redshifts of z ∼ 1, we can infer that 5 − 10% of massive galaxies are
merging at any given time, and the majority of galaxies with Mgal ∼> 1010M⊙ have
experienced a major merger in the past 3 Gyr [7, 8, 9, 10], with even higher merger
rates at redshifts z ∼ 1 − 3 [11]. At the same time, high-resolution observations of
nearby galactic nuclei find that every large galaxy hosts a SMBH in its center [12]. Yet
we see a remarkably small number of dual AGN [13, 14], and only one known source
with an actual binary system where the BHs are gravitationally bound to each other
[16]. Taken together, these observations strongly suggest that when galaxies merge,
the merger of their central SMBHs inevitably follows, and likely occurs on a relatively
short time scale, which would explain the apparent scarcity of binary BHs.

There is also indirect evidence for SMBH mergers in the stellar distributions
of galactic nuclei, with many elliptical galaxies showing light deficits (cores), which
correlate strongly with the central BH mass [17]. The cores are evidence of a history
of binary BHs that scour out the nuclear stars via three-body scattering [18, 19, 20],
or even post-merger relaxation of recoiling BHs [21, 22, 23, 24].



EM Counterparts to BH Mergers 3

−10   yr 9  10  yr9−10   yr  3  10  yr3  10  yr6−10   yr 6 0  yr

HCSSs

off−centered/
Doppler−shifted
quasars

suppressed
accretion

X−ray/UV/IR afterglows

delayed quasar 

106

103

100

10−3

10−6

galaxy mergers

galaxy cores (scouring) galaxy cores (recoil)

enhanced
accretion

variable
accretion

disks
circumbinary

R
(p

c)

time since merger

GRMHD

dual AGN

binary quasars

Bondi accretion

X−shaped
radio lobes

M−sigma

occup. fraction

diffuse gas

tidal disruption

Figure 1. Selection of potential EM signatures, sorted by timescale, typical size
of emission region, and physical mechanism (blue = stellar; yellow = accretion
disk; green = diffuse gas/miscellaneous).

While essentially all massive nearby galaxies appear to host central SMBHs,
it is quite possible that this is not the case at larger redshifts and smaller masses,
where major mergers could lead to the complete ejection of the final black hole via
large gravitational-wave recoils. By measuring the occupation fraction of BHs in
distant galaxies, one could infer merger rates and the distribution of kick velocities
[25, 26, 27, 28, 29]. The occupation fraction will of course also affect the LISA event
rates, especially at high redshift [30]. An indirect signature for kicked BHs could
potentially show up in the statistical properties of active galaxies, in particular in
the relative distribution of different classes of AGN in the “unified model” paradigm
[31, 32]. On a smaller scale, the presence of intermediate-mass BHs in globular clusters
also gives indirect evidence of their merger history [33].

Another EM signature of BH mergers comes from the population of stars that
remain bound to a recoiling black hole that gets ejected from a galactic nucleus
[34, 35, 36]. These stellar systems will appear similar to globular clusters, yet
with smaller spatial extent and much larger velocity dispersions, as the potential
is completely dominated by the central SMBH.

2.2. Gas Signatures: Accretion Disks

Gas in the form of accretion disks around single massive BHs is known to produce some
of the most luminous objects in the universe. However, very little is known about the
behavior of accretion disks around two BHs, particularly at late times in their inspiral
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evolution. In Newtonian systems, it is believed that a circumbinary accretion disk
will have a central gap of much lower density, either preventing accretion altogether,
or at least decreasing it significantly [37, 38, 39]. When including the evolution of the
binary due to GW losses, the BHs may also decouple from the disk at the point when
the GW inspiral time becomes shorter than the gaseous inflow time at the inner edge
of the disk [40]. This decoupling should effectively stop accretion onto the central
object until the gap can be filled on an inflow timescale. However, other semi-analytic
calculations predict an enhancement of accretion power as the evolving binary squeezes
the gas around the primary BH, leading to a rapid increase in luminosity shortly before
merger [41, 42].

Regardless of how the gas can or cannot reach the central BH region, a number
of recent papers have shown that if there is sufficient gas present, then an observable
EM signal is likely. Krolik [43] used analytic arguments to estimate a peak luminosity
comparable to that of the Eddington limit, independent of the detailed mechanisms for
shocking and heating the gas. Using relativistic magneto-hydrodynamic simulations in
2D, O’Neill et al [44] showed that the prompt mass loss due to GWs may actually lead
to a sudden decrease in luminosity following the merger, as the gas in the inner disk
temporarily has too much energy and angular momentum to accrete efficiently. Full
NR simulations of the final few orbits of a merging BH binary have now been carried
out including the presence of EM fields in a vacuum [45, 46, 47] and also gas, treated
as test particles in [48] and as an ideal fluid in [49] and [50]. The simulations including
matter all suggest that the gas can get shocked and heated to high temperatures, thus
leading to bright counterparts in the event that sufficient gas is in fact present in the
immediate vicinity of the merging BHs.

If the primary energy source for heating the gas is gravitational, then typical
efficiencies will be on the order of ∼ 1 − 10%, comparable to that expected for
standard accretion in AGN. However, if the merging BH binary is able to generate
strong magnetic fields [45, 46, 47], then highly relativistic jets may be launched
along the resulting BH spin axis, converting matter to energy with a Lorentz boost
factor of Γ ≫ 1. Even with purely hydrodynamic heating, particularly bright and
long-lasting afterglows may be produced in the case of very large recoil velocities,
which effectively can disrupt the entire disk, leading to strong shocks and dissipation
[51, 52, 53, 54, 55, 56, 57, 58, 59]. For systems that open up a gap in the circumbinary
disk, an EM signature may take the form of a quasar suddenly turning on as the gas
refills the gap, months to years after the BH merger [40, 60, 61].

For those systems that also received a large kick at the time of merger, we
may observe quasar activity for millions of years after, with the source displaced
from the galactic center, either spatially [62, 63, 64, 65, 66, 67] or spectroscopically
[68, 69, 70, 71]. However, large offsets between the redshifts of quasar emission lines
and their host galaxies have also been interpreted as evidence of pre-merger binary BHs
[72, 73, 74, 75] or due to the large relative velocities in merging galaxies [76, 77, 78, 79],
or “simply” extreme examples of the class of double-peaked emitters, where the line
offsets are generally attributed to the disk [80, 81, 82, 83, 84].

In addition to the many potential prompt and afterglow signals from merging
BHs, there has also been a significant amount of theoretical and observational work
focusing on the early precursors of mergers. Following the evolutionary trail from the
upper-left of Figure 1, we see that shortly after a galaxy merges, dual AGN may form
with typical separations of a few kpc [13, 14], sinking to the center of the merged
galaxy on a relatively short timescale (∼< 1 Gyr) due to dynamical friction [85]. This
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merger process is also expected to funnel a great deal of gas to the galactic center, in
turn triggering quasar activity [86, 87, 88, 89]. At separations of ∼ 1 pc, the BH binary
(now “hardened” into a gravitationally bound system) could stall, having depleted its
loss cone of stellar scattering and not yet reached the point of gravitational radiation
losses [90]. Gas dynamical drag from massive disks (Mdisk ≫ MBH) leads to a prompt
inspiral (∼ 1−10 Myr), in most cases able to reach sub-parsec separations, depending
on the resolution of the simulation [91, 92, 93, 94, 95, 96, 97].

At this point, a proper binary quasar is formed, with an orbital period of months
to decades, which could be identified by periodic accretion [98, 99, 100, 101] or red-
shifted broad emission lines as mentioned above [102, 103, 104]. Direct GW stresses
on the circumbinary disk might also lead to periodic variations in the light curve,
although with very small amplitude [105].

2.3. Gas Signatures: Diffuse Gas; “Other”

In addition to the many disk-related signatures, there are also a number of potential
EM counterparts that are caused by the accretion of diffuse gas in the galaxy. For
BHs that get significant kicks at the time of merger, we expect to see quasi-periodic
episodes of Bondi accretion as the BH oscillates through the gravitational potential of
the galaxy over millions of years, as well as off-center AGN activity [106, 107, 108, 109].
On larger spatial scales, the recoiling BH could also produce trails of overdensity in
the hot interstellar gas of elliptical galaxies [110]. In a similar way, rogue SMBHs
in gas-rich galaxies could leave trails of star formation in their wake [111]. It is even
possible that the same density enhancements could be detected via off-nucleus gamma-
ray emission from annihilating dark matter particles [112]. Also on kpc–Mpc scales,
X-shaped radio jets have been seen in a number of galaxies, which could possibly be
due to the merger and subsequent spin-flip of the central BHs [113].

Another potential source of EM counterparts comes not from diffuse gas, or
accretion disks, but the occasional capture and tidal disruption of normal stars by
the merging BHs. This tidal disruption, which also occurs in “normal” galaxies
[114, 115, 116], may be particularly easy to identify in off-center BHs following a large
recoil [34]. Tidal disruption rates may be strongly increased by the merger process
itself [117, 118, 119, 120], while the actual disruption signal may be truncated by the
pre-merger binary [121]. These events are likely to be seen by the dozen in coming
years with PanSTARRS and LSST [122]. In addition to the tidal disruption scenario,
in [120] we showed how gas or stars trapped at the stable Lagrange points in a BH
binary could evolve during inspiral and eventually lead to enhanced star formation,
ejected hyper-velocity stars, highly-shifted narrow emission lines, and short bursts of
Eddington-level accretion coincident with the BH merger.

A completely different type of EM counterpart can be seen in the radio. Namely,
nanosecond time delays in the arrival of pulses from millisecond radio pulsars is direct
evidence of extremely low-frequency (nano-Hertz) gravitational waves from massive
(∼> 108M⊙) BH binaries [123, 124, 125, 126, 127, 128, 129, 130]. By cross-correlating
the signals from multiple pulsars around the sky, we can effectively make use of a GW
detector the size of the entire galaxy.
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3. GAME PLAN

In the coming years, a number of theoretical and observational advances will be
required in order to fully realize the potential of GW/EM multi-messenger astronomy.
Some of the central questions that need to be answered include:

• What is the galaxy merger rate as a function of galaxy mass, mass ratio, gas
fraction, cluster environment, and redshift?

• What is the mass function and spin distribution of the central BHs in these
merging (and non-merging) galaxies?

• What is the central environment around the BHs, prior to merger?

– What is the quantity and quality (temperature, density, composition) of gas?
– What is the stellar distribution (age, mass function, metallicity)?
– What are the properties of the circumbinary disk?

• What is the time delay between galaxy merger and BH merger?

We have rough predictions for some of these questions from cosmological N-body
simulations, but the uncertainties and model dependencies are quite large. Similarly,
observational constraints are currently quite weak and often open to widely varying
interpretations.

3.1. Theory

With respect to the questions outlined above, improved cosmological simulations will
certainly help improve our estimates for galactic and BH merger rates, as well as the
gas environments expected in the central regions. Particularly promising are multi-
scale simulations that can zoom in on regions of interest, going to higher resolution and
more realistic physics closer to the BHs [131]. To model more accurately the interaction
between the circumbinary disk and the BHs, grid-based methods (as opposed to
smoothed particle hydrodynamics; SPH) will be necessary, especially at the inner
edge where steep density and pressure gradients are likely to be found. The accurate
treatment of this region is critical to understand the gas environment immediately
around the BHs at time of merger, and thus whether any bright EM signal is likely to
be produced.

The natural product of these (Newtonian) circumbinary MHD simulations would
be a set of reasonable initial conditions to be fed into the much more computationally
intensive NR codes that compute the final orbits and merger of the BHs, now including
matter and magnetic fields. The results of [45, 46, 47, 48, 49, 50] are extremely
impressive from a computational point of view, but their astrophysical relevance is
limited by our complete ignorance of the likely initial conditions. Even with perfect
knowledge of the initial conditions, the value of the MHD simulations is also limited
by the lack of radiation transport and accurate thermodynamics, which are only now
being incorporated into local Newtonian simulations of steady-state accretion disks
[132]. Significant future work will be required to incorporate the radiation transport
into a fully relativistic global framework, required not just for accurate modeling of
the dynamics, but also for the prediction of EM signatures that might be compared
directly with observations.
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3.2. Observations

Even with the launch of LISA a decade or more away, many of the EM counterparts
discussed above should be observable today, in some cases even giving unambiguous
evidence for merging BHs. On the largest distance and time scales, dual AGN

candidates can be identified with large spectroscopic surveys like SDSS§, then followed
up with high-resolution imaging and spectroscopy. Combined with surveys of galaxy
morphology and pairs, the distribution of dual AGN will help us test theories of
galactic merger rates as a function of mass and redshift, as well as the connection
between gas-rich mergers and AGN activity. Spectroscopic surveys should also be
able to identify many candidate binary AGN, which may be confirmed or ruled out
with subsequent observations over relatively short timescales (∼ 1−10 yrs), as the line-
of-site velocities to the BHs changes by an observable degree. Long-lived afterglows
could be discovered in existing multi-wavelength surveys, but successfully identifying
them as merger remnants as opposed to obscured AGN or other bright unresolved
sources would require improved pipeline analysis of literally millions of point sources,
as well as extensive follow-up observations.

Particularly promising as unambiguous examples of recoiling BHs would be the
measurement of large velocity dispersions in nearby (d ∼< 20 Mpc) globular clusters
[35]. With multi-object spectrometers on large ground-based telescopes, this is also
technically realistic in the immediate future. Perhaps the most exciting direction for
the coming decade of astronomy is in the time domain. Optical telescopes like PTF
and PanSTARRS are already taking data from huge areas of the sky with daily and
even hourly frequency. These time-domain surveys are ideally suited for looking for
variability from binary BH systems as precursors to merger. Especially promising
would be the detection of long-period variable AGN, ideally suited to extensive multi-
wavelength follow-up observations.
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