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1. Introduction

The free parameters of QCD can be fixed by matching a corrdgppmumber of hadronic
observables at low energies. Then, predictions can in ipienbe made for any other observable
both at low and high energies. A quantity of particular iatris the strong coupling constami
A commonly used reference value is &S coupling of dimensional regularisation at the scale of
the Z-boson mass. This poses a particular challenge for thedafbrmulation, due to the large
scale differences involved, which cannot be accommodategresently affordable lattices. This
difficulty can be overcome by using finite size techniqUé<g[1, The essential ingredient is the
non-perturbative definition of a running couplirg(L), which runs with the linear extett of the
space-time volume. The Schrddinger functional providesméwork for such a definition, where
g(L) is defined through the response of the system to a constamircelectric background field.
See [B] for a detailed explanation anfl [4] for the definitiéthe SF for QCD both in the continuum
and on the lattice with Wilson quarks.

Within this framework, the step scaling function, (SSFays a fundamental role. It can be
regarded as a discretised version of the Callan and Symgnizilaction, and can be used to study
the evolution ofg(L) with energy. Such studies have been carried out for diffenembers of
flavours [2,[b£P]. We present here the step scaling functi@hthe running coupling with four
flavours of staggered quarks. [ [9] an analogous work usifa {hproved Wilson quarks was
presented. The agreement of the results in the continuurhdan thus be regarded as a test of
universality.

This write-up is organised as follows. Section 2 reviewstasics of the SF on the lattice with
staggered fermions, gives a definition for the renormaliseding coupling, and revisits the basics
on finite size techniques. In section 3, théa@improvement for our setup is revisited. Section 4
presents the details of the simulations and the data amalirsisection 5, we present our results
and we finish with an outlook to future work.

2. Schrédinger functional, coupling constant and finite sie techniques

The SF is a useful tool to study the scaling properties of QBEre we will introduce it
briefly. See[[B[|¥[J0F12] for more details afjd][13} 15] for sle¢ up of the SF with staggered
fermions. It can be regarded as the Euclidean time evollgonel for going from a state at time
Xo = 0 to another state at timg = T. Using the transfer matrix formalism, it can be expressed as
a path integral with fields satisfying periodic boundaryditions in space and Dirichlet boundary
conditions in time. Homogeneous boundary conditions aposad on the fermionic fields,

Pyl _o=0=0P | ., Pyl _=0=0¢P]| (2.1)
with Py = %(1i o) and the spatial components of the gluon fields satisfy,
A(X) \XO:O =C, Ac(X) \XO:T =Cp. (2.2)
The SF is then a functional of these boundary fields,
#[C'.C] = / A, @, fle SAV0]. 2.3)

The choice of the boundary fields is largely arbitrary. Relfm [§] we choose Abelian and spa-
tially constant fields such that the absolute minimum of tbioa is unique up to gauge trans-
formations. A judicious choice of the boundary fields ensutet the absolute minimum of the
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action is unique up to gauge transformations and yieldsldaitite artefacts in the renormalised
coupling.
2.1 Definition of the coupling constant

The SF allows us to define a renormalised coupling consiamon-perturbatively, easily
computable on the lattice and in perturbation theory andh weasonably small lattice artifacts.
Since the induced background field is unique, it is possiblenambiguosly define the effective

action of the SF, i.e., F(B]=—In ff[C,C’]. (2.4)
The boundary fields are parametrised by the staadn, v, two dimensionless real parameters
[B]- A renormalised coupling can be defined through,

or [aro/ar]]r’:o
-2 = 2= 2.5

0!’] n=v=0 g_Z(L) ( )
g?(L) is going to run with the spatial box sizewhich plays the role of the scale. The normalisation
constant is chosen so that the renormalised coupling c@aavith the bare coupling at tree level

in the perturbative expansion.

I—/

2.2 SF with staggered fermions

The SF with staggered fermions requires lattices whereithe éxtentT /a is odd and the
spatial extent/a is even. [IB[T4]. This is illustrated in figu[é 1 in a two dirs@mal sketch,
as well as one possible reconstruction of the staggeredidesm See[[16] for a more detailed
description on the fermionic reconstruction. The contmuimit for g2 is usually taken setting
T = L already for finite values of. In order to define the continuum limit in our case, we are
obliged to adopt modified conventiong, J[15]. Lattices with= L +a are interpreted as having
physical time extenT’ = T + sawith s= 41, so that the conditiom’ = L provides us with 2
regularisations to our problem. This modification forcetousave the Qa) improvement revisited.
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Figure 1. SF with staggered fermions, 2-dimensional sketch. L®f L+ aright, T =L —a. Thin (green) lines
represent the lattice where the one-component staggeraifes live, thick (orange) lines represent the effectattide
for the reconstructed fermions and the brown dots stanchéosites where the reconstructed fermions live.

2.3 Finite size techniques

We want to compute the scale evolution of the renormaliseghlony. We introduce then the
step scaling function in the continuum theory,

o(u) =G (2L)|,_zq) (2.6)
On the lattice, it can be obtained as the continuum extrépalérom a sequence of pairs of lattices
with sizesL /aand 2./a,
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o(u)= IimOZ(u, a/L). (2.7)
a—
The procedure is repeated for a range @alues ing%(Lmin), 92 (Lmax)],
Uo = 0%(Lmin), U= 0(U-1)=0%(2Lmin), k=1,2... (2.8)

After 7, 8 steps, energy differences ofXD0) are bridged. At sufficiently large energies, perturba-
tion theory can be applied to relate the SF coupliigl) with a perturbatively defined coupling,
e.g. 9%‘ At low energies, the connection with physical units can &taldished through the com-
putation of a hadronic quantity, e.¢xLmax

3. O(a) improvement

Due to computer power limitations it is advisable to constan action that is @v) improved
so that the dominating lattice artifacts are cancelled.lolahg Symanzik’s improvement pro-
gramme [1J7] this can be done by adding irrelevant local ceetms to the action, monitored by
adjustable coefficients. These coefficients admit an expans perturbation theory. In the SF
framework additionally to the volume counterterms thenstdsoundary counterterms.

We want our observabld,’ to be Qia) improved up to one loop in perturbation theory. The
action is taken to be

SU, X, x| = $U]+StU, X, X],

SlU = %zw<p>tr{1—u<p>}, (3.1)
SU.x.x) = & z S o= M OOK00 ApUn(0X (x-+aft) — A4;U(x— at)X (x— )]
axu

where the sum over the gauge fields runs over all the orieféegigttesp andw(p) are weight fac-
tors that take the value 1 except for the boundary plaquettesre they take the valueg go) for
the time-like plaquettes attached to the boundaries%a:g(@o) for the spatial plaquettes. Concern-
ing the fermionic party, x represent the one-component fermionic fields, homogensmwusdary
conditions have been assumed for the fermions, a constaatﬂ{ﬂa\ctoﬁ\u1 has been included, and
Ny = (—1)2v<n */2 gre the usual phase factors of the staggered fermions.

There are no ) effects arising from the bulk, so that the staggered SFueilD@) improved
by including a couple of boundary counterterms. The onlyemauge counterterm relevant in our
context takes the form,

© (10)s

@)t {FoFox},  (08) = 6% + g3(ct™¥ + Nect™*) + O(gd), (3.2)

where the superscrig= +1 stands for the two possible regularisations. The coeffiisiabove
have been calculated for our set up obtaining,

0 2 d%P=002742), oYt = 0.00778564),

iy 3.3
2+s %Y1= _046366), c*t=-002668). (3:3)

Concerning the fermionic part, there is also a boundary tssterm which, in terms of the single-
component fields, takes the forfn]16],

1\We have chosehg = 1,4, = €% = 5. It leads to a smaller condition number of the free fermorr'm{a@].
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[ds( (d) - %{krlk X) [AUk (X X)X (x+ ak) —AHUZ(X_aR)X(X—aR)] }XO:a

(3.4)

6(68) — 1] 3 { 0K 0 MUK Oc+ak) ~ AU alx (xR

The tree level value ail” was found to bell” = 1+ A I

4. Simulations and data analysis

In order to carry out our computations, we have made use o$taiclised version of the code
offered by the MILC collaboration[[19], where the(& improvement presented in the previous
section was implemented. The simulations have been rumtfiicd sized /a=4,6,8,12 16 and
s= +1. The statistics range from 60,000 measurements to 16@B6Quantity v,[]2] has also
been measured). The data analysis has been performed gy Wsier r . m[RQ].

Instead of tuning the values @ = 2Nc/gg for differentL/a so that they correspond to the
same value of the renormalised coupling, we have followedptiocedure proposed ifi [21]. We
measureg’(L) for a set of valueg,L/a and generate an interpolating function. This function is
then used to tung. The interpolation function takes the form,

s () )

The data have been fitted by making use of the least squaré®dnethe interpolated data
inherit two sources of errors, statistical and systematic.

5. Results

Since we have two regularisations at our disposal, it isiplesgo perform an analysis of the
lattice artifacts of our data. A line of constant physics éfined by the coupling in one regulari-
sation and we evaluate the coupling for the other regulémisat the same values @f. One-loop
perturbative cutoff effects can be subtracted, by defirtiregauantity,

uY = uy x [1+u¢(mf—mf)]71, (5.1)

wheremf is the coefficient in the perturbative expansigfg,:_g% + mfgg and+ stands fos=+1

In Figure[2 we show the lattice artifacts farandu®. We have also measured the continuum
extrapolation of the step scaling function. If we choose mwilarisation to fix the physics, the
lattice step scaling function can be computed in the twolalvks regularisations. The continuum
limit has to be shared. Perturbative effects can be subttabty definingigl),

Z(u,a/L) _ Z(ua/l)-o(u) _ 2 3
D(u,a/L) = APV 0= 1) =d(a/L)u+ &(a/L)u“+0(w”).  (5.2)
In figure[3 we can see the continuum extrapolation for someunflata. The fit has been done in
the following way,

¥1(Us,a/L) = Omixed(Us) +A1(a/L)%,  Z_1(Us,a/L) = Omixed(Us) +A2(a/L)?,  (5.3)

wheres stands for the regularisation chosen to fix the physics. Theas performed excluding the
data forL /a = 4. An analogous fit was done f@‘ﬂ(us, a/L).

We interpolate the data of the continuum extrapolatiow @f). In Figure[}} we present such
interpolation, plottings (u) /u vsu, together with the perturbative approximations to 1,2 atabf
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Cont.ext. of g2(a/Ls =-1) at fixed u = g2(a/L,1) Cont.ext. of g%(a/Ls =1) at fixed u = g2(a/L,-1)
sl - - ‘ T - - m S - - T - R
v p— 1=3.4068 -
! - b
g N
< o
3 e ~
e -
- R _
5r ~
25t M -
— hiN 1 — o-
— - N _
e g <. ey s
- - __ e ~
= 2 —-— &) P |
) TTe-e & e
T ) & =3.2645
180 00 | Vo -
3t
e -
150 u=1.441 o-----TITTT
Vo= e
g @777779,___7777777777877 b & N
A
=1.023
1w B SR S e e e e g - I mmTALTEG %004
- et P — Y Lo o .
- P,
05 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
(a/Ly? (a/L)?

Figure 2: Analysis of the lattice artifacts of our system. Diamoncu@)lpoints are the values gf(L/a). Dashed
lines correspond to the fit to these data and asterisks (grésncontinuum extrapolation. Circles, (magenta) are the
values for the same data after performing the perturbatitraction, and the dotted lines their fits. Squares (orange
represent their continuum limit (displaced from the or)giThe solid horizontal (red) lines are the lines of constant
physics, given also by a (red) triangle slightly displacexhf the origin.L/a = 4 are not included.
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Figure 3: Continuum limit extrapolation of the step scaling functi@iamond (blue) points are the values of the step
scaling function using data from the same regularisatiahtha dashed lines represent the fits. Circles (red) represen
the lattice step scaling function taking data from two regshtions and the solid lines their fits. Asterisks (magpgnt
are the continuum extrapolatioogu) of the lattice step scaling function. The renormalisaticespriptions, (values of

u) are explicitly given in the plots. The graph on the rightrespond to the regularisatian= 1 and the one on the left
tos=—1.

in PT. Our fit function was a polynomial of degree 6 where thst fioefficients where set to the
perturbative coefficients up to 2 loop [12] in PT. The values@sponding to the largest couplings
were not included in the fits. In the plot, we show the resulitaimed from the two different
regularisations. They are correlated and therefore theyoabe simultaneously used in a fit. The

differences between the two can be regarded as systemalis.er

6. Conclusions and outlook

We have computed the SSF of the QCD coupling in the SF schethellavours of massless
staggered quarks. Unfortunately, the discretisationrgwme fairly large. Some more effort will be
put into the data analysis, and theparameter still needs to be computed. The results are irhroug
agreement with data obtained with Wilson quaiffts [9], buttaitéel comparison is still needed.

6
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Figure 4: Step scaling functioro(u). The dotted-dashed (red), dashed (blue) and solid (magkmés represent
the perturbative 1-loop, 2-loop and 3-loorfu). Diamonds (red) represent the extrapolatgd) from thes= 1 reg-
ularisation and circles (green) from tee= —1. Their fits (largest value excluded) are given by the sdiidkt (black)
lines.
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