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1. Introduction

The free parameters of QCD can be fixed by matching a corresponding number of hadronic
observables at low energies. Then, predictions can in principle be made for any other observable
both at low and high energies. A quantity of particular interest is the strong coupling constantαs.
A commonly used reference value is theMS coupling of dimensional regularisation at the scale of
the Z-boson mass. This poses a particular challenge for the lattice formulation, due to the large
scale differences involved, which cannot be accommodated on presently affordable lattices. This
difficulty can be overcome by using finite size techniques [1,2]. The essential ingredient is the
non-perturbative definition of a running coupling, ¯g(L), which runs with the linear extentL of the
space-time volume. The Schrödinger functional provides a framework for such a definition, where
ḡ(L) is defined through the response of the system to a constant colour electric background field.
See [3] for a detailed explanation and [4] for the definition of the SF for QCD both in the continuum
and on the lattice with Wilson quarks.

Within this framework, the step scaling function, (SSF), plays a fundamental role. It can be
regarded as a discretised version of the Callan and Symanzikβ function, and can be used to study
the evolution of ¯g(L) with energy. Such studies have been carried out for different numbers of
flavours [2, 5 – 9]. We present here the step scaling function and the running coupling with four
flavours of staggered quarks. In [9] an analogous work using O(a) improved Wilson quarks was
presented. The agreement of the results in the continuum limit can thus be regarded as a test of
universality.

This write-up is organised as follows. Section 2 reviews thebasics of the SF on the lattice with
staggered fermions, gives a definition for the renormalisedrunning coupling, and revisits the basics
on finite size techniques. In section 3, the O(a) improvement for our setup is revisited. Section 4
presents the details of the simulations and the data analysis. In section 5, we present our results
and we finish with an outlook to future work.

2. Schrödinger functional, coupling constant and finite size techniques

The SF is a useful tool to study the scaling properties of QCD.Here we will introduce it
briefly. See [3, 4, 10 – 12] for more details and [13 – 15] for theset up of the SF with staggered
fermions. It can be regarded as the Euclidean time evolutionkernel for going from a state at time
x0 = 0 to another state at timex0 = T. Using the transfer matrix formalism, it can be expressed as
a path integral with fields satisfying periodic boundary conditions in space and Dirichlet boundary
conditions in time. Homogeneous boundary conditions are imposed on the fermionic fields,

P+ψ
∣

∣

x0=0 = 0= ψ̄P+
∣

∣

x0=T , P−ψ
∣

∣

x0=T = 0= ψ̄P−
∣

∣

x0=0, (2.1)

with P± = 1
2(1± γ0) and the spatial components of the gluon fields satisfy,

Ak(x)
∣

∣

x0=0 =Ck, Ak(x)
∣

∣

x0=T =C′
k. (2.2)

The SF is then a functional of these boundary fields,

Z [C′,C] =
∫

D [A,ψ , ψ̄ ]e−S[A,ψ ,ψ̄]. (2.3)

The choice of the boundary fields is largely arbitrary. Following [3] we choose Abelian and spa-
tially constant fields such that the absolute minimum of the action is unique up to gauge trans-
formations. A judicious choice of the boundary fields ensures that the absolute minimum of the
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action is unique up to gauge transformations and yields small lattice artefacts in the renormalised
coupling.

2.1 Definition of the coupling constant

The SF allows us to define a renormalised coupling constant ¯g2 non-perturbatively, easily
computable on the lattice and in perturbation theory and with reasonably small lattice artifacts.
Since the induced background field is unique, it is possible to unambiguosly define the effective
action of the SF, i.e., Γ[B] =− lnZ [C,C′]. (2.4)

The boundary fields are parametrised by the scaleL andη ,ν , two dimensionless real parameters
[5]. A renormalised coupling can be defined through,

Γ′ =
∂Γ
∂η

∣

∣

∣

∣

η=ν=0
=

[∂Γ0/∂η ]η=0

ḡ2(L)
, (2.5)

ḡ2(L) is going to run with the spatial box sizeL which plays the role of the scale. The normalisation
constant is chosen so that the renormalised coupling coincides with the bare coupling at tree level
in the perturbative expansion.

2.2 SF with staggered fermions

The SF with staggered fermions requires lattices where the time extentT/a is odd and the
spatial extentL/a is even. [13, 14]. This is illustrated in figure 1 in a two dimensional sketch,
as well as one possible reconstruction of the staggered fermions. See [16] for a more detailed
description on the fermionic reconstruction. The continuum limit for ḡ2 is usually taken setting
T = L already for finite values ofa. In order to define the continuum limit in our case, we are
obliged to adopt modified conventions, [15]. Lattices withT = L± a are interpreted as having
physical time extentT ′ = T + sa with s= ±1, so that the conditionT ′ = L provides us with 2
regularisations to our problem. This modification forces usto have the O(a) improvement revisited.

b b b

b b b
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b b b
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Figure 1: SF with staggered fermions, 2-dimensional sketch. Left,T = L+a right, T = L−a. Thin (green) lines
represent the lattice where the one-component staggered fermions live, thick (orange) lines represent the effective lattice
for the reconstructed fermions and the brown dots stand for the sites where the reconstructed fermions live.

2.3 Finite size techniques

We want to compute the scale evolution of the renormalised coupling. We introduce then the
step scaling function in the continuum theory,

σ(u) = ḡ2(2L)
∣

∣

u=ḡ2(L). (2.6)

On the lattice, it can be obtained as the continuum extrapolation from a sequence of pairs of lattices
with sizesL/a and 2L/a,
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σ(u) = lim
a→0

Σ(u,a/L). (2.7)

The procedure is repeated for a range ofu values in[ḡ2(Lmin), ḡ2(Lmax)],

u0 = ḡ2(Lmin), uk = σ(uk−1) = ḡ2(2kLmin), k= 1,2. . . (2.8)

After 7, 8 steps, energy differences of O(100) are bridged. At sufficiently large energies, perturba-
tion theory can be applied to relate the SF coupling ¯g2(L) with a perturbatively defined coupling,
e.g. ḡ2

MS
. At low energies, the connection with physical units can be established through the com-

putation of a hadronic quantity, e.g.,FπLmax.

3. O(a) improvement

Due to computer power limitations it is advisable to construct an action that is O(a) improved
so that the dominating lattice artifacts are cancelled. Following Symanzik’s improvement pro-
gramme [17] this can be done by adding irrelevant local counterterms to the action, monitored by
adjustable coefficients. These coefficients admit an expansion in perturbation theory. In the SF
framework additionally to the volume counterterms there exist boundary counterterms.

We want our observable,Γ′ to be O(a) improved up to one loop in perturbation theory. The
action is taken to be

S[U,χ , χ̄ ] = Sg[U ]+Sf [U,χ , χ̄ ],

Sg[U ] =
1

g2
0
∑
p

w(p)tr {1−U(p)} , (3.1)

Sf [U,χ , χ̄ ] = a4
T−a

∑
x0=a

∑
x,µ

1
2a

ηµ(x)χ̄(x)
[

λµUµ(x)χ(x+aµ̂)−λ ∗
µUµ(x−aµ̂)χ(x−aµ̂)

]

,

where the sum over the gauge fields runs over all the oriented plaquettesp andw(p) are weight fac-
tors that take the value 1 except for the boundary plaquettes, where they take the valuesct(g0) for
the time-like plaquettes attached to the boundaries and1

2cs(g0) for the spatial plaquettes. Concern-
ing the fermionic part,̄χ ,χ represent the one-component fermionic fields, homogeneousboundary
conditions have been assumed for the fermions, a constant phase factorλµ

1 has been included, and
ηµ = (−1)∑ν<µ xν/a are the usual phase factors of the staggered fermions.

There are no O(a) effects arising from the bulk, so that the staggered SF willbe O(a) improved
by including a couple of boundary counterterms. The only pure gauge counterterm relevant in our
context takes the form,

cs
t (g

2
0)tr{F0kF0k}, cs

t (g
2
0) = c(0)s

t +g2
0(c

(1,0)s
t +Nf c

(1,1)s
t )+O(g2

0), (3.2)

where the superscripts= ±1 stands for the two possible regularisations. The coefficients above
have been calculated for our set up obtaining,

c(0)s
t =

2
2+s

,
c(0,1)1

t = 0.0274(2), c(1,1)1
t = 0.0077856(4),

c(0,1)−1
t =−0.4636(6), c(1,1)−1

t =−0.0266(8).
(3.3)

Concerning the fermionic part, there is also a boundary counterterm which, in terms of the single-
component fields, takes the form [16],

1We have chosenλ0 = 1,λk = eiθk = ei π
5 . It leads to a smaller condition number of the free fermon matrix [11].

4



4-flavour running coupling Paula Perez Rubio,

[

ds(g
2
0)−1

]

∑
x,k

{

1
2aηk(x)χ̄(x)

[

λkUk(x)χ(x+ak̂)−λµU†
µ(x−ak̂)χ(x−ak̂)

]}

x0=a

[

ds(g
2
0)−1

]

∑
x,k

{

1
2aηk(x)χ̄(x)

[

λkUk(x)χ(x+ak̂)−λµU†
µ(x−ak̂)χ(x−ak̂)

]}

x0=T−a
(3.4)

The tree level value ofd(0)
s was found to bed(0)

s = 1+ s
4 [18].

4. Simulations and data analysis

In order to carry out our computations, we have made use of a customised version of the code
offered by the MILC collaboration [19], where the O(a) improvement presented in the previous
section was implemented. The simulations have been run for lattice sizesL/a= 4,6,8,12,16 and
s= ±1. The statistics range from 60,000 measurements to 160,000(the quantity v̄, [2] has also
been measured). The data analysis has been performed by using Uwerr.m [20].

Instead of tuning the values ofβ = 2Nc/g2
0 for different L/a so that they correspond to the

same value of the renormalised coupling, we have followed the procedure proposed in [21]. We
measure ¯g2(L) for a set of valuesβ ,L/a and generate an interpolating function. This function is
then used to tuneβ . The interpolation function takes the form,

1
ḡ2(β ,L/a)

=
β
2N

+
r

∑
i=1

xi

(

2N
β

)i−1

. (4.1)

The data have been fitted by making use of the least squares method. The interpolated data
inherit two sources of errors, statistical and systematic.

5. Results

Since we have two regularisations at our disposal, it is possible to perform an analysis of the
lattice artifacts of our data. A line of constant physics is defined by the coupling in one regulari-
sation and we evaluate the coupling for the other regularisation at the same values ofβ . One-loop
perturbative cutoff effects can be subtracted, by defining the quantity,

u(1)± = u±×
[

1+u∓(m
±
1 −m∓

1 )
]−1

, (5.1)

wherem±
1 is the coefficient in the perturbative expansion, ¯g2

± = g2
0+m±

1 g4
0 and± stands fors=±1

In Figure 2 we show the lattice artifacts foru andu(1). We have also measured the continuum
extrapolation of the step scaling function. If we choose oneregularisation to fix the physics, the
lattice step scaling function can be computed in the two available regularisations. The continuum
limit has to be shared. Perturbative effects can be subtracted, by definingΣ(1)

s ,

Σ(1)(u,a/L) =
Σ(u,a/L)

1+δ1(a/L)u
, δ = Σ(u,a/L)−σ(u)

σ(u) = δ1(a/L)u+δ2(a/L)u2+O(u3). (5.2)

In figure 3 we can see the continuum extrapolation for some of our data. The fit has been done in
the following way,

Σ1(us,a/L) = σmixed(us)+A1(a/L)2, Σ−1(us,a/L) = σmixed(us)+A2(a/L)2, (5.3)

wheresstands for the regularisation chosen to fix the physics. The fit was performed excluding the
data forL/a= 4. An analogous fit was done forΣ(1)

±1(us,a/L).
We interpolate the data of the continuum extrapolation ofσ(u). In Figure 4 we present such

interpolation, plottingσ(u)/u vsu, together with the perturbative approximations to 1,2 and 3loop
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ḡ
2
(a

/L
,-

1
)
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Figure 2: Analysis of the lattice artifacts of our system. Diamond (blue) points are the values of ¯g2(L/a). Dashed
lines correspond to the fit to these data and asterisks (green), the continuum extrapolation. Circles, (magenta) are the
values for the same data after performing the perturbative subtraction, and the dotted lines their fits. Squares (orange)
represent their continuum limit (displaced from the origin). The solid horizontal (red) lines are the lines of constant
physics, given also by a (red) triangle slightly displaced from the origin.L/a= 4 are not included.
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Figure 3: Continuum limit extrapolation of the step scaling function. Diamond (blue) points are the values of the step
scaling function using data from the same regularisation and the dashed lines represent the fits. Circles (red) represent
the lattice step scaling function taking data from two regularisations and the solid lines their fits. Asterisks (magenta)
are the continuum extrapolationsσ(u) of the lattice step scaling function. The renormalisation prescriptions, (values of
u) are explicitly given in the plots. The graph on the right correspond to the regularisations= 1 and the one on the left
to s=−1.

in PT. Our fit function was a polynomial of degree 6 where the first coefficients where set to the
perturbative coefficients up to 2 loop [12] in PT. The values corresponding to the largest couplings
were not included in the fits. In the plot, we show the results obtained from the two different
regularisations. They are correlated and therefore they can not be simultaneously used in a fit. The
differences between the two can be regarded as systematic errors.

6. Conclusions and outlook

We have computed the SSF of the QCD coupling in the SF scheme with 4 flavours of massless
staggered quarks. Unfortunately, the discretisation errors are fairly large. Some more effort will be
put into the data analysis, and theΛ parameter still needs to be computed. The results are in rough
agreement with data obtained with Wilson quarks [9], but a detailed comparison is still needed.
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Figure 4: Step scaling functionσ(u). The dotted-dashed (red), dashed (blue) and solid (magenta) lines represent
the perturbative 1-loop, 2-loop and 3-loopσ(u). Diamonds (red) represent the extrapolatedσ(u) from thes= 1 reg-
ularisation and circles (green) from thes= −1. Their fits (largest value excluded) are given by the solid thick (black)
lines.
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