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Abstract. We give an update on our current project to determine the transition temperature and the order of the deconfinement
transition in the chiral limit of two flavour QCD. We use nonperturbatively ¢'(a) improved Wilson fermions of the
Sheikholeslami-Wohlert type, employing the efficient deflation accelerated DDHMC algorithm. We start at lattices with
N; > 12 and pion masses below 600 MeV, aiming at chiral and continuum limits with light quarks.
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INTRODUCTION

The transition from hadronic matter to the deconfined
state of free quarks and gluons is a prime subject of cur-
rent research in elementary particle physics. From the
theoretical point of view two of the most important ques-
tions concern the transition temperature and the order of
the transition at zero and finite chemical potential. In this
context the role of the related chiral symmetry restora-
tion is of special interest. A perturbative treatment of the
plasma at the transition temperature is not valid, thus lat-
tice QCD is the preferred tool to study the transition.

Most of the state-of-the-art simulations so far have
been performed using staggered fermions, having the ad-
vantage of being numerically cheap compared to other
fermion discretisations. Recent results with 2+1 flavours
of dynamical quarks can be found in refs. [1, 2]. How-
ever, there are conceptual problems concerning the stag-
gered approach to lattice QCD (see e.g. the discus-
sions in [3]) and a cross-check of the staggered results
is needed using other fermionic discretisations. Several
groups have already started to perform simulations with
O (a) improved Wilson fermions of the Sheikholeslami-
Wohlert type [4, 5] as well as with maximally twisted
mass [6]. All these simulations still suffer from unphys-
ically large pion masses and lack continuum extrapola-
tions.

In this proceedings article we give an update on the
results concerning our study of the Ny = 2 phase tran-
sition, using non-perturbatively &'(a)-improved Wilson
fermions, lattices with N; > 12 and pion masses lower
than 600 MeV. We aim to extract the transition temper-
ature and the order of the transition in the chiral limit,
which is still not settled until today. There are two sce-

narios [7, 8]: In the first scenario, the chiral critical line
in the {m, 4,ms, T }-parameter space never reaches the
my 4 = 0 axis, while the second one implies the exis-
tence of a tricritical point at m, 4 = 0, which extends into
the direction of finite chemical potential as a critical line.
With our Ny = 2 simulation, we therefore address a ques-
tion which is important for the enlarged phase diagram of
the Ny = 2+ 1 theory as well as on the phase diagram at
finite density.

SETUP OF THE SIMULATIONS

We employ two degenerate flavours of nonpertur-
batively €'(a) improved Wilson fermions, using the
Sheikholeslami-Wohlert lattice Dirac operator [9]
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Here Dy is the usual Wilson Dirac operator, k is the hop-
ping parameter, 0y, the totally antisymmetric tensor and
FHV the “clover leaf” representation of the gluonic field
strength tensor on the lattice. The clover coefficient csy
is tuned with 3, using the interpolation formula from
[10]. The simulations are generated using the deflation
accelerated DDHMC algorithm, introduced by Liischer
[11]. This algorithm is also used intensively in the con-
text of the CLS effort [12] for simulations at zero tem-
perature [13, 14].

To scan the temperature, we vary the lattice spacing a
via the bare lattice coupling 3, which is connected to the
temperature by 7' = 1/[N; a()]. This method enables us
to get a fine resolution around the critical temperature,
in contrast to the fixed scale approach, and to use the
modified Multi-Histogram method as introduced in [15].



TABLE 1.

Run parameters for scans A and B. We show the DDHMC block size, the Monte Carlo

time 7 of the trajectories, the measurement frequency fi.qs and the integrated autocorrelation time

Tine Of the plaquette P.

scan | Lattice  Block size K B-range T Tu[P]  fmeas  Statistic
A | 12x243 6* 0.13595 5.270-5.320 2.0 ©(30) 1 ©(25000)
B | 16x323 g+ 0.13650 5.400—-5.575 2.0 ©(10) 2 ©(5000)
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FIGURE 1. Plot of the results for the Polyakov loop suszep-

tibility of scan A.

The scale is set after the determination of the critical
coupling . by an additional run at 7 = 0.

To investigate the properties of the finite temperature
transition we look at the behaviour of the average pla-
quette (P), the real part of the Polyakov loop Re [(L)] and
the chiral condensate (Yy). We also find it beneficial to
compute the Polyakov loop in an APE-smeared version
since the smearing leads to a more pronounced signal for
the phase transition, as already observed in [16].

We define the generalised susceptibilities x (O) by

20)=N? ((0%) = (0)?), @

where O is any of the observables above and N the spa-
tial lattice size. These generalised susceptibilities should
show a notable peak at the transition point. In addition,
the behaviour of the peak under a change in the spatial
volume is governed by the corresponding critical expo-
nents, encoding information about the order of the tran-
sition.

SIMULATION RESULTS

So far our simulations where done on two different lat-
tices, with simulation parameters as listed in table 1.
Scan A was designed as a test run for the algorithm and
the measurement routines at 7 # 0. We therefore set the
hopping parameter k to the critical value where the phase
transition occurs for the real part of the Polyakov loop
at the lattice with 3 = 5.29 of [4]. We show the signal

of the Polyakov loop susceptibility in figure 1. The data
is consistent with a phase transition at 8, = 5.301(3),
where we see a strong increase in the signal and a peak
in the susceptibility. The resulting transition temperature
is slightly higher than the one obtained in [4], but mainly
consistent when we take into account that at a pion mass
of roughly 600 MeV the transition is hardly a sharp phase
transition but a broad crossover. For more details see
[15].

Scan B is our first scan at a somewhat lighter pion
mass and N, = 16. We show the behaviour of Re [(L)]
together with the smeared version Re[(L),, ], and the
susceptibility of the latter in figure 2. Compared to [15]
we enhanced the resolution around the transition point
and increased statistics. At the right of figure 2 we also
show a Gaussian fit to 5 points around the transition
point, from which we obtain the peak position to be
B. = 5.499(2). The value of y2/d.o.f. is around 1 for
the fit. Fortunately there already exists a run for 7' = 0
with parameters 3 = 5.50 and ¥ = 0.13650 [14], leading
to a transition temperature in physical units of roughly
T.(mz = 510MeV,a = 0.053fm) ~ 233 MeV. The deter-
mination of the scale is still in progress and thus the esti-
mate of 7, in physical units must be considered prelimi-
nary. Indeed the new scale determination in [14] changed
the temperature by around 10% compared to [15]. There-
fore one should keep in mind that the systematic error
might still be large. The peak in the susceptibility of the
Polyakov loop is reproduced by the other observables as
well and we show the behaviour of the susceptibility of
the plaquette in figure 3. It is important to note that the
susceptibility of the plaquette shows a general decrease
due to the behaviour of the corresponding expectation
value.

CONCLUSIONS AND OUTLOOK

In this proceedings article, we give an update of our effort
to obtain the QCD deconfinement transition temperature
for two dynamical flavours in the chiral limit. Compared
to [15], we have refined the resolution of scan B around
the transition point and enlarged statistics. The new scale
determination in [14] changed the transition temperature
for scan B to 233 MeV, which is of the order of the transi-
tion temperatures from the twisted mass simulations [6]
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FIGURE 2. Plot of the results for scan B. Left: Real part of the Polyakov loop in the unsmeared and APE-smeared version. The
smeared results are rescaled such that we could show them in a single plot. Right: The susceptibility of the APE-smeared Polyakov
loop, together with a gaussian fit to the points around the peak position.
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FIGURE 3. The susceptibility of the plaquette from scan B.

at comparable physical pion mass. The peak in the sus-
ceptibilities is reproduced by all observables, as shown
for the example of the plaquette in figure 3.

Currently we extend scan B to obtain a finer resolution
around the peak and to employ the Multi-Histogram
method discussed in [15]. In addition we enlarge the set
of scans at N; = 16 to lighter pion masses and larger
volumes.
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