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We show that a purely s-wave interaction in three dimensions (3D) can induce higher partial-
wave resonances in mixed dimensions. We develop two-body scattering theories in all three cases of
0D-3D, 1D-3D, and 2D-3D mixtures and determine the positions of higher partial-wave resonances
in terms of the 3D s-wave scattering length assuming a harmonic confinement potential. We also
compute the low-energy scattering parameters in the p-wave channel (scattering volume and effective
momentum) that are necessary for the low-energy effective theory of the p-wave resonance. We point
out that some of the resonances observed in the Florence group experiment [Phys. Rev. Lett. 104,
153202 (2010)] can be interpreted as the p-wave resonances in the 2D-3D mixed dimensions. Our
study paves the way for a variety of physics, such as Anderson localization of matter waves under
p-wave resonant scatterers.

PACS numbers: 34.50.-s

I. INTRODUCTION

Scattering resonances play a central role in cold-atom
physics [1]. In particular, s-wave Feshbach resonances
induced by a magnetic field have been utilized to control
the atom-atom interaction and have led to experimental
realization of a rich variety of physics, such as the BCS-
BEC crossover in Fermi gases [2–4]. Although a p-wave
analog of the BCS-BEC crossover has been predicted the-
oretically [5–9] and p-wave and higher partial-wave res-
onances have been observed experimentally [1, 10–19],
p-wave superfluids have not been realized in cold-atom
experiments so far. This is because Fermi gases in the
vicinity of the p-wave Feshbach resonances are unstable
owing to inelastic collisions decaying into deeply bound
dimers and do not reach their equilibrium within their
short lifetime [20, 21]. In contrast, Fermi gases in the
vicinity of the s-wave Feshbach resonances are long lived
because such inelastic collisions are strongly suppressed
by the Pauli exclusion principle [22].

In this paper, we propose a way to induce p-wave and
higher partial-wave resonances from the s-wave Feshbach
resonance only. This can be achieved by using a mix-
ture of two atomic species A and B in mixed dimen-
sions, where A atoms are confined in lower dimensions
[quasi-zero dimension (0D), one dimension (1D), or two
dimensions (2D)] and interact with B atoms living in
three dimensions (3D) [23, 24] (see Fig. 1). Indeed, the
authors of Ref. [23] mention the possibility of p-wave res-
onances in the 0D-3D mixture. Higher partial-wave res-
onances induced from a purely s-wave interaction seem
counterintuitive but can be understood by generalizing
the argument for s-wave resonances given in Ref. [23].

Suppose an s-wave interspecies interaction between A
and B atoms supports a bound state with its binding
energy Eb < 0. We confine only the A atom by a 3D
harmonic potential with the oscillator frequency ω. Be-
cause the AB molecule also feels the confinement poten-

tial, its center-of-mass motion is quantized. In the limit
|Eb| � ~ω or mA � mB , the energy of the AB molecule
EAB is given by a sum of its center-of-mass energy and
binding energy:

EAB =

(
3

2
+ `+ 2n

)√
mA

mA +mB
~ω − |Eb|, (1)

where mA (mB) is the mass of the A (B) atom, ` =
0, 1, 2, . . . is an orbital angular momentum quantum
number, and n ≥ 0 is an integer. We can view these
quantized energy levels as a tower of `th partial-wave
“Feshbach molecules.” When one of them coincides with
the A-B scattering threshold at 3

2~ω, the coupling be-
tween the center-of-mass and relative motions leads to
the resonance occurring in the `th partial-wave channel.
Furthermore, there exists a series of resonances in each
partial-wave channel corresponding to different values of
n.

Similarly, in the 1D-3D mixture, theA atom is confined
by a 2D harmonic potential and the energy of the AB
molecule is quantized as

EAB = (1 + |m|+ 2n)

√
mA

mA +mB
~ω − |Eb|, (2)

FIG. 1. (Color online) Illustrations of shallow p-wave
molecules in mixed dimensions. Shown are the asymptotic
angular wave functions of B atoms in 3D relative to A atoms
confined in 0D (origin), 1D (z axis), and 2D (xy plane), re-
spectively. See the text for details.

ar
X

iv
:1

01
1.

00
33

v2
  [

co
nd

-m
at

.q
ua

nt
-g

as
] 

 2
7 

D
ec

 2
01

0



2

where m = 0,±1,±2, . . . is a magnetic quantum num-
ber. When one of them coincides with the A-B scatter-
ing threshold at ~ω, the resonance occurs in the |m|th
partial-wave channel. There exists a series of resonances
in each partial-wave channel corresponding to different
values of n.

In the 2D-3D mixture, the A atom is confined by a 1D
harmonic potential and the energy of the AB molecule is
quantized as

EAB =

(
1

2
+ n

)√
mA

mA +mB
~ω − |Eb|. (3)

When one of them coincides with the A-B scattering
threshold at 1

2~ω, the resonance occurs. Because the
wave function of the AB molecule has the even (odd)
parity for an even (odd) n, the associated resonance is
in the even (odd)-parity channel, which is also phrased
as an s-wave (p-wave) resonance in the 2D-3D mixture.
There exists a series of resonances in each parity chan-
nel corresponding to different values of n. In order to
achieve these higher partial-wave resonances in mixed
dimensions, one needs to apply a strong optical lattice
only on A atoms without affecting B atoms [25]. Such a
species-selective optical lattice has been successfully im-
plemented in a Bose-Bose mixture of 41K and 87Rb [26]
and the 2D-3D mixed dimensions have been realized in
the Florence group experiment [27].

The above simple arguments illustrate how the higher
partial-wave resonances are induced in mixed dimensions
from the purely s-wave interaction in a free space. In this
paper, we develop two-body scattering theories in mixed
dimensions, assuming the harmonic confinement poten-
tial and the short-range interspecies interaction charac-
terized by an s-wave scattering length (≡ a3D) and ef-
fective range (≡ r3D), which are extensions of analyses
in Refs. [23, 24] aimed for s-wave scatterings only. The
two-body scattering of a 0D, 1D, or 2D atom with a 3D
atom is three-dimensional in the sense that it is described
by three relative coordinates, and thus such scattering
theories can be developed in parallel with the ordinary
scattering theory in 3D. In particular, we determine the
positions of all partial-wave resonances and will see that
they are well understood from the above simple argu-
ments in a wide range of the mass ratio mA/mB & 1.
We also compute the low-energy scattering parameters
in the p-wave channel (scattering volume and effective
momentum) that are necessary for the low-energy effec-
tive theory of the p-wave resonance in mixed dimensions.

Our analyses and results for the 0D-3D, 1D-3D, and
2D-3D mixtures are presented in Secs. II, III, and IV, re-
spectively, while some details are shown in Appendixes A,
B, and C, respectively. Also in Sec. IV, we point out that
some of the resonances observed in the Florence group
experiment [27] can be interpreted as the p-wave reso-
nances in the 2D-3D mixed dimensions. Finally, Sec. V
is devoted to a summary of this paper and the stabil-
ity of confinement-induced molecules and their analogy
with Kaluza-Klein modes in extra-dimension models are

discussed.
For later use, we define the reduced mass mAB ≡

mAmB/(mA +mB), the total mass M ≡ mA +mB , and

the harmonic oscillator length lho ≡
√
~/mAω. Below

we set ~ = 1 and the range of integrations is assumed to
be from −∞ to ∞ unless otherwise specified.

II. 0D-3D MIXED DIMENSIONS

A. Scattering theory [23]

The scattering of a quasi-0D A atom with a B atom
in 3D is described by a Schrödinger equation,(

−
∇2
rA

2mA
+

1

2
mAω

2r2
A −

∇2
rB

2mB

)
ψ(rA, rB)

= E ψ(rA, rB)

(4)

for |rA − rB | > 0. The short-range interspecies inter-
action is implemented by the generalized Bethe-Peierls
boundary condition [28, 29]:

ψ(rA, rB)
∣∣
rA,rB→r

→

[
1

ã(Êc)
− 1

|rA − rB |

]
χ(r). (5)

Here ã(Êc) is the energy-dependent “scattering length”
defined by

1

ã(Êc)
≡ 1

a3D
−mABr3DÊc (6)

and the collision energy operator Êc in the present case
is given by

Êc = E −
(
−∇2

r

2M
+

1

2
mAω

2r2

)
. (7)

The solution to the Schrödinger equation (4) can be
written as

ψ(rA, rB) = ψ0(rA, rB)

+
2π

mAB

∫
dr′GE(rA, rB ; r′, r′)χ(r′),

(8)

where ψ0 is a solution in the noninteracting limit and GE
is the retarded Green’s function for the noninteracting
Hamiltonian:

GE(rA, rB ; r′A, r
′
B)

≡ 〈rA, rB |
1

E −H0 + i0+
|r′A, r′B〉

= −mB

2π

∑
n

φn(rA)φ∗n(r′A)

× e−
√

2mB

√
(nx+ny+nz+ 3

2 )ω−E−i0+|rB−r′B |

|rB − r′B |
.

(9)
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Here φn with quantum numbers n = (nx, ny, nz) is the
normalized wave function of an A atom in the 3D har-
monic potential.

We now consider the low-energy scattering in which

E − 3

2
ω ≡ k2

2mB
� ω (10)

is satisfied, and then ψ0 becomes

ψ0(rA, rB) = Ceik·rBφ0(rA), (11)

which represents the A atom in the ground state of the
3D harmonic potential and the plane wave of B atom
with the wave vector k. The asymptotic form of the
wave function at a large distance |rB | � lho is given by

ψ(rA, rB)→ C

[
eik·rB +

eikrB

rB
f(k,k′)

]
φ0(rA), (12)

where f(k,k′) with k′ ≡ kr̂B defines the two-body scat-
tering amplitude in the 0D-3D mixed dimensions:

f(k,k′) ≡ − 1

C

mB

mAB

∫
dr′e−ik

′·r′φ∗0(r′)χ(r′). (13)

We note that χ has an implicit k dependence.
The unknown function χ can be determined by substi-

tuting the solution (8) into the Bethe-Peierls boundary
condition (5). Defining the regular part of the Green’s
function G by

GE(rA, rB ; r′, r′)
∣∣
rA,rB→r

≡ − mAB

2π|rA − rB |
δ(r − r′) + G(r; r′),

(14)

we obtain

1

ã(Êc)
χ(r) = Ceik·rφ0(r) +

2π

mAB

∫
dr′G(r; r′)χ(r′).

(15)
This integral equation determines χ/C, which in turn
provides f from Eq. (13).

Because of the 3D rotational symmetries of the system,
f , χ, and G can be decomposed into their partial-wave
components:

f(k,k′) =

∞∑
`=0

(2`+ 1) f`(k)P`(k̂ · k̂′), (16)

χ(r) =

∞∑
`=0

(2`+ 1)χ`(r)P`(r̂ · k̂), (17)

G(r; r′) =

∞∑
`=0

(2`+ 1)G`(r; r′)P`(r̂ · r̂′). (18)

Equations (13) and (15) lead to the `th partial-wave scat-
tering amplitude given by

f`(k) = − 1

C

mB

mAB

∫
dr′j`(kr

′)φ∗0(r′)χ`(r
′) (19)

with

1

ã(Êc)
χ`(r) = Cj`(kr)φ0(r)

+
2π

mAB

∫
dr′G`(r; r′)χ`(r′).

(20)

From the general argument based on the 3D rotational
symmetries and unitarity [30], or from the explicit calcu-
lation that uses the Green’s function in Eq. (9), we can
show that f` has the usual low-energy expansion:

lim
k→0

f`(k) = − k2`

1

a
(`)
eff

− 1
2r

(`)
eff k

2 +O(k4) + ik2`+1
, (21)

where a
(`)
eff and r

(`)
eff are effective scattering “length” and

“range” parameters in the `th partial-wave channel. Note

that a
(`)
eff has the dimension of (length)2`+1 and r

(`)
eff has

(length)1−2`.
Substituting the expansion of f` into Eq. (19), we can

determine the low-energy scattering parameters. In par-

ticular, the effective scattering length a
(`)
eff is given by

a
(`)
eff =

1

C

mB

mAB

√
π

2`+1
(
`+ 1

2

)
!

∫
dr′r′`φ∗0(r′)χ`(r

′) (22)

with

1

ã(Êc)
χ`(r) = C

√
π

2`+1
(
`+ 1

2

)
!
r`φ0(r)

+
2π

mAB

∫
dr′G`(r; r′)

∣∣
k→0

χ`(r
′).

(23)

The `th partial-wave resonance in the 0D-3D mixed di-

mensions is defined by the divergence of a
(`)
eff →∞, which

occurs when

1

ã(Êc)
χ`(r) =

2π

mAB

∫
dr′G`(r; r′)

∣∣
k→0

χ`(r
′) (24)

is satisfied.

B. Positions of resonances

We now solve the integral equation (24) numerically
to determine the positions of `th partial-wave resonances.
For the purpose of illustrating qualitative results, we shall
set r3D = 0. For quantitative predictions in a specific
atomic mixture, it is necessary but straightforward to
include the effective range correction [27]. Some details
of our method to solve the integral equation are shown
in Appendix A.

Figure 2 shows the positions of the lowest five reso-
nances in terms of lho/a3D for ` = 0, 1, 2, 3 partial-wave
channels as functions of the mass ratio mA/mB . For
completeness, we have included the result for the s-wave
(` = 0) resonance, which has been reported in Ref. [23].
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FIG. 2. (Color online) 0D-3D mixture: Positions of the lowest five resonances in terms of lho/a3D for ` = 0 (upper left), ` = 1
(upper right), ` = 2 (lower left), and ` = 3 (lower right) channels as functions of the mass ratio mA/mB . The dashed curves
are from the approximate formula EAB = 3

2
~ω by using Eq. (1) with Eb = −~2/(2mABa

2
3D).

As we have discussed in Sec. I, there exists a series of
resonances in each partial-wave channel induced from
the purely s-wave interaction in a free space. Indeed,
the resonance positions are well described by the ap-
proximate formula EAB = 3

2~ω by using Eq. (1) with

Eb = −~2/(2mABa
2
3D) in a wide range of the mass ratio

mA/mB & 1. For such a mass ratio, as is evident from
Eq. (1), d-wave (f -wave) resonances are nearly degener-
ate with s-wave (p-wave) resonances, and thus it could
be difficult to distinguish them practically. We also note
that the `th partial-wave resonance is (2`+1)-fold degen-
erate in a spherically symmetric potential. This degener-
acy is lifted when the confinement potential is deformed,
and therefore the one resonance at a given lho/a3D splits
into more resonances.

C. Confinement-induced molecules

On the a
(`)
eff > 0 side of every resonance, a shallow

AB molecule is formed. In the vicinity of the resonance

a
(`)
eff � l2`+1

ho , its binding energy εAB ≡ E − 3
2ω < 0

is determined by the pole of the scattering amplitude

[Eq. (21)] with keeping the two dominant terms at k → 0:

εAB =


− 1

2mBa
(`)2
eff

for ` = 0,

1

mBa
(`)
eff r

(`)
eff

for ` ≥ 1.

(25)

Away from the resonance, these universal formulas are
no longer valid. The binding energy εAB = −κ2/(2mB)
has to be determined by solving the integral equation

1

ã(Êc)
χm` (r) =

2π

mAB

∫
dr′G`(r; r′)

∣∣
k→iκχ

m
` (r′), (26)

where χm` is a component of the spherical harmonics ex-
pansion of χ:

χ(r) =

∞∑
`=0

∑̀
m=−`

χm` (r)Y m` (r̂). (27)

We note that the solution is independent of m, and there-
fore there are 2`+1 degenerate molecules for a spherically
symmetric potential. This degeneracy is lifted when the
confinement potential is deformed.

We now derive the asymptotic form of the molecular
wave function in the vicinity of the `th partial-wave reso-
nance where lho � κ−1 � |rB | is satisfied. From Eqs. (8)
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FIG. 3. (Color online) 0D-3D mixture: p-wave effective scattering volume veff/l
3
ho (upper figures) and effective momentum

keff lho (lower figures) as functions of lho/a3D for mass ratios mA/mB = 6/40 (left), 1 (middle), and 40/6 (right).

and (9) with the replacement k → iκ, we find

ψ(rA, rB)→ −
∑̀
m=−`

1

2`+ 1

mB

mAB

e−κrB

r`+1
B

φ0(rA)

× Y m` (r̂B)

∫
dr′r′`φ∗0(r′)χm` (r′).

(28)

The angular parts of asymptotic wave functions of three
degenerate shallow p-wave molecules ψ ∼ Y 0,±1

1 (r̂B) are
illustrated in Fig. 1.

D. Scattering parameters in the p-wave channel

The effective scattering length in the s-wave channel

aeff ≡ a
(0)
eff has been computed in Ref. [23]. Here we fo-

cus on the p-wave (` = 1) channel and determine its two
low-energy scattering parameters, namely, the effective

scattering volume veff ≡ a
(1)
eff and the effective momen-

tum keff ≡ r
(1)
eff . The effective scattering volume can be

computed by eliminating C from Eqs. (22) and (23) and
solving the resulting integral equation numerically (see
Appendix A for details). In Fig. 3, veff/l

3
ho for r3D = 0

is plotted as a function of lho/a3D for three mass ratios
mA/mB = 6/40, 1, and 40/6. We confirm the existence
of a series of p-wave resonances (veff →∞) induced from
the purely s-wave interaction in a free space, while they
become narrower for larger lho/a3D. We also find that
the resonance is wider when a lighter atom is confined in
lower dimensions.

Similarly, the effective momentum can be computed
from Eq. (19), and keff lho for r3D = 0 is plotted in Fig. 3
as a function of lho/a3D for the same three mass ratios.
In the vicinity of the p-wave resonance veff � l3ho, veff

and keff determine the binding energy of three degener-
ate shallow p-wave molecules via the universal formula
(25). Both veff and keff are important to the low-energy
effective theory of the p-wave resonance discussed below.

E. Low-energy effective theory

The low-energy effective theory of the p-wave reso-
nance in the 0D-3D mixed dimensions is provided by the
action

S =

∫
dtΨ†A(t) (i∂t) ΨA(t)

+

∫
dtdrΨ†B(t, r)

(
i∂t +

∇2
r

2mB

)
ΨB(t, r)

+

∫
dtΦ†j(t) (i∂t + ε0) Φj(t)

+ g0

∫
dt
[
Ψ†A(t)∇jΨ†B(t,0)Φj(t)

+Φ†j(t)∇jΨB(t,0)ΨA(t)
]
,

(29)

where the summation over j = x, y, z is implicitly under-
stood. ΨA and ΨB fields represent the A and B atoms in
0D and 3D, respectively. The interaction between A and
B atoms is described through their coupling with three
p-wave molecular fields Φj . g0 is their coupling strength
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and ε0 is the detuning from the resonance. These cut-
off (Λ)-dependent bare parameters can be related to the
effective scattering volume veff and effective momentum
keff by matching the two-body scattering amplitude from
the action (29) with that shown in Eqs. (16) and (21).

The standard diagrammatic calculation leads to the
following scattering amplitude with collision energy ε =
k2/(2mB):

iA(k) = − ik · k′
k2/(2mB)+ε0

g20
+ mB

3π2

(
Λ3

3 + Λk2 + π
2 ik

3
) . (30)

By defining

ε0

g2
0

+
mB

3π2

Λ3

3
≡ mB

6π

1

veff
(31)

and

1

2mBg2
0

+
mB

3π2
Λ ≡ −mB

6π

keff

2
, (32)

we reproduce the scattering amplitude (21) in the p-wave
(` = 1) channel up to a kinematical factor:

A(k) = − 2π

mB

3k · k′
1
veff
− keff

2 k2 + ik3
. (33)

This low-energy effective theory can be generalized easily
to the case with more than one lattice site where B atoms
are confined and could be used to investigate the many-
body physics across the p-wave resonance as in the 3D
case [31]. We note that an effective field theory of the p-
wave resonance in 3D has been developed in connection
with the α-n scattering [32, 33].

F. Weak-coupling limit

When a3D < 0 and |a3D| � lho, the confinement-
induced resonances can be understood in a different way,
as is discussed in Refs. [23, 34]. To the leading order in
the weak-coupling expansion a3D/lho → −0, an A atom
occupies the ground state in a 3D harmonic potential and
creates a mean-field attractive potential felt by a B atom.
Therefore, the scattering of the B atom by the confined
A atom is described by[

−
∇2
rB

2mB
+

2πa3D

mAB
|φ0(rB)|2

]
ψ(rB) =

k2

2mB
ψ(rB),

(34)

where |φ0(r)|2 = e−r
2/l2ho/(

√
π lho)3. This Schrödinger

equation, which is valid in the weak-coupling limit, is
equivalent to the integral equation (15), where only the
n = 0 term is kept in the Green’s function (9) and χ(r)
is identified as a3Dφ0(r)ψ(r).

By matching the solution of Eq. (34) with the asymp-
totic form (12), we can determine the scattering ampli-
tude and low-energy scattering parameters in the weak-
coupling limit |a3D| � lho. In particular, the reso-
nance occurs when a new bound state appears. This

is possible even in the weak-coupling limit because
the attractive potential becomes strong compared to
the kinetic term by decreasing the mass ratio down
to mA/mB � 1. We find that the resonances are
achieved at the critical values of (mB/mAB)(a3D/lho) =
−1.19,−7.89,−20.2, . . . in the ` = 0 channel [23,
34], (mB/mAB)(a3D/lho) = −5.36,−15.5,−31.2, . . .
in the ` = 1 channel, (mB/mAB)(a3D/lho) =
−11.9,−25.6,−44.6, . . . in the ` = 2 channel, and
(mB/mAB)(a3D/lho) = −20.9,−37.9,−60.4, . . . in the
` = 3 channel.

III. 1D-3D MIXED DIMENSIONS

A. Scattering theory [35]

The scattering of a quasi-1D A atom with a B atom
in 3D is described by a Schrödinger equation,(

−
∇2
ρA

2mA
+

1

2
mAω

2ρ2
A −

∇2
ρB

2mB
−
∇2
zAB

2mAB

)
× ψ(ρA,ρB , zAB) = E ψ(ρA,ρB , zAB)

(35)

for
√

(ρA − ρB)2 + z2
AB > 0, where ρ ≡ (x, y), zAB ≡

zA−zB , and the center-of-mass motion in the z direction
is eliminated. The short-range interspecies interaction is
implemented by the generalized Bethe-Peierls boundary
condition [28, 29]:

ψ(ρA,ρB , zAB)
∣∣
ρA,ρB→ρ;zAB→0

→

[
1

ã(Êc)
− 1√

(ρA − ρB)2 + z2
AB

]
χ(ρ).

(36)

The collision energy operator Êc in Eq. (6) in the present
case is given by

Êc = E −

(
−
∇2
ρ

2M
+

1

2
mAω

2ρ2

)
. (37)

The solution to the Schrödinger equation (35) can be
written as

ψ(ρA,ρB , zAB) = ψ0(ρA,ρB , zAB)

+
2π

mAB

∫
dρ′GE(ρA,ρB , zAB ;ρ′,ρ′, 0)χ(ρ′),

(38)

where ψ0 is a solution in the noninteracting limit and GE
is the retarded Green’s function for the noninteracting
Hamiltonian:

GE(ρA,ρB , zAB ;ρ′A,ρ
′
B , z

′
AB)

≡ 〈ρA,ρB , zAB |
1

E −H0 + i0+
|ρ′A,ρ′B , z′AB〉

= −
√
mBmAB

2π

∑
n

φn(ρA)φ∗n(ρ′A)

× e−
√

2mB

√
(nx+ny+1)ω−E−i0+|r̃B−r̃′B |

|r̃B − r̃′B |
.

(39)
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Here φn with quantum numbers n = (nx, ny) is the nor-
malized wave function of an A atom in the 2D harmonic

potential, and r̃B ≡
(
ρB ,−

√
mAB

mB
zAB

)
are coordinates

of the B atom relative to the confined A atom. The
anisotropic factor is such because separations in the x
and y directions are associated with mB while a separa-
tion in the z direction is associated with mAB [see the
last two terms in Eq. (35)].

We now consider the low-energy scattering in which

E − ω ≡ k2

2mB
� ω (40)

is satisfied, and then ψ0 becomes

ψ0(ρA,ρB , zAB) = Ceik·r̃Bφ0(ρA), (41)

which represents the A atom in the ground state of the
2D harmonic potential and the plane wave of B atom
with the wave vector k. The asymptotic form of the
wave function at a large distance |r̃B | � lho is given by

ψ(ρA,ρB , zAB)→ C

[
eik·r̃B +

eikr̃B

r̃B
f(k⊥,k

′
⊥)

]
φ0(ρA),

(42)

where f(k⊥,k
′
⊥) with k′ ≡ kˆ̃rB defines the two-body

scattering amplitude in the 1D-3D mixed dimensions:

f(k⊥,k
′
⊥) ≡ − 1

C

√
mB

mAB

∫
dρ′e−ik

′
⊥·ρ
′
φ∗0(ρ′)χ(ρ′).

(43)
We note that χ has an implicit k⊥ ≡ (kx, ky) dependence
and both χ and f depend on k through the Green’s func-
tion (39).

The unknown function χ can be determined by substi-
tuting the solution (38) into the Bethe-Peierls boundary
condition (36). Defining the regular part of the Green’s
function G by

GE(ρA,ρB , zAB ;ρ′,ρ′, 0)
∣∣
ρA,ρB→ρ;zAB→0

≡ − mAB

2π
√

(ρA − ρB)2 + z2
AB

δ(ρ− ρ′) + G(ρ;ρ′),
(44)

we obtain

1

ã(Êc)
χ(ρ) = Ceik⊥·ρφ0(ρ) +

2π

mAB

∫
dρ′G(ρ;ρ′)χ(ρ′).

(45)
This integral equation determines χ/C, which in turn
provides f from Eq. (43).

Because the system has a rotational symmetry in the
xy plane, f , χ, and G can be decomposed into their
partial-wave components:

f(k⊥,k
′
⊥) =

∞∑
m=−∞

fm(k⊥, k
′
⊥) eim arccos k̂⊥·k̂′⊥ , (46)

χ(ρ) =

∞∑
m=−∞

χm(ρ) eim arccos ρ̂·k̂⊥ , (47)

G(ρ;ρ′) =

∞∑
m=−∞

Gm(ρ; ρ′) eim arccos ρ̂·ρ̂′ . (48)

Because m and −m are degenerate, we assume m ≥ 0 in
this section without loss of generality. Equations (43) and
(45) lead to the mth partial-wave scattering amplitude
given by

fm(k⊥, k
′
⊥) = − 1

C

√
mB

mAB

∫
dρ′Jm(k⊥ρ

′)φ∗0(ρ′)χm(ρ′)

(49)
with

1

ã(Êc)
χm(ρ) = CJm(k⊥ρ)φ0(ρ)

+
2π

mAB

∫
dρ′Gm(ρ; ρ′)χm(ρ′).

(50)

From the explicit calculation that uses the Green’s func-
tion in Eq. (39), we can show that fm has the following
low-energy expansion:

lim
k→0

fm(k)

= −
(2m+1)!
(2mm!)2 k

m
⊥ k
′m
⊥

1

a
(m)
eff

− 1
2r

(m)
eff k2 +O(k4) + ik2m+1 [1 +O(k2)]

+O(km+2
⊥ k′m⊥ , km⊥ k

′m+2
⊥ ),

(51)

where a
(m)
eff and r

(m)
eff are effective scattering “length”

and “range” parameters in the mth partial-wave chan-

nel. Note that a
(m)
eff has the dimension of (length)2m+1

and r
(m)
eff has (length)1−2m. This unusual form of the low-

energy expansion is owing to the lack of full 3D rotational
symmetries.

Substituting the expansion of fm into Eq. (49), we can
determine the low-energy scattering parameters. In par-

ticular, the effective scattering length a
(m)
eff is given by

(2m+ 1)!

(2mm!)2
a

(m)
eff =

1

C

√
mB

mAB

1

2mm!

∫
dρ′ρ′mφ∗0(ρ′)χm(ρ′)

(52)
with

1

ã(Êc)
χm(ρ) = C

1

2mm!
ρmφ0(ρ)

+
2π

mAB

∫
dρ′Gm(ρ; ρ′)

∣∣
k→0

χm(ρ′).

(53)

The mth partial-wave resonance in the 1D-3D mixed di-

mensions is defined by the divergence of a
(m)
eff → ∞,

which occurs when

1

ã(Êc)
χm(ρ) =

2π

mAB

∫
dρ′Gm(ρ; ρ′)

∣∣
k→0

χm(ρ′) (54)

is satisfied.

B. Positions of resonances

We now solve the integral equation (54) numerically to
determine the positions of |m|th partial-wave resonances.
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FIG. 4. (Color online) 1D-3D mixture: Positions of the lowest five resonances in terms of lho/a3D for m = 0 (upper left), m = 1
(upper right), m = 2 (lower left), and m = 3 (lower right) channels as functions of the mass ratio mA/mB . The dashed curves
are from the approximate formula EAB = ~ω by using Eq. (2) with Eb = −~2/(2mABa

2
3D).

For the purpose of illustrating qualitative results, we shall
set r3D = 0. For quantitative predictions in a specific
atomic mixture, it is necessary but straightforward to
include the effective range correction [27]. Some details
of our method to solve the integral equation are shown
in Appendix B.

Figure 4 shows the positions of the lowest five res-
onances in terms of lho/a3D for m = 0, 1, 2, 3 partial-
wave channels as functions of the mass ratio mA/mB .
For completeness, we have included the result for the
s-wave (m = 0) resonance, which has been reported in
Ref. [24]. As we have discussed in Sec. I, there exists a
series of resonances in each partial-wave channel induced
from the purely s-wave interaction in a free space. In-
deed, the resonance positions are well described by the
approximate formula EAB = ~ω by using Eq. (2) with
Eb = −~2/(2mABa

2
3D) in a wide range of the mass ra-

tio mA/mB & 1. For such a mass ratio, as is evident
from Eq. (2), d-wave (f -wave) resonances are nearly de-
generate with s-wave (p-wave) resonances, and thus it
could be difficult to distinguish them practically. We also
note that the |m|th partial-wave resonance for |m| ≥ 1
is twofold degenerate in a circularly symmetric potential.
This degeneracy is lifted when the confinement potential
is deformed, and therefore the one resonance at a given
lho/a3D splits into two resonances.

C. Confinement-induced molecules

On the a
(m)
eff > 0 side of every resonance, a shallow

AB molecule is formed. In the vicinity of the resonance

a
(m)
eff � l

2|m|+1
ho , its binding energy εAB ≡ E − ω < 0

is determined by the pole of the scattering amplitude
[Eq. (51)] with keeping the two dominant terms at k → 0:

εAB =


− 1

2mBa
(m)2
eff

for m = 0,

1

mBa
(m)
eff r

(m)
eff

for |m| ≥ 1.

(55)

Away from the resonance, these universal formulas are
no longer valid. The binding energy εAB = −κ2/(2mB)
has to be determined by solving the integral equation

1

ã(Êc)
χm(ρ) =

2π

mAB

∫
dρ′Gm(ρ; ρ′)

∣∣
k→iκχm(ρ′). (56)

We note that the solution for |m| ≥ 1 is independent
of the sign of m, and therefore there are two degener-
ate molecules for a circularly symmetric potential. This
degeneracy is lifted when the confinement potential is
deformed.

We now derive the asymptotic form of the molecular
wave function in the vicinity of the |m|th partial-wave
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FIG. 5. (Color online) 1D-3D mixture: p-wave effective scattering volume veff/l
3
ho (upper figures) and effective momentum

keff lho (lower figures) as functions of lho/a3D for mass ratios mA/mB = 6/40 (left), 1 (middle), and 40/6 (right).

resonance where lho � κ−1 � |r̃B | is satisfied. From
Eqs. (38) and (39) with the replacement k → iκ, we find

ψ(ρA,ρB , zAB)

→ −
∑

m=±|m|

∞∑
`=|m|

√
4π

2`+ 1

(`−m)!

(`+m)!
Pm` (0)

√
mB

mAB

× e−κr̃B

r̃`+1
B

φ0(ρA)Y m` (ˆ̃rB)

∫
dρ′ρ′`φ∗0(ρ′)χm(ρ′).

(57)

One can see that different spherical harmonics ∼ Y m`
with the same magnetic quantum number m contribute
owing to the lack of full 3D rotational symmetries. The
s-wave nature of the free-space interaction ensures that
only ` = |m|, |m| + 2, |m| + 4, . . . contribute so that the
wave function is an even function of zAB . The asymp-
totic behavior at a large separation |r̃B | → ∞ is dom-
inated by the ` = |m| component. The angular parts
of asymptotic wave functions of two degenerate shallow
p-wave molecules ψ ∼ Y ±1

1 (ˆ̃rB) are illustrated in Fig. 1.

D. Scattering parameters in the p-wave channel

The effective scattering length in the s-wave channel

aeff ≡ a(0)
eff has been computed in Ref. [24]. Here we focus

on the p-wave (|m| = 1) channel and determine its two
low-energy scattering parameters, namely, the effective

scattering volume veff ≡ a
(1)
eff and the effective momen-

tum keff ≡ r
(1)
eff . The effective scattering volume can be

computed by eliminating C from Eqs. (52) and (53) and
solving the resulting integral equation numerically (see
Appendix B for details). In Fig. 5, veff/l

3
ho for r3D = 0

is plotted as a function of lho/a3D for three mass ratios
mA/mB = 6/40, 1, and 40/6. We confirm the existence
of a series of p-wave resonances (veff →∞) induced from
the purely s-wave interaction in a free space, while they
become narrower for larger lho/a3D. We also find that
the resonance is wider when a lighter atom is confined in
lower dimensions.

Similarly, the effective momentum can be computed
from Eq. (49), and keff lho for r3D = 0 is plotted in Fig. 5
as a function of lho/a3D for the same three mass ratios.
In the vicinity of the p-wave resonance veff � l3ho, veff

and keff determine the binding energy of two degener-
ate shallow p-wave molecules via the universal formula
(55). Both veff and keff are important to the low-energy
effective theory of the p-wave resonance discussed below.

E. Low-energy effective theory

The low-energy effective theory of the p-wave reso-
nance in the 1D-3D mixed dimensions is provided by the
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action

S =

∫
dtdzΨ†A(t, z)

(
i∂t +

∇2
z

2mA

)
ΨA(t, z)

+

∫
dtdzdρΨ†B(t, z,ρ)

(
i∂t +

∇2
z + ∇2

ρ

2mB

)
ΨB(t, z,ρ)

+

∫
dtdzΦ†j(t, z)

(
i∂t +

∇2
z

2M
+ ε0

)
Φj(t, z)

+ g0

∫
dtdz

[
Ψ†A(t, z)∇jΨ†B(t, z,0)Φj(t, z)

+Φ†j(t, z)∇jΨB(t, z,0)ΨA(t, z)
]
,

(58)

where the summation over j = x, y is implicitly under-
stood. ΨA and ΨB fields represent the A and B atoms in
1D and 3D, respectively. The interaction between A and
B atoms is described through their coupling with two p-
wave molecular fields Φj . g0 is their coupling strength
and ε0 is the detuning from the resonance. These cut-
off (Λ)-dependent bare parameters can be related to the
effective scattering volume veff and effective momentum
keff by matching the two-body scattering amplitude from
the action (58) with that shown in Eqs. (46) and (51).

The standard diagrammatic calculation leads to the
following scattering amplitude with collision energy ε =
k2/(2mB):

iA(k) = − ik⊥ · k′⊥
k2/(2mB)+ε0

g20
+
√
mBmAB

3π2

(
Λ3

3 + Λk2 + π
2 ik

3
) .

(59)

By defining

ε0

g2
0

+

√
mBmAB

3π2

Λ3

3
≡
√
mBmAB

6π

1

veff
(60)

and

1

2mBg2
0

+

√
mBmAB

3π2
Λ ≡ −

√
mBmAB

6π

keff

2
, (61)

we reproduce the scattering amplitude (51) in the p-wave
(|m| = 1) channel up to a kinematical factor:

A(k) = − 2π
√
mBmAB

3k⊥ · k′⊥
1
veff
− keff

2 k2 + ik3
. (62)

This low-energy effective theory can be generalized easily
to the case with more than one tube where B atoms
are confined and could be used to investigate the many-
body physics across the p-wave resonance as in the 3D
case [31]. We note that the low-energy effective theory
of the s-wave resonance in the 1D-3D mixed dimensions
has been derived and used to study three-body problems
in Ref. [36].

F. Weak-coupling limit

When a3D < 0 and |a3D| � lho, the confinement-
induced resonances can be understood in a different way.
To the leading order in the weak-coupling expansion
a3D/lho → −0, an A atom occupies the ground state in
a 2D harmonic potential and creates a mean-field attrac-
tive potential felt by a B atom. Therefore, the scattering
of the B atom by the confined A atom is described by[

−
∇2
ρB

2mB
−
∇2
zAB

2mAB
+

2πa3D

mAB
|φ0(ρB)|2δ(zAB)

]

× ψ(ρB , zAB) =
k2

2mB
ψ(ρB , zAB),

(63)

where |φ0(ρ)|2 = e−ρ
2/l2ho/(

√
π lho)2. This Schrödinger

equation, which is valid in the weak-coupling limit, is
equivalent to the integral equation (45), where only the
n = 0 term is kept in the Green’s function (39) and χ(ρ)
is identified as a3Dφ0(ρ)ψ(ρ, 0).

By matching the solution of Eq. (63) with the asymp-
totic form (42), we can determine the scattering ampli-
tude and low-energy scattering parameters in the weak-
coupling limit |a3D| � lho. In particular, the resonance
occurs when a new bound state appears. This is possible
even in the weak-coupling limit because the attractive
potential becomes strong compared to the kinetic term
by decreasing the mass ratio down to mA/mB � 1. We
find that the resonances are achieved at the critical val-
ues of

√
mB/mAB(a3D/lho) = −0.730,−2.55,−4.34, . . .

in the m = 0 channel,
√
mB/mAB(a3D/lho) =

−1.96,−3.69,−5.44, . . . in the m = 1 channel,√
mB/mAB(a3D/lho) = −3.14,−4.85,−6.58, . . . in

the m = 2 channel, and
√
mB/mAB(a3D/lho) =

−4.31,−6.00,−7.72, . . . in the m = 3 channel.

IV. 2D-3D MIXED DIMENSIONS

A. Scattering theory [35]

The scattering of a quasi-2D A atom with a B atom
in 3D is described by a Schrödinger equation,(

−
∇2
zA

2mA
+

1

2
mAω

2z2
A −

∇2
zB

2mB
−

∇2
ρAB

2mAB

)
× ψ(zA, zB ,ρAB) = E ψ(zA, zB ,ρAB)

(64)

for
√

(zA − zB)2 + ρ2
AB > 0, where ρAB ≡ (xA −

xB , yA − yB) and the center-of-mass motions in the x
and y directions are eliminated. The short-range in-
terspecies interaction is implemented by the generalized
Bethe-Peierls boundary condition [28, 29]:

ψ(zA, zB ,ρAB)
∣∣
zA,zB→z;ρAB→0

→

[
1

ã(Êc)
− 1√

(zA − zB)2 + ρ2
AB

]
χ(z).

(65)
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The collision energy operator Êc in Eq. (6) in the present
case is given by

Êc = E −
(
− ∇

2
z

2M
+

1

2
mAω

2z2

)
. (66)

The solution to the Schrödinger equation (64) can be
written as

ψ(zA, zB ,ρAB) = ψ0(zA, zB ,ρAB)

+
2π

mAB

∫
dz′GE(zA, zB ,ρAB ; z′, z′,0)χ(z′),

(67)

where ψ0 is a solution in the noninteracting limit and GE
is the retarded Green’s function for the noninteracting
Hamiltonian:

GE(zA, zB ,ρAB ; z′A, z
′
B ,ρ

′
AB)

≡ 〈zA, zB ,ρAB |
1

E −H0 + i0+
|z′A, z′B ,ρ′AB〉

= −mAB

2π

∑
nz

φnz
(zA)φ∗nz

(z′A)

× e−
√

2mB

√
(nz+ 1

2 )ω−E−i0+|r̃B−r̃′B |

|r̃B − r̃′B |
.

(68)

Here φnz
is the normalized wave function of an

A atom in the 1D harmonic potential, and r̃B ≡(
−
√

mAB

mB
ρAB , zB

)
are coordinates of the B atom rel-

ative to the confined A atom. The anisotropic factor is
such because a separation in the z direction is associated
with mB while separations in the x and y directions are
associated with mAB [see the last two terms in Eq. (64)].

We now consider the low-energy scattering in which

E − 1

2
ω ≡ k2

2mB
� ω (69)

is satisfied, and then ψ0 becomes

ψ0(zA, zB ,ρAB) = Ceik·r̃Bφ0(zA), (70)

which represents the A atom in the ground state of the
1D harmonic potential and the plane wave of B atom
with the wave vector k. The asymptotic form of the
wave function at a large distance |r̃B | � lho is given by

ψ(zA, zB ,ρAB)→ C

[
eik·r̃B +

eikr̃B

r̃B
f(kz, k

′
z)

]
φ0(zA),

(71)

where f(kz, k
′
z) with k′ ≡ kˆ̃rB defines the two-body scat-

tering amplitude in the 2D-3D mixed dimensions:

f(kz, k
′
z) ≡ −

1

C

∫
dz′e−ik

′
zz
′
φ∗0(z′)χ(z′). (72)

We note that χ has an implicit kz dependence and both
χ and f depend on k through the Green’s function (68).

The unknown function χ can be determined by substi-
tuting the solution (67) into the Bethe-Peierls boundary

condition (65). Defining the regular part of the Green’s
function G by

GE(zA, zB ,ρAB ; z′, z′,0)
∣∣
zA,zB→z;ρAB→0

≡ − mAB

2π
√

(zA − zB)2 + ρ2
AB

δ(z − z′) + G(z; z′),
(73)

we obtain

1

ã(Êc)
χ(z) = Ceikzzφ0(z) +

2π

mAB

∫
dz′G(z; z′)χ(z′).

(74)
This integral equation determines χ/C, which in turn
provides f from Eq. (72).

Because the system has a reflection symmetry about
the z axis, f , χ, and G can be decomposed into their
even- and odd-parity components:

f±(kz, k
′
z) =

f(kz, k
′
z)± f(kz,−k′z)

2
, (75)

χ±(z) =
χ(z)± χ(−z)

2
, (76)

G±(z; z′) =
G(z; z′)± G(z;−z′)

2
. (77)

Equations (72) and (74) lead to the even- and odd-parity
scattering amplitudes given by

f±(kz, k
′
z) = − 1

C

∫
dz′

e−ik
′
zz
′ ± eik′zz′

2
φ∗0(z′)χ±(z′)

(78)
with

1

ã(Êc)
χ±(z) = C

eikzz ± e−ikzz

2
φ0(z)

+
2π

mAB

∫
dz′G±(z; z′)χ±(z′).

(79)

From the explicit calculation that uses the Green’s func-
tion in Eq. (68), we can show that f± has the following
low-energy expansion:

lim
k→0

f+(kz, k
′
z)

= − 1
1

a
(+)
eff

− 1
2r

(+)
eff k2 +O(k4) + ik [1 +O(k2)]

+O(k2
z , k
′2
z )

(80)

and

lim
k→0

f−(kz, k
′
z)

= − 3kzk
′
z

1

a
(−)
eff

− 1
2r

(−)
eff k2 +O(k4) + ik3 [1 +O(k2)]

+O(k3
zk
′
z, kzk

′3
z ),

(81)

where a
(±)
eff and r

(±)
eff are effective scattering “length” and

“range” parameters in the even- and odd-parity chan-

nels. Note that a
(±)
eff has the dimension of (length)2∓1
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FIG. 6. (Color online) 2D-3D mixture: Positions of the lowest five resonances in terms of lho/a3D for even-parity (left) and
odd-parity (right) channels as functions of the mass ratio mA/mB . The dashed curves are from the approximate formula
EAB = 1

2
~ω by using Eq. (3) with Eb = −~2/(2mABa

2
3D).

and r
(±)
eff has (length)±1. This unusual form of the low-

energy expansion is owing to the lack of full 3D rotational
symmetries.

Substituting the expansion of f± into Eq. (78), we can
determine the low-energy scattering parameters. In par-

ticular, the effective scattering length a
(±)
eff is given by

1

ã(Êc)
χ+(z) =

1

a
(+)
eff

φ0(z)

∫
dz′φ∗0(z′)χ+(z′)

+
2π

mAB

∫
dz′G+(z; z′)

∣∣
k→0

χ+(z′)

(82)

and

1

ã(Êc)
χ−(z) =

1

3a
(−)
eff

zφ0(z)

∫
dz′z′φ∗0(z′)χ−(z′)

+
2π

mAB

∫
dz′G−(z; z′)

∣∣
k→0

χ−(z′),

(83)

where we have eliminated C. The even- and odd-parity
resonances in the 2D-3D mixed dimensions are defined
by the divergence of a

(±)
eff →∞, which occurs when

1

ã(Êc)
χ±(z) =

2π

mAB

∫
dz′G±(z; z′)

∣∣
k→0

χ±(z′) (84)

is satisfied.

B. Positions of resonances

We now solve the integral equation (84) numerically
to determine the positions of even- and odd-parity reso-
nances. For the purpose of illustrating qualitative results,
we shall set r3D = 0. For quantitative predictions in a
specific atomic mixture, it is necessary but straightfor-
ward to include the effective range correction [27]. Some
details of our method to solve the integral equation are
shown in Appendix C.

Figure 6 shows the positions of the lowest five res-
onances in terms of lho/a3D for even- and odd-parity
channels as functions of the mass ratio mA/mB . For
completeness, we have included the result for the even-
parity resonance, which has been reported in Ref. [24].
As we have discussed in Sec. I, there exists a series of res-
onances in each parity channel induced from the purely
s-wave interaction in a free space. Indeed, the resonance
positions are well described by the approximate formula
EAB = 1

2~ω by using Eq. (3) with Eb = −~2/(2mABa
2
3D)

in a wide range of the mass ratio mA/mB & 1.

C. Confinement-induced molecules

On the a
(±)
eff > 0 side of every resonance, a shallow

AB molecule is formed. In the vicinity of the resonance

a
(±)
eff � l2∓1

ho , its binding energy εAB ≡ E − 1
2ω < 0

is determined by the pole of the scattering amplitude
[Eqs. (80) and (81)] with keeping the two dominant terms
at k → 0:

εAB =


− 1

2mBa
(+)2
eff

for even parity,

1

mBa
(−)
eff r

(−)
eff

for odd parity.

(85)

Away from the resonance, these universal formulas are
no longer valid. The binding energy εAB = −κ2/(2mB)
has to be determined by solving the integral equation

1

ã(Êc)
χ±(z) =

2π

mAB

∫
dz′G±(z; z′)

∣∣
k→iκχ±(z′). (86)

We now derive the asymptotic form of the molecular
wave function in the vicinity of the even- or odd-parity
resonance where lho � κ−1 � |r̃B | is satisfied. From
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FIG. 7. (Color online) 2D-3D mixture: p-wave effective scattering volume veff/l
3
ho (upper figures) and effective momentum

keff lho (lower figures) as functions of lho/a3D for mass ratios mA/mB = 6/40 (left), 1 (middle), and 40/6 (right).

Eqs. (67) and (68) with the replacement k → iκ, we find

ψ(zA, zB ,ρAB)→ −
∞∑

`=even or odd

√
4π

2`+ 1

e−κr̃B

r̃`+1
B

φ0(zA)

× Y 0
` (ˆ̃rB)

∫
dz′|z′|`φ∗0(z′)χ±(z′).

(87)

One can see that different spherical harmonics ∼ Y 0
` con-

tribute owing to the lack of full 3D rotational symme-
tries. The s-wave nature of the free-space interaction en-
sures that only the m = 0 component contributes so that
the wave function is independent of ρ̂AB . The asymp-
totic behavior at a large separation |r̃B | → ∞ is domi-
nated by the ` = 0 or 1 component in the even- or odd-
parity channel, respectively. Therefore, we can phrase
the even (odd)-parity resonance as an s-wave (p-wave)
resonance in the 2D-3D mixture. The angular part of the
asymptotic wave function of a shallow p-wave molecule
ψ ∼ Y 0

1 (ˆ̃rB) is illustrated in Fig. 1.

D. Scattering parameters in the p-wave channel

The effective scattering length in the s-wave (even-

parity) channel aeff ≡ a
(+)
eff has been computed in

Ref. [24]. Here we focus on the p-wave (odd-parity) chan-
nel and determine its two low-energy scattering parame-

ters, namely, the effective scattering volume veff ≡ a
(−)
eff

and the effective momentum keff ≡ r
(−)
eff . The effective

scattering volume can be computed by solving the inte-
gral equation (83) numerically (see Appendix C for de-
tails). In Fig. 7, veff/l

3
ho for r3D = 0 is plotted as a func-

tion of lho/a3D for three mass ratios mA/mB = 6/40, 1,
and 40/6. We confirm the existence of a series of p-wave
resonances (veff → ∞) induced from the purely s-wave
interaction in a free space, while they become narrower
for larger lho/a3D. We also find that the resonance is
wider when a lighter atom is confined in lower dimen-
sions.

Similarly, the effective momentum can be computed
from Eq. (78), and keff lho for r3D = 0 is plotted in Fig. 7
as a function of lho/a3D for the same three mass ratios.
In the vicinity of the p-wave resonance veff � l3ho, veff

and keff determine the binding energy of a shallow p-
wave molecule via the universal formula (85). Both veff

and keff are important to the low-energy effective theory
of the p-wave resonance discussed below.

E. Low-energy effective theory

The low-energy effective theory of the p-wave reso-
nance in the 2D-3D mixed dimensions is provided by the
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action

S =

∫
dtdρΨ†A(t,ρ)

(
i∂t +

∇2
ρ

2mA

)
ΨA(t,ρ)

+

∫
dtdρdzΨ†B(t,ρ, z)

(
i∂t +

∇2
ρ +∇2

z

2mB

)
ΨB(t,ρ, z)

+

∫
dtdρΦ†(t,ρ)

(
i∂t +

∇2
ρ

2M
+ ε0

)
Φ(t,ρ)

+ g0

∫
dtdρ

[
Ψ†A(t,ρ)∇zΨ†B(t,ρ, 0)Φ(t,ρ)

+Φ†(t,ρ)∇zΨB(t,ρ, 0)ΨA(t,ρ)
]
.

(88)

ΨA and ΨB fields represent the A and B atoms in 2D
and 3D, respectively. The interaction between A and B
atoms is described through their coupling with a p-wave
molecular field Φ. g0 is their coupling strength and ε0

is the detuning from the resonance. These cutoff (Λ)-
dependent bare parameters can be related to the effec-
tive scattering volume veff and effective momentum keff

by matching the two-body scattering amplitude from the
action (88) with that shown in Eqs. (75) and (81).

The standard diagrammatic calculation leads to the
following scattering amplitude with collision energy ε =
k2/(2mB):

iA(k) = − ikzk
′
z

k2/(2mB)+ε0
g20

+ mAB

3π2

(
Λ3

3 + Λk2 + π
2 ik

3
) .
(89)

By defining

ε0

g2
0

+
mAB

3π2

Λ3

3
≡ mAB

6π

1

veff
(90)

and

1

2mBg2
0

+
mAB

3π2
Λ ≡ −mAB

6π

keff

2
, (91)

we reproduce the scattering amplitude (81) in the p-wave
(odd-parity) channel up to a kinematical factor:

A(k) = − 2π

mAB

3kzk
′
z

1
veff
− keff

2 k2 + ik3
. (92)

This low-energy effective theory can be generalized easily
to the case with more than one layer where B atoms
are confined and could be used to investigate the many-
body physics across the p-wave resonance as in the 3D
case [31]. We note that the low-energy effective theory
of the s-wave resonance in the 2D-3D mixed dimensions
has been derived and used to study many-body problems
in Refs. [37, 38].

F. Comparison to experiment [27]

Finally, we compare our predictions to the experi-
mental measurement of resonance positions reported in
Ref. [27]. The Florence group has realized the 2D-
3D mixed dimensions by using a Bose-Bose mixture of
A =41K and B =87Rb with a species-selective 1D optical
lattice:

V (zA) = s
k2
L

2mA
sin2(kLzA). (93)

Here s is the lattice depth parameter and kL = 2π/λL
with λL = 790.02 nm is the wave vector of the laser
light. By monitoring three-body inelastic losses, a series
of resonances has been observed as a function of the mag-
netic field. The measured resonance positions are shown
in Fig. 8 for five values of the lattice depth parameter,
s = 10, 15, 20, 23, and 25.

As for theoretical predictions, we assume that the lat-
tice potential (93) can be approximated by a harmonic
potential:

V (zA) ≈ s k4
L

2mA
z2
A ≡

1

2
mAω

2z2
A. (94)

The harmonic oscillator length is given from the laser
wavelength by lho = λL/(2πs

1/4). With the use of the
free-space value of the effective range r3D = 168.37 a0

for the 41K-87Rb mixture, we solve the integral equation
(84) numerically to determine the resonance positions in
terms of lho/a3D. The free-space scattering length a3D

thus obtained is converted into the magnetic field B (G)
by the following empirical formula [27]:

a3D

a0
= 208

(
1 +

30.9

B + 38.52
− 49.92

B − 38.37
− 1.64

B − 78.67

)
,

(95)
where a0 is the Bohr radius and the resonance in a free
space occurs at B = 38.4 G. These critical magnetic field
values for the s-wave (aeff →∞) and p-wave (veff →∞)
resonances are plotted in Fig. 8 as functions of the lattice
depth parameter s.

In Fig. 8, the resonances are labeled by an integer
n = 0, 1, 2, 3 in descending order, corresponding to n
in Eq. (3). One can see the reasonable agreement be-
tween the experimental measurements and the theoreti-
cal predictions for n = 0 (s-wave) and n = 1 (p-wave)
resonances. They begin to deviate for larger n simply
because the harmonic potential approximation (94) be-
comes worse for higher excited states in an optical lattice.
Although the lattice potential (93) has to be taken into
account to improve the quantitative agreement [27], for
a sufficiently strong optical lattice, the resonances cor-
responding to odd n should be the p-wave resonances
in the 2D-3D mixed dimensions, as we have discussed
in this section. Further experimental investigations to
confirm the p-wave nature of these resonances would be
worthwhile. The p-wave nature of shallow molecules as
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FIG. 8. (Color online) Experimentally measured resonance
positions in terms of the magnetic field B as functions of the
depth parameter s of an optical lattice [27]. Also shown are
the predicted positions of s-wave (aeff →∞; solid curves) and
p-wave (veff → ∞; dashed curves) resonances in a harmonic
potential as well as the resonance position in a free space
(a3D →∞; dotted line).

illustrated in Fig. 1 could be seen as a suppression of the
density of B atoms, as opposed to an enhancement for
s-wave molecules, at the center of the confinement po-
tential after a sudden change of veff > 0 to its negative
side.

V. SUMMARY AND CONCLUDING REMARKS

In this paper, we showed that a purely s-wave interac-
tion in a free space can induce higher partial-wave res-
onances in mixed dimensions. We developed two-body
scattering theories in all three cases of 0D-3D, 1D-3D,
and 2D-3D mixtures, and determined the positions of
higher partial-wave resonances in terms of the free-space
scattering length, assuming a harmonic confinement po-
tential. We also computed the low-energy scattering pa-
rameters in the p-wave channel (effective scattering vol-
ume and momentum) that are necessary for the low-
energy effective theory of the p-wave resonance. Poten-
tially our study paves the way for a variety of physics,
such as Anderson localization of matter waves under
p-wave resonant scatterers in the 0D-3D mixed dimen-
sions [23, 39, 40], Shiba bound states in a superfluid
medium [34], and Bose-Einstein condensation of p-wave
molecules in the 2D-3D mixed dimensions, provided that
such molecules are long lived.

When both A and B atoms are fermionic (such as for
the 6Li-40K mixture [41–45]), inelastic three-body, atom-
molecule, and molecule-molecule collisions decaying into
deeply bound dimers whose size is set by the range of
interatomic potential r0 are suppressed. This is because

at a short distance ∼ r0 � lho, the confinement poten-
tial is irrelevant, and in the s-wave interspecies interac-
tion the Pauli exclusion principle is effective to suppress
the inelastic collisions decaying into the deeply bound
dimers [22]. An order-of-magnitude estimate of such a
three-body recombination rate can be found in Refs. [36]
and [29] for wide Feshbach resonances and in Ref. [29] for
narrow Feshbach resonances.

Therefore, for a Fermi-Fermi mixture in mixed dimen-
sions, the relaxation of molecules is dominated by the
decay into deeper molecular states of size ∼ lho if they
exist. In the vicinity of the s-wave resonance at the small-
est value of lho/a3D, indicated by thick curves in Figs. 2,
4, and 6, there is no such molecular state and thus asso-
ciated s-wave molecules are long lived. However, in the
vicinity of the higher partial-wave resonances, there is
always at least one deeper molecular state. The inelas-
tic atom-molecule and molecule-molecule collisions de-
caying into such molecular states are not generally sup-
pressed, and thus p-wave or higher partial-wave molecules
in mixed dimensions would be short lived. It is therefore
an important future problem to investigate as to whether
the inelastic collisions of p-wave molecules decaying into
the lowest s-wave state of size ∼ lho could be suppressed,
for example, by controlling the system parameters.

We conclude this paper by discussing a simple analogy
between a tower of our confinement-induced molecules
and Kaluza-Klein modes in extra-dimension models [46].
Suppose our 3D world has one compact extra dimension
with an extent of L. Then the momentum of a 4D particle
in the extra fourth direction is quantized as p4 = 2π~n/L.
Because we live in 3D, such a particle can be viewed as
a tower of “new particles” with the quantized masses
mn = 2π~n/cL. These new particles are called Kaluza-
Klein modes and could be observed by colliding high-
energy particles > 2π~c/L at the Large Hadron Collider.

Now in our case, for example, in the 2D-3D mixed
dimensions, the motion of a 3D molecule in the “ex-
tra” z direction is quantized as in Eq. (3) because of
the confinement potential. We can view such quantized
energy levels as a tower of new “Feshbach molecules”
analogous to the Kaluza-Klein modes. Unlike in extra-
dimension models, our particle is a composite molecule
and we can control its binding energy to shift the ener-
gies of the tower of new molecules. When each of them
crosses the scattering threshold, the resonance occurs. A
series of such resonances caused by the “Kaluza-Klein”
tower of confinement-induced molecules has been inves-
tigated in this paper and observed in the cold-atom ex-
periment [24, 27].
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Appendix A: 0D-3D mixed dimensions

Here we present some details of our method to solve integral equations derived in Sec. II. The central issue is the

evaluation of the regular part of the Green’s function defined in Eq. (14). When E − 3
2ω ≡

k2

2mB
≤ 0, it is useful to

represent G as

G(r; r′) = −
∫ ∞

0

dτ e
k2

2mB
τ

(
mAω e

ωτ

2π sinhωτ

)3/2 (mB

2πτ

)3/2

exp

[
−mAω

2

(r + r′)2 coshωτ − 2r · r′

sinhωτ
− mB

2τ
(r − r′)2

]
+

∫ ∞
0

dτ
(mAB

2πτ

)3/2

δ(r − r′).
(A1)

Its partial-wave projection gives

G`(r; r′) ≡
1

2

∫ 1

−1

d cos θ G(r; r′)P`(cos θ)

= −
∫ ∞

0

dτ e
k2

2mB
τ

(
mAω e

ωτ

2π sinhωτ

)3/2 (mB

2πτ

)3/2

i−ljl

[
i
( mAω

sinhωτ
+
mB

τ

)
rr′
]

× exp

[
−
(
mAω coshωτ

sinhωτ
+
mB

τ

)
r2 + r′2

2

]
+

∫ ∞
0

dτ
(mAB

2πτ

)3/2 δ(r − r′)
4πr2

.

(A2)

We now evaluate the matrix elements of G` with respect to the eigenfunctions of 3D harmonic oscillator with orbital
angular momentum `:

φ(`)
n (r) ≡ 1

l
3/2
ho

√
n!

2π
(
n+ `+ 1

2

)
!
e−r

2/(2l2ho)

(
r

lho

)`
L

(`+ 1
2 )

n (r2/l2ho), (A3)

which form an orthonormal basis:∫
dr φ(`)

n (r)φ
(`)
n′ (r) =

∫ ∞
0

4πr2dr φ(`)
n (r)φ

(`)
n′ (r) = δnn′ . (A4)

A lengthy but straightforward calculation leads to

M
(`)
ij ≡

2πlho

mAB

∫
drdr′φ

(`)
i (r)G`(r; r′)φ(`)

j (r′)

=
−1

4
√
π

√
mB

mA

mB

mAB

√(
i+ l + 1

2

i

)(
j + l + 1

2

j

)∫ ∞
0

ωdτ

(ωτ)3/2
e

k2

2mB
τ

(
eωτ

sinhωτ

)3/2

Y l
(

1

X2 − Y 2

)l+ 3
2

×
(

1− X

X2 − Y 2

)i+j
2F1

[
−i,−j; l +

3

2
;

(
Y

X2 −X − Y 2

)2
]

+ δij

√
mAB

2πmA

∫ ∞
0

ωdτ

(ωτ)3/2
,

(A5)

where 2F1 is the hypergeometric function and

X ≡ 1

2

(
1

tanhωτ
+

mB

mAωτ
+ 1

)
and Y ≡ 1

2

(
1

sinhωτ
+

mB

mAωτ

)
. (A6)

Expanding χ` in terms of φ
(`)
n , the integral equations in Sec. II reduce to linear algebraic equations that have been

solved numerically.
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Appendix B: 1D-3D mixed dimensions

Here we present some details of our method to solve integral equations derived in Sec. III. The central issue is the

evaluation of the regular part of the Green’s function defined in Eq. (44). When E − ω ≡ k2

2mB
≤ 0, it is useful to

represent G as

G(ρ;ρ′) = −
∫ ∞

0

dτ e
k2

2mB
τ mAω e

ωτ

2π sinhωτ

mB

2πτ

√
mAB

2πτ
exp

[
−mAω

2

(ρ+ ρ′)2 coshωτ − 2ρ · ρ′

sinhωτ
− mB

2τ
(ρ− ρ′)2

]
+

∫ ∞
0

dτ
(mAB

2πτ

)3/2

δ(ρ− ρ′).
(B1)

Its partial-wave projection gives

Gm(ρ; ρ′) ≡ 1

π

∫ π

0

dϕG(ρ;ρ′) cos(mϕ)

= −
∫ ∞

0

dτ e
k2

2mB
τ mAω e

ωτ

2π sinhωτ

mB

2πτ

√
mAB

2πτ
Im

[( mAω

sinhωτ
+
mB

τ

)
ρρ′
]

× exp

[
−
(
mAω coshωτ

sinhωτ
+
mB

τ

)
ρ2 + ρ′2

2

]
+

∫ ∞
0

dτ
(mAB

2πτ

)3/2 δ(ρ− ρ′)
2πρ

.

(B2)

We now evaluate the matrix elements of Gm with respect to the eigenfunctions of 2D harmonic oscillator with
magnetic quantum number m:

φ(m)
n (ρ) ≡ 1

lho

√
n!

π(n+m)!
e−ρ

2/(2l2ho)

(
ρ

lho

)m
L(m)
n (ρ2/l2ho), (B3)

which form an orthonormal basis:∫
dρφ(m)

n (ρ)φ
(m)
n′ (ρ) =

∫ ∞
0

2πρ dρφ(m)
n (ρ)φ

(m)
n′ (ρ) = δnn′ . (B4)

A lengthy but straightforward calculation leads to

M
(m)
ij ≡ 2πlho

mAB

∫
dρdρ′φ

(m)
i (ρ)Gm(ρ; ρ′)φ

(m)
j (ρ′)

=
−1

2
√

2π

mB√
mAmAB

√(
i+m

i

)(
j +m

j

)∫ ∞
0

ωdτ

(ωτ)3/2
e

k2

2mB
τ eωτ

sinhωτ
Y m

(
1

X2 − Y 2

)m+1

×
(

1− X

X2 − Y 2

)i+j
2F1

[
−i,−j;m+ 1;

(
Y

X2 −X − Y 2

)2
]

+ δij

√
mAB

2πmA

∫ ∞
0

ωdτ

(ωτ)3/2
.

(B5)

Expanding χm in terms of φ
(m)
n , the integral equations in Sec. III reduce to linear algebraic equations that have been

solved numerically.

Appendix C: 2D-3D mixed dimensions

Here we present some details of our method to solve integral equations derived in Sec. IV. The central issue is the

evaluation of the regular part of the Green’s function defined in Eq. (73). When E − 1
2ω ≡

k2

2mB
≤ 0, it is useful to

represent G as

G(z; z′) = −
∫ ∞

0

dτ e
k2

2mB
τ

√
mAω eωτ

2π sinhωτ

√
mB

2πτ

mAB

2πτ
exp

[
−mAω

2

(z + z′)2 coshωτ − 2zz′

sinhωτ
− mB

2τ
(z − z′)2

]
+

∫ ∞
0

dτ
(mAB

2πτ

)3/2

δ(z − z′).
(C1)
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Its parity projection gives

G±(z; z′) ≡ G(z; z′)± G(z;−z′)
2

= −
∫ ∞

0

dτ e
k2

2mB
τ

√
mAω eωτ

2π sinhωτ

√
mB

2πτ

mAB

2πτ

{
cosh
sinh

}[( mAω

sinhωτ
+
mB

τ

)
zz′
]

× exp

[
−
(
mAω coshωτ

sinhωτ
+
mB

τ

)
z2 + z′2

2

]
+

∫ ∞
0

dτ
(mAB

2πτ

)3/2 δ(z − z′)± δ(z + z′)

2
.

(C2)

We now evaluate the matrix elements of G± with respect to the eigenfunctions of 1D harmonic oscillator:

φn(z) ≡ 1√
lho

π−1/4

√
2nn!

e−z
2/(2l2ho)Hn(z/lho), (C3)

which form an orthonormal basis: ∫
dz φ∗n(z)φn′(z) = δnn′ . (C4)

A lengthy but straightforward calculation leads to

M
(+)
ij ≡ 2πlho

mAB

∫
dzdz′φi(z)G+(z; z′)φj(z

′)

=
1

2
√
π

√
mB

mA

(−1)
i
2 + j

2 +1(
i
2

)
!
(
j
2

)
!

√
i! j!

2i+j

∫ ∞
0

ωdτ

(ωτ)3/2
e

k2

2mB
τ

√
eωτ

sinhωτ

(
1

X2 − Y 2

)1/2

×
(

1− X

X2 − Y 2

) i
2 + j

2

2F1

[
− i

2
,− j

2
;

1

2
;

(
Y

X2 −X − Y 2

)2
]

+ δij

√
mAB

2πmA

∫ ∞
0

ωdτ

(ωτ)3/2

(C5)

for i, j = even integers and

M
(−)
ij ≡ 2πlho

mAB

∫
dzdz′φi(z)G−(z; z′)φj(z

′)

=
1√
π

√
mB

mA

(−1)
i
2 + j

2(
i−1

2

)
!
(
j−1

2

)
!

√
i! j!

2i+j

∫ ∞
0

ωdτ

(ωτ)3/2
e

k2

2mB
τ

√
eωτ

sinhωτ
Y

(
1

X2 − Y 2

)3/2

×
(

1− X

X2 − Y 2

) i
2 + j

2−1

2F1

[
1− i

2
,

1− j
2

;
3

2
;

(
Y

X2 −X − Y 2

)2
]

+ δij

√
mAB

2πmA

∫ ∞
0

ωdτ

(ωτ)3/2

(C6)

for i, j = odd integers. Expanding χ± in terms of φn, the integral equations in Sec. IV reduce to linear algebraic
equations that have been solved numerically.
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