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Abstract

We calculate the quark spin contribution to the total angular momentum of flavor octet and

flavor decuplet ground state baryons using a spin-flavor symmetry based parametrization method

of quantum chromodynamics. We find that third order SU(6) symmetry breaking three-quark

operators are necessary to explain the experimental result Σ1 = 0.32(10). For spin 3/2 decuplet

baryons we predict that the quark spin contribution is Σ3 = 3.93(22), i.e. considerably larger than

their total angular momentum.
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I. INTRODUCTION

The question how the proton spin is made up from the quark spin Σ, quark orbital angular

momentum Lq, gluon spin ∆g, and gluon orbital angular momentum Lg

J =
1

2
Σ + Lq +∆g + Lg (1.1)

is one of the central issues in nucleon structure physics [1, 2]. In the constituent quark model

with only one-body operators one obtains J = Σ/2 = 1/2, i.e., the proton spin is the sum

of the constituent quark spins and nothing else. However, experimentally it is known that

only about 1/3 of the proton spin comes from quarks [3, 4]. The disagreement between the

quark model result and experiment came as a surprise because the same model accurately

described the related proton and neutron magnetic moments.

Using a broken SU(6) spin-flavor symmetry based parametrization of quantum chromo-

dynamics we show that the failure of the quark model to describe the quark contribution

to proton spin correctly is due to the neglect of three-quark terms in the axial current.

Including third order SU(6) symmetry breaking three-quark terms we reproduce the mea-

sured quark contribution to the proton spin and predict the spin carried by quarks for the

remaining flavor octet and decuplet ground state baryons.

II. SPIN-FLAVOR SYMMETRY AND QCD PARAMETRIZATION METHOD

We use a general parametrization method developed by Morpurgo [5] to calculate the

quark contribution to baryon spin in a systematic manner. This method is based on broken

spin-flavor symmetry and quark-gluon dynamics of quantum chromodynamics (QCD). The

basic idea is to formally define, for the observable at hand, a QCD operator Ω and QCD

eigenstates |B〉 expressed explicitly in terms of quarks and gluons. The corresponding matrix

elements can, with the help of the unitary operator V , be reduced to an evaluation in a basis

of pure three-quark states |ΦB〉 with orbital angular momentum L = 0

〈B|Ω|B〉 =
〈

ΦB|V †ΩV |ΦB

〉

=
〈

WB|Ω̃|WB

〉

. (2.1)

The spin-flavor wave functions contained in |ΦB〉 are denoted by |WB〉. The operator V

dresses the pure three-quark states with qq̄ components and gluons and thereby generates

the exact QCD eigenstates |B〉.
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The main task is to find the most general expression for the operator Ω̃ that is compatible

with the space-time and inner QCD symmetries. Usually, this is a sum of one-, two-, and

three-quark operators in spin-flavor space multiplied by a priori unknown constants which

parametrize the orbital and color space matrix elements. Empirically, a hierarchy in the

importance of one-, two-, and three-quark operators is found. This fact can be understood

in the 1/Nc expansion of QCD where two- and three-quark operators describing second and

third order SU(6) symmetry breaking are usually suppressed by powers of 1/Nc and 1/N2
c

respectively compared to one-quark operators associated with first order symmetry break-

ing [6]. Previously, we have applied this method also to calculate higher order corrections

to baryon-meson couplings as well as baryon electromagnetic moments [7].

To begin with, we show which spin-flavor structures contribute to the flavor singlet axial

current. Generally, an SU(6) spin-flavor symmetry breaking operator Ω̃R acting on the 56

dimensional baryon ground state supermultiplet must transform according to one of the

irreducible representations R contained in the direct product [8]

5̄6× 56 = 1+ 35+ 405+ 2695. (2.2)

The 1 dimensional representation (rep) on the right-hand side of Eq.(2.2) corresponds to

an SU(6) symmetric operator, while the 35, 405, and 2695 dimensional reps characterize

respectively, first, second, and third order SU(6) symmetry breaking. Therefore, a general

SU(6) breaking operator has the form

Ω̃ = Ω̃1 + Ω̃35 + Ω̃405 + Ω̃2695. (2.3)

In terms of quarks, the operators on the right-hand side of Eq.(2.3) are represented re-

spectively by zero-, one-, two-, and three-quark operators [9]. The two- and three-quark

operators are an effective description of quark-antiquark and gluon degrees of freedom that

have been moved from the QCD eigenstates |B〉 to the operator Ω̃ by virtue of the unitary

transformation V .

We now decompose each SU(6) tensor Ω̃R into subtensors Ω̃R
(F,2J+1) with definite trans-

formation properties with respect to the SU(3)F flavor and SU(2)J spin subgroups of SU(6).

To describe spin, flavor singlet, axial vector subtensors of type Ω̃R
(1,3) are required. Denoting

operators by their dimensionalities for simplicity we obtain [10, 11]

35 = (8, 3) + (8, 1) + (1, 3),
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405 = (27, 5) + (8, 5) + (1, 5) + (27, 3) + (10, 3) + (1̄0, 3) + 2 (8, 3)

+ (27, 1) + (8, 1) + (1, 1),

2695 = (64, 7) + (27, 7) + (8, 7) + (1, 7)

+ (64, 5) + (35, 5) + (3̄5, 5) + 2 (27, 5) + (10, 5) + (1̄0, 5) + 2(8, 5)

+ (64, 3) + (35, 3) + (3̄5, 3) + 3 (27, 3) + 2 (10, 3) + 2(8, 3) + (1, 3)

+ (64, 1) + (27, 1) + (10, 1) + (1̄0, 1) + (8, 1). (2.4)

Here, the first and second entries in the parentheses refer to the dimensions of the SU(3)F

and SU(2)J reps according to which the corresponding operators transform.

From the flavor-spin decompositions in Eq.(2.4) it is clear that a flavor singlet axial

vector operator (1, 3) needed to describe baryon spin, is contained only in the 35 and 2695

dimensional reps of SU(6) so that we can write A := Ω̃ = Ω̃35
(1,3) + Ω̃2695

(1,3). As a result, the

flavor singlet axial vector current contains only a one-quark and a three-quark term

A = A[1] +A[3] = A
3

∑

i=1

σσσσ i + C
3

∑

i 6=j 6=k

σσσσ i · σσσσj σσσσk, (2.5)

where σσσσ i is the Pauli spin matrix of quark i and the constants A and C are to be determined

from experiment. Two-quark operators, such as
∑

i 6=j σσσσ i×σσσσ j or
∑

i 6=j(σσσσ i ·σσσσj) σσσσi add up to zero

or can be reduced to one-body operators. Therefore, there is no two-quark contribution to

the flavor singlet axial vector current A, in agreement with the general symmetry argument

that the 405 rep does not contain a (1, 3) operator structure.

In Ref. [12] a flavor singlet two-body gluon exchange current A0 was constructed from

the flavor octet axial axial current A8 by replacing the Gell-Mann matrix λλλλ8 with the SU(3)

flavor singlet matrix λλλλ0. From the perspective of broken SU(6) symmetry, such a two-body

exchange current, which has also been used in Ref. [13], does not exist.

III. SPIN-FLAVOR WAVE FUNCTIONS

The SU(6) spin-flavor wave functions of octet baryons are, for example, for the proton in

standard notation

|p ↑〉 = 1√
2

{

1√
6

∣

∣

∣

∣

(2uud− udu− duu)
〉

1√
6

∣

∣

∣

∣

(2 ↑↑↓ − ↑↓↑ − ↓↑↑)
〉

+
1√
2

∣

∣

∣

∣

(udu− duu)
〉

1√
2

∣

∣

∣

∣

(↑↓↑ − ↓↑↑)
〉}

. (3.1)
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Alternatively, one can write this wave function as

|p ↑〉 = 1√
18

∣

∣

∣

∣

2u ↑ u ↑ d ↓ −u ↑ u ↓ d ↑ −u ↓ u ↑ d ↑

+2d ↓ u ↑ u ↑ − d ↑ u ↓ u ↑ − d ↑ u ↑ u ↓

+2u ↑ d ↓ u ↑ −u ↑ d ↑ u ↓ −u ↓ d ↑ u ↑
〉

. (3.2)

Likewise one can write down the spin-flavor wave functions of other octet and decuplet

baryons [14].

IV. QUARK SPIN CONTRIBUTION TO BARYON SPIN

The matrix elements of the quark contribution to baryon spin can be straightforwardly

calculated by sandwiching the flavor singlet axial current A of Eq.(2.5) between SU(6)

baryon wave functions, e.g. for the proton in Eq.(3.2). Our results for the spin 1/2 octet

and the spin 3/2 decuplet baryons are

Σ1 : = 〈B8 ↑ |Az|B8 ↑〉 = A− 10C

Σ3 : = 〈B10 ↑ |Az|B10 ↑〉 = 3A+ 6C, (4.1)

where B8 (B10) stands for any member of the baryon flavor octet (decuplet). Here, Σi is

twice the quark spin contribution to the total baryon angular momentum. We predict the

same quark contribution to the total baryon angular momentum for all members of a given

flavor multiplet independent of the flavor composition of individual baryons. This is to be

expected because we are dealing with a flavor singlet operator that does not break SU(3)

symmetry. On the other hand, we find that SU(6) symmetry is broken as reflected by the

different expressions for flavor octet and decuplet baryons.

To calculate the contribution of individual quark flavors we define one-body u-quark and

d-quark operators acting only on u-quarks and d-quarks as

Au
[1] z = A

3
∑

i=1

σσσσu
i z, Ad

[1] z = A
3

∑

i=1

σσσσd
i z, (4.2)

with matrix elements between proton wave functions

〈p ↑ |A
3

∑

i=1

σσσσu
i z|p ↑〉 = 4

3
A, 〈p ↑ |A

3
∑

i=1

σσσσd
i z|p ↑〉 = −1

3
A. (4.3)
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Adding both contributions gives

〈p ↑ |A
3

∑

i=1

(

σσσσu
i z + σσσσd

i z

)

|p ↑〉 = 4

3
A− 1

3
A = A, (4.4)

in agreement with the first term of Eq.(4.1).

Analogously, three-body u-quark and d-quark operators are defined as

Au
[3] z = 2C

(

σσσσu
1 · σσσσd

2 σσσσu
3 z + σσσσd

1 · σσσσu
2 σσσσu

3 z + σσσσu
1 · σσσσd

3 σσσσu
2 z + σσσσd

1 · σσσσu
3 σσσσu

2 z + σσσσu
2 · σσσσd

3 σσσσu
1 z + σσσσd

2 · σσσσu
3 σσσσu

1 z

)

,

Ad
[3] z = C

(

σσσσu
1 · σσσσu

2 σσσσd
3 z + σσσσu

2 · σσσσu
1 σσσσd

3 z + σσσσu
1 · σσσσu

3 σσσσd
2 z + σσσσu

3 · σσσσu
1 σσσσd

2 z + σσσσu
2 · σσσσu

3 σσσσd
1 z + σσσσu

3 · σσσσu
2 σσσσd

1 z

)

,

(4.5)

with matrix elements

〈p ↑ |Au
[3] z|p ↑〉 = −28

3
C, 〈p ↑ |Ad

[3] z|p ↑〉 = −2

3
C. (4.6)

The total three-quark spin contribution to proton spin is

〈p ↑ |Au
[3] z +Ad

[3] z|p ↑〉 = −28

3
C − 2

3
C = −10C, (4.7)

as it should be according to Eq.(4.1). Summarizing, we obtain for the u- and d-quark

contributions to the spin of the proton

∆u := 〈p ↑ |Au
[1] z +Au

[3] z|p ↑〉 =
4

3
A− 28

3
C

∆d := 〈p ↑ |Ad
[1] z +Ad

[3] z|p ↑〉 = −1

3
A− 2

3
C. (4.8)

We fix the constants A and C as follows. The combined deep inelastic scattering and

hyperon β-decay data give [4]

∆u = 0.83± 0.03, ∆d = −0.43± 0.03, ∆s = −0.09± 0.04. (4.9)

The sum of these experimental spin fractions Σ1exp = ∆u+∆d+∆s = 0.32(10) is considerably

smaller than expected from the additive quark model, which gives Σ1 = 1. Solving Eq.(4.8)

for A and C we get

A =
1

6
∆u− 7

3
∆d,

C = − 1

12
∆u− 1

3
∆d. (4.10)
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Inserting the experimental results for ∆u and ∆d from Eq.(4.9) we obtain A = 1.15(7) and

C = 0.08(1).

According to Eq.(4.1) the quark spin contribution to the total angular momentum of flavor

octet baryons is then Σ1 = 0.35(12) compared to the experimental result Σ1exp = 0.32(10).

Despite the typical 1/N2
c
∼= 1/9 suppression of three-quark compared to one-quark terms,

for octet baryon spin, the three-quark contribution is of the same importance as the one-

quark term because of the factor 10 multiplying the C term. As a result of the cancellation

between the one-quark and the three-quark terms one finds that quark spin contributes

only 1/3 of the total octet baryon spin. As mentioned before, the three-quark term is an

effective description of quark-antiquark and gluon degrees of freedom in physical baryons.

These degrees of freedom are also responsible for orbital angular momentum that is needed

to obtain the total baryon spin.

With A and C fixed, we predict the quark spin contribution to decuplet baryon spin not

considered before by other authors as

Σ3 = 〈B10 ↑ |A|B10 ↑〉 = 3A+ 6C = 3.93(22). (4.11)

It is interesting that for decuplet baryons, quark spins add up to 1.31 times the additive

quark model value 2Sz = 3. Therefore, while orbital angular momentum must provide a

positive contribution for octet baryons, it must reduce the quark spin in the case of decuplet

baryons.

V. SUMMARY

In summary, we have presented a straightforward calculation of the quark spin contribu-

tion to the total angular momentum of ground state baryons using a spin-flavor symmetry

based parametrization of QCD. For flavor octet baryons, we have shown that three-quark

operators modify the standard quark model prediction based on one-quark operators from

Σ1 = 1 to Σ1 = 0.35(12) in agreement with the experimental result. On the other hand, in

the case of flavor decuplet baryons, three-quark operators enhance the contribution of one

quark operators from Σ3 = 3 to Σ3 = 3.93(22).

In this paper, our concern has been with the quark spin contribution to baryon total

angular momentum. There are two further contributions, the orbital angular momentum of
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the quarks and the gluon contributions. Concerning gluon spin ∆g, different experiments

agree that it is too small to explain the total proton angular momentum [15]. Furthermore,

it has been shown that gluon orbital angular momentum Lg is very small as well [16]. Quark

orbital angular momentum Lq has recently been investigated by a number of authors [17–19].

We do not attempt to discuss these contributions here, because it would detract from our

main theme. We hope to address this issue in a future publication.
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